1 | /* $Id: generateCuts.cpp 858 2012-06-12 03:41:05Z pbelotti $ |
---|
2 | * |
---|
3 | * Name: generateCuts.cpp |
---|
4 | * Author: Pietro Belotti |
---|
5 | * Purpose: the generateCuts() method of the convexification class CouenneCutGenerator |
---|
6 | * |
---|
7 | * (C) Carnegie-Mellon University, 2006-11. |
---|
8 | * This file is licensed under the Eclipse Public License (EPL) |
---|
9 | */ |
---|
10 | |
---|
11 | #include "BonCbc.hpp" |
---|
12 | #include "BonBabInfos.hpp" |
---|
13 | #include "CglCutGenerator.hpp" |
---|
14 | |
---|
15 | #include "CouenneCutGenerator.hpp" |
---|
16 | #include "CouenneProblem.hpp" |
---|
17 | #include "CouenneProblemElem.hpp" |
---|
18 | #include "CouenneExprVar.hpp" |
---|
19 | #include "CouenneInfeasCut.hpp" |
---|
20 | |
---|
21 | #include "CouenneRecordBestSol.hpp" |
---|
22 | |
---|
23 | //#define FM_PRINT_INFO |
---|
24 | |
---|
25 | #ifdef COIN_HAS_NTY |
---|
26 | #include "Nauty.h" |
---|
27 | #endif |
---|
28 | |
---|
29 | using namespace Ipopt; |
---|
30 | |
---|
31 | namespace Couenne { |
---|
32 | |
---|
33 | #define Couenne_large_bound2 9.99e12 |
---|
34 | |
---|
35 | // checks bad cuts against known optimum |
---|
36 | bool isOptimumCut (const CouNumber *opt, OsiCuts &cs, CouenneProblem *p); |
---|
37 | |
---|
38 | // set and lift bound for auxiliary variable associated with objective |
---|
39 | // function |
---|
40 | void fictitiousBound (OsiCuts &cs, |
---|
41 | CouenneProblem *p, |
---|
42 | bool action) { // true before convexifying, false afterwards |
---|
43 | |
---|
44 | // fictitious bound for initial unbounded lp relaxations |
---|
45 | const CouNumber large_tol = (Couenne_large_bound2 / 1e6); |
---|
46 | |
---|
47 | // set trivial dual bound to objective function, if there is none |
---|
48 | |
---|
49 | int ind_obj = p -> Obj (0) -> Body () -> Index (); |
---|
50 | |
---|
51 | if (ind_obj < 0) return; |
---|
52 | |
---|
53 | // we have a single variable objective function |
---|
54 | |
---|
55 | //int sense = -1; //(p -> Obj (0) -> Sense () == MINIMIZE) ? -1 : 1; |
---|
56 | |
---|
57 | if (action) |
---|
58 | //if (sense<0) |
---|
59 | {if (p -> Lb (ind_obj) < - Couenne_large_bound2) p -> Lb (ind_obj) = - Couenne_large_bound2;} |
---|
60 | //else {if (p -> Ub (ind_obj) > large_bound2) p -> Ub (ind_obj) = large_bound2;} |
---|
61 | else |
---|
62 | //if (sense>0) {if (fabs (p->Ub(ind_obj)-large_bound2)<large_tol) p->Ub(ind_obj)=COUENNE_INFINITY;} |
---|
63 | //else |
---|
64 | {if (fabs (p->Lb(ind_obj)+Couenne_large_bound2)<large_tol) p->Lb(ind_obj) =-COUENNE_INFINITY;} |
---|
65 | } |
---|
66 | |
---|
67 | |
---|
68 | // translate changed bound sparse array into a dense one |
---|
69 | void sparse2dense (int ncols, t_chg_bounds *chg_bds, int *&changed, int &nchanged) { |
---|
70 | |
---|
71 | // convert sparse chg_bds in something handier |
---|
72 | |
---|
73 | changed = (int *) realloc (changed, ncols * sizeof (int)); |
---|
74 | nchanged = 0; |
---|
75 | |
---|
76 | for (register int i=ncols, j=0; i--; j++, chg_bds++) |
---|
77 | if (chg_bds -> lower() != t_chg_bounds::UNCHANGED || |
---|
78 | chg_bds -> upper() != t_chg_bounds::UNCHANGED ) { |
---|
79 | *changed++ = j; |
---|
80 | nchanged++; |
---|
81 | } |
---|
82 | |
---|
83 | changed -= nchanged; |
---|
84 | //changed = (int *) realloc (changed, nchanged * sizeof (int)); |
---|
85 | } |
---|
86 | |
---|
87 | |
---|
88 | /// get new bounds from parents' bounds + branching rules |
---|
89 | void updateBranchInfo (const OsiSolverInterface &si, CouenneProblem *p, |
---|
90 | t_chg_bounds *chg, const CglTreeInfo &info); |
---|
91 | |
---|
92 | /// a convexifier cut generator |
---|
93 | |
---|
94 | void CouenneCutGenerator::generateCuts (const OsiSolverInterface &si, |
---|
95 | OsiCuts &cs, |
---|
96 | const CglTreeInfo info) const { |
---|
97 | |
---|
98 | // if si.lb(objInd) > cutoff, |
---|
99 | // return infeasCut |
---|
100 | |
---|
101 | int indObj = problem_ -> Obj (0) -> Body () -> Index (); |
---|
102 | |
---|
103 | if ((indObj >= 0) && |
---|
104 | (si.getColLower () [indObj] > problem_ -> getCutOff () + COUENNE_EPS)) { |
---|
105 | |
---|
106 | WipeMakeInfeas (cs); |
---|
107 | return; |
---|
108 | } |
---|
109 | |
---|
110 | // check if out of time or if an infeasibility cut (iis of type 0) |
---|
111 | // was added as a result of, e.g., pruning on BT. If so, no need to |
---|
112 | // run this. |
---|
113 | |
---|
114 | if (isWiped (cs) || |
---|
115 | (CoinCpuTime () > problem_ -> getMaxCpuTime ())) |
---|
116 | return; |
---|
117 | |
---|
118 | #ifdef FM_TRACE_OPTSOL |
---|
119 | double currCutOff = problem_->getCutOff(); |
---|
120 | double bestVal = 1e50; |
---|
121 | CouenneRecordBestSol *rs = problem_->getRecordBestSol(); |
---|
122 | if(rs->getHasSol()) { |
---|
123 | bestVal = rs->getVal(); |
---|
124 | } |
---|
125 | if(currCutOff > bestVal) { |
---|
126 | //problem_ -> setCutOff (bestVal - 1e-6); // FIXME: don't add numerical constants |
---|
127 | problem_ -> setCutOff (bestVal); |
---|
128 | |
---|
129 | if ((indObj >= 0) && (si. getColUpper () [indObj] > bestVal)) { |
---|
130 | OsiColCut *objCut = new OsiColCut; |
---|
131 | objCut->setUbs(1, &indObj, &bestVal); |
---|
132 | cs.insert(objCut); |
---|
133 | delete objCut; |
---|
134 | } |
---|
135 | } |
---|
136 | #endif |
---|
137 | |
---|
138 | #ifdef FM_PRINT_INFO |
---|
139 | if((BabPtr_ != NULL) && (info.level >= 0) && (info.pass == 0) && |
---|
140 | (BabPtr_->model().getNodeCount() > lastPrintLine)) { |
---|
141 | printLineInfo(); |
---|
142 | lastPrintLine += 1; |
---|
143 | } |
---|
144 | #endif |
---|
145 | |
---|
146 | const int infeasible = 1; |
---|
147 | |
---|
148 | int nInitCuts = cs.sizeRowCuts (); |
---|
149 | |
---|
150 | CouNumber |
---|
151 | *&realOpt = problem_ -> bestSol (), |
---|
152 | *saveOptimum = realOpt; |
---|
153 | |
---|
154 | if (!firstcall_ && realOpt) { |
---|
155 | |
---|
156 | // have a debug optimal solution. Check if current bounds |
---|
157 | // contain it, otherwise pretend it does not exist |
---|
158 | |
---|
159 | CouNumber *opt = realOpt; |
---|
160 | |
---|
161 | const CouNumber |
---|
162 | *sol = si.getColSolution (), |
---|
163 | *lb = si.getColLower (), |
---|
164 | *ub = si.getColUpper (); |
---|
165 | |
---|
166 | int objind = problem_ -> Obj (0) -> Body () -> Index (); |
---|
167 | |
---|
168 | for (int j=0, i=problem_ -> nVars (); i--; j++, opt++, lb++, ub++) |
---|
169 | if ((j != objind) && |
---|
170 | ((*opt < *lb - COUENNE_EPS * (1 + CoinMin (fabs (*opt), fabs (*lb)))) || |
---|
171 | (*opt > *ub + COUENNE_EPS * (1 + CoinMin (fabs (*opt), fabs (*ub)))))) { |
---|
172 | |
---|
173 | jnlst_ -> Printf (J_VECTOR, J_CONVEXIFYING, |
---|
174 | "out of bounds, ignore x%d = %g [%g,%g] opt = %g\n", |
---|
175 | problem_ -> nVars () - i - 1, *sol, *lb, *ub, *opt); |
---|
176 | |
---|
177 | // optimal point is not in current bounding box, |
---|
178 | // pretend realOpt is NULL until we return from this procedure |
---|
179 | realOpt = NULL; |
---|
180 | break; |
---|
181 | } |
---|
182 | } |
---|
183 | |
---|
184 | /*static int count = 0; |
---|
185 | char fname [20]; |
---|
186 | sprintf (fname, "relax_%d", count++); |
---|
187 | si.writeLp (fname); |
---|
188 | printf ("writing %s\n", fname);*/ |
---|
189 | |
---|
190 | jnlst_ -> Printf (J_DETAILED, J_CONVEXIFYING, |
---|
191 | "generateCuts: level = %d, pass = %d, intree = %d\n", |
---|
192 | info.level, info.pass, info.inTree); |
---|
193 | |
---|
194 | Bonmin::BabInfo * babInfo = dynamic_cast <Bonmin::BabInfo *> (si.getAuxiliaryInfo ()); |
---|
195 | |
---|
196 | if (babInfo) |
---|
197 | babInfo -> setFeasibleNode (); |
---|
198 | |
---|
199 | double now = CoinCpuTime (); |
---|
200 | int ncols = problem_ -> nVars (); |
---|
201 | |
---|
202 | // This vector contains variables whose bounds have changed due to |
---|
203 | // branching, reduced cost fixing, or bound tightening below. To be |
---|
204 | // used with malloc/realloc/free |
---|
205 | |
---|
206 | t_chg_bounds *chg_bds = new t_chg_bounds [ncols]; |
---|
207 | |
---|
208 | /*for (int i=0; i < ncols; i++) |
---|
209 | if (problem_ -> Var (i) -> Multiplicity () <= 0) { |
---|
210 | chg_bds [i].setLower (t_chg_bounds::UNCHANGED); |
---|
211 | chg_bds [i].setUpper (t_chg_bounds::UNCHANGED); |
---|
212 | }*/ |
---|
213 | |
---|
214 | problem_ -> installCutOff (); // install upper bound |
---|
215 | |
---|
216 | if (firstcall_) { |
---|
217 | |
---|
218 | // First convexification ////////////////////////////////////// |
---|
219 | |
---|
220 | // OsiSolverInterface is empty yet, no information can be obtained |
---|
221 | // on variables or bounds -- and none is needed since our |
---|
222 | // constructor populated *problem_ with variables and bounds. We |
---|
223 | // only need to update the auxiliary variables and bounds with |
---|
224 | // their current value. |
---|
225 | |
---|
226 | for (int i=0; i < ncols; i++) |
---|
227 | if (problem_ -> Var (i) -> Multiplicity () > 0) { |
---|
228 | chg_bds [i].setLower (t_chg_bounds::CHANGED); |
---|
229 | chg_bds [i].setUpper (t_chg_bounds::CHANGED); |
---|
230 | } |
---|
231 | |
---|
232 | // start with FBBT, should take advantage of cutoff found by NLP |
---|
233 | // run AFTER initial FBBT... |
---|
234 | if (problem_ -> doFBBT () && |
---|
235 | (! (problem_ -> boundTightening (chg_bds, info, babInfo)))) |
---|
236 | jnlst_ -> Printf (J_STRONGWARNING, J_CONVEXIFYING, |
---|
237 | "Couenne: WARNING, first convexification is infeasible\n"); |
---|
238 | |
---|
239 | // For each auxiliary variable replacing the original (nonlinear) |
---|
240 | // constraints, check if corresponding bounds are violated, and |
---|
241 | // add cut to cs |
---|
242 | |
---|
243 | int nnlc = problem_ -> nCons (); |
---|
244 | |
---|
245 | for (int i=0; i<nnlc; i++) { |
---|
246 | |
---|
247 | if (CoinCpuTime () > problem_ -> getMaxCpuTime ()) |
---|
248 | break; |
---|
249 | |
---|
250 | // for each constraint |
---|
251 | CouenneConstraint *con = problem_ -> Con (i); |
---|
252 | |
---|
253 | // (which has an aux as its body) |
---|
254 | int objindex = con -> Body () -> Index (); |
---|
255 | |
---|
256 | if ((objindex >= 0) && |
---|
257 | ((con -> Body () -> Type () == AUX) || |
---|
258 | (con -> Body () -> Type () == VAR))) { |
---|
259 | |
---|
260 | // get the auxiliary that is at the lhs |
---|
261 | exprVar *conaux = problem_ -> Var (objindex); |
---|
262 | |
---|
263 | if (conaux && |
---|
264 | (conaux -> Type () == AUX) && |
---|
265 | (conaux -> Image ()) && |
---|
266 | (conaux -> Image () -> Linearity () <= LINEAR)) { |
---|
267 | |
---|
268 | // reduce density of problem by adding w >= l rather than |
---|
269 | // ax + b >= l for any linear auxiliary defined as w := ax+b |
---|
270 | |
---|
271 | double |
---|
272 | lb = (*(con -> Lb ())) (), |
---|
273 | ub = (*(con -> Ub ())) (); |
---|
274 | |
---|
275 | OsiColCut newBound; |
---|
276 | if (lb > -COUENNE_INFINITY) newBound.setLbs (1, &objindex, &lb); |
---|
277 | if (ub < COUENNE_INFINITY) newBound.setUbs (1, &objindex, &ub); |
---|
278 | |
---|
279 | cs.insert (newBound); |
---|
280 | |
---|
281 | // the auxiliary w of constraint w <= b is associated with a |
---|
282 | // linear expression w = ax: add constraint ax <= b |
---|
283 | /*conaux -> Image () -> generateCuts (conaux, si, cs, this, chg_bds, |
---|
284 | conaux -> Index (), |
---|
285 | (*(con -> Lb ())) (), |
---|
286 | (*(con -> Ub ())) ());*/ |
---|
287 | |
---|
288 | // take it from the list of the variables to be linearized |
---|
289 | // |
---|
290 | // DO NOT decrease multiplicity. Even if it is a linear |
---|
291 | // term, its bounds can still be used in implied bounds |
---|
292 | // |
---|
293 | // Are we sure? That will happen only if its multiplicity is |
---|
294 | // nonzero, for otherwise this aux is only used here, and is |
---|
295 | // useless elsewhere |
---|
296 | // |
---|
297 | //conaux -> decreaseMult (); // !!! |
---|
298 | } |
---|
299 | |
---|
300 | // also, add constraint w <= b |
---|
301 | |
---|
302 | // not now, do it later |
---|
303 | |
---|
304 | // // if there exists violation, add constraint |
---|
305 | // CouNumber l = con -> Lb () -> Value (), |
---|
306 | // u = con -> Ub () -> Value (); |
---|
307 | |
---|
308 | // // tighten bounds in Couenne's problem representation |
---|
309 | // problem_ -> Lb (index) = CoinMax (l, problem_ -> Lb (index)); |
---|
310 | // problem_ -> Ub (index) = CoinMin (u, problem_ -> Ub (index)); |
---|
311 | |
---|
312 | } else { // body is more than just a variable, but it should be |
---|
313 | // linear. If so, generate equivalent linear cut |
---|
314 | |
---|
315 | assert (false); // TODO |
---|
316 | } |
---|
317 | } |
---|
318 | |
---|
319 | if (jnlst_ -> ProduceOutput (J_ITERSUMMARY, J_CONVEXIFYING)) { |
---|
320 | if (cs.sizeRowCuts ()) { |
---|
321 | jnlst_ -> Printf (J_ITERSUMMARY, J_CONVEXIFYING,"Couenne: %d constraint row cuts\n", |
---|
322 | cs.sizeRowCuts ()); |
---|
323 | for (int i=0; i<cs.sizeRowCuts (); i++) |
---|
324 | cs.rowCutPtr (i) -> print (); |
---|
325 | } |
---|
326 | if (cs.sizeColCuts ()) { |
---|
327 | jnlst_ -> Printf (J_ITERSUMMARY, J_CONVEXIFYING,"Couenne: %d constraint col cuts\n", |
---|
328 | cs.sizeColCuts ()); |
---|
329 | for (int i=0; i<cs.sizeColCuts (); i++) |
---|
330 | cs.colCutPtr (i) -> print (); |
---|
331 | } |
---|
332 | } |
---|
333 | } else { |
---|
334 | |
---|
335 | // use new optimum as lower bound for variable associated w/objective |
---|
336 | |
---|
337 | // transmit solution from OsiSolverInterface to problem |
---|
338 | problem_ -> domain () -> push (&si, &cs); |
---|
339 | |
---|
340 | if (indObj >= 0) { |
---|
341 | |
---|
342 | // Use current value of objvalue's x as a lower bound for bound |
---|
343 | // tightening |
---|
344 | double lp_bound = problem_ -> domain () -> x (indObj); |
---|
345 | |
---|
346 | //if (problem_ -> Obj (0) -> Sense () == MINIMIZE) |
---|
347 | {if (lp_bound > problem_ -> Lb (indObj)) problem_ -> Lb (indObj) = lp_bound;} |
---|
348 | //else {if (lp_bound < problem_ -> Ub (indObj)) problem_ -> Ub (indObj) = lp_bound;} |
---|
349 | } |
---|
350 | |
---|
351 | updateBranchInfo (si, problem_, chg_bds, info); // info.depth >= 0 || info.pass >= 0 |
---|
352 | } |
---|
353 | |
---|
354 | // restore constraint bounds before tightening and cut generation |
---|
355 | for (int i = problem_ -> nCons (); i--;) { |
---|
356 | |
---|
357 | // for each constraint |
---|
358 | CouenneConstraint *con = problem_ -> Con (i); |
---|
359 | |
---|
360 | // (which has an aux as its body) |
---|
361 | int objindex = con -> Body () -> Index (); |
---|
362 | |
---|
363 | if ((objindex >= 0) && |
---|
364 | ((con -> Body () -> Type () == AUX) || |
---|
365 | (con -> Body () -> Type () == VAR))) { |
---|
366 | |
---|
367 | // if there exists violation, add constraint |
---|
368 | CouNumber |
---|
369 | l = con -> Lb () -> Value (), |
---|
370 | u = con -> Ub () -> Value (); |
---|
371 | |
---|
372 | // tighten bounds in Couenne's problem representation |
---|
373 | problem_ -> Lb (objindex) = CoinMax (l, problem_ -> Lb (objindex)); |
---|
374 | problem_ -> Ub (objindex) = CoinMin (u, problem_ -> Ub (objindex)); |
---|
375 | } |
---|
376 | } |
---|
377 | |
---|
378 | problem_ -> installCutOff (); // install upper bound |
---|
379 | |
---|
380 | fictitiousBound (cs, problem_, false); // install finite lower bound, if currently -inf |
---|
381 | |
---|
382 | int *changed = NULL, nchanged; |
---|
383 | |
---|
384 | // Bound tightening /////////////////////////////////////////// |
---|
385 | |
---|
386 | // do bound tightening only at first pass of cutting plane in a node |
---|
387 | // of BB tree (info.pass == 0) or if first call (creation of RLT, |
---|
388 | // info.pass == -1) |
---|
389 | |
---|
390 | try { |
---|
391 | |
---|
392 | // Before bound tightening, compute symmetry group. After bound |
---|
393 | // tightening is done, we can apply further tightening using orbit |
---|
394 | // information. |
---|
395 | |
---|
396 | // #ifdef COIN_HAS_NTY |
---|
397 | // // ChangeBounds (psi -> getColLower (), |
---|
398 | // // psi -> getColUpper (), |
---|
399 | // // psi -> getNumCols ()); |
---|
400 | |
---|
401 | // if (problem_ -> orbitalBranching ()){ |
---|
402 | |
---|
403 | // problem_ -> ChangeBounds (problem_ -> Lb (), |
---|
404 | // problem_ -> Ub (), |
---|
405 | // problem_ -> nVars ()); |
---|
406 | |
---|
407 | // problem_ -> Compute_Symmetry (); |
---|
408 | // } |
---|
409 | // #endif |
---|
410 | |
---|
411 | // Bound tightening //////////////////////////////////// |
---|
412 | |
---|
413 | /*printf ("== BT ================\n"); |
---|
414 | for (int i = 0; i < problem_ -> nVars (); i++) |
---|
415 | if (problem_ -> Var (i) -> Multiplicity () > 0) |
---|
416 | printf ("%4d %+20.8g [%+20.8g,%+20.8g]\n", i, |
---|
417 | problem_ -> X (i), problem_ -> Lb (i), problem_ -> Ub (i)); |
---|
418 | printf("=============================\n");*/ |
---|
419 | |
---|
420 | // Reduced Cost BT -- to be done first to use rcost correctly |
---|
421 | if (!firstcall_ && // have a linearization already |
---|
422 | problem_ -> doRCBT () && // authorized to do reduced cost tightening |
---|
423 | problem_ -> redCostBT (&si, chg_bds) && // some variables were tightened with reduced cost |
---|
424 | !(problem_ -> btCore (chg_bds))) // in this case, do another round of FBBT |
---|
425 | throw infeasible; |
---|
426 | |
---|
427 | // FBBT |
---|
428 | if (problem_ -> doFBBT () && |
---|
429 | //(info.pass <= 0) && // do it in subsequent rounds too |
---|
430 | (! (problem_ -> boundTightening (chg_bds, info, babInfo)))) |
---|
431 | throw infeasible; |
---|
432 | |
---|
433 | // OBBT |
---|
434 | if (!firstcall_ && // no obbt if first call (there is no LP to work with) |
---|
435 | problem_ -> obbt (this, si, cs, info, babInfo, chg_bds) < 0) |
---|
436 | throw infeasible; |
---|
437 | |
---|
438 | // Bound tightening done ///////////////////////////// |
---|
439 | |
---|
440 | if ((problem_ -> doFBBT () || |
---|
441 | problem_ -> doOBBT () || |
---|
442 | problem_ -> doABT ()) && |
---|
443 | (jnlst_ -> ProduceOutput (J_VECTOR, J_CONVEXIFYING))) { |
---|
444 | |
---|
445 | jnlst_ -> Printf(J_VECTOR, J_CONVEXIFYING,"== after bt =============\n"); |
---|
446 | for (int i = 0; i < problem_ -> nVars (); i++) |
---|
447 | if (problem_ -> Var (i) -> Multiplicity () > 0) |
---|
448 | jnlst_->Printf(J_VECTOR, J_CONVEXIFYING,"%4d %+20.8g [%+20.8g,%+20.8g]\n", i, |
---|
449 | problem_ -> X (i), problem_ -> Lb (i), problem_ -> Ub (i)); |
---|
450 | jnlst_->Printf(J_VECTOR, J_CONVEXIFYING,"=============================\n"); |
---|
451 | } |
---|
452 | |
---|
453 | // Use orbit info to tighten bounds |
---|
454 | |
---|
455 | #ifdef COIN_HAS_NTY |
---|
456 | |
---|
457 | // TODO: when independent bound tightener, can get original bounds |
---|
458 | // through si.getCol{Low,Upp}er() |
---|
459 | |
---|
460 | if (problem_ -> orbitalBranching () && !firstcall_) { |
---|
461 | |
---|
462 | CouNumber |
---|
463 | *lb = problem_ -> Lb (), |
---|
464 | *ub = problem_ -> Ub (); |
---|
465 | |
---|
466 | std::vector<std::vector<int> > *new_orbits = problem_ -> getNtyInfo () -> getOrbits(); |
---|
467 | |
---|
468 | for (int i=0, ii = problem_ -> getNtyInfo () -> getNumOrbits (); ii--; i++){ |
---|
469 | |
---|
470 | CouNumber |
---|
471 | ll = -COUENNE_INFINITY, |
---|
472 | uu = COUENNE_INFINITY; |
---|
473 | |
---|
474 | std::vector <int> orbit = (*new_orbits)[i]; |
---|
475 | |
---|
476 | if (orbit.size () <= 1) |
---|
477 | continue; // not much to do when only one variable in this orbit |
---|
478 | |
---|
479 | if (jnlst_ -> ProduceOutput (J_VECTOR, J_BOUNDTIGHTENING)) { |
---|
480 | printf ("orbit bounds: "); fflush (stdout); |
---|
481 | for(int j = 0; j < orbit.size (); j++) { |
---|
482 | printf ("x_%d [%g,%g] ", orbit[j], lb [orbit [j]], ub [orbit [j]]); |
---|
483 | fflush (stdout); |
---|
484 | } |
---|
485 | } |
---|
486 | |
---|
487 | for (int j = 0; j < orbit.size (); j++) { |
---|
488 | |
---|
489 | int indOrb = orbit [j]; |
---|
490 | |
---|
491 | if (indOrb < problem_ -> nVars ()) { |
---|
492 | |
---|
493 | if (lb [indOrb] > ll) ll = lb [indOrb]; |
---|
494 | if (ub [indOrb] < uu) uu = ub [indOrb]; |
---|
495 | } |
---|
496 | } |
---|
497 | |
---|
498 | jnlst_ -> Printf (J_VECTOR, J_BOUNDTIGHTENING, |
---|
499 | " --> new common bounds: [%g,%g]\n", ll, uu); |
---|
500 | |
---|
501 | for(int j = 0; j < orbit.size (); j++) { |
---|
502 | |
---|
503 | int indOrb = orbit [j]; |
---|
504 | |
---|
505 | if (indOrb < problem_ -> nVars ()){ |
---|
506 | |
---|
507 | lb [indOrb] = ll; |
---|
508 | ub [indOrb] = uu; |
---|
509 | } |
---|
510 | } |
---|
511 | } |
---|
512 | |
---|
513 | delete new_orbits; |
---|
514 | } |
---|
515 | |
---|
516 | #endif |
---|
517 | |
---|
518 | // Generate convexification cuts ////////////////////////////// |
---|
519 | |
---|
520 | sparse2dense (ncols, chg_bds, changed, nchanged); |
---|
521 | |
---|
522 | double *nlpSol = NULL; |
---|
523 | |
---|
524 | //-------------------------------------------- |
---|
525 | |
---|
526 | if (true) { |
---|
527 | |
---|
528 | if (babInfo) |
---|
529 | nlpSol = const_cast <double *> (babInfo -> nlpSolution ()); |
---|
530 | |
---|
531 | // Aggressive Bound Tightening //////////////////////////////// |
---|
532 | |
---|
533 | int logAbtLev = problem_ -> logAbtLev (); |
---|
534 | |
---|
535 | if (problem_ -> doABT () && // flag is checked, AND |
---|
536 | ((logAbtLev != 0) || // (parameter is nonzero OR |
---|
537 | (info.level == 0)) && // we are at root node), AND |
---|
538 | (info.pass == 0) && // at first round of cuts, AND |
---|
539 | ((logAbtLev < 0) || // (logAbtLev = -1, OR |
---|
540 | (info.level <= logAbtLev) || // depth is lower than COU_OBBT_CUTOFF_LEVEL, OR |
---|
541 | (CoinDrand48 () < // probability inversely proportional to the level) |
---|
542 | pow (2., (double) logAbtLev - (info.level + 1))))) { |
---|
543 | |
---|
544 | jnlst_ -> Printf(J_VECTOR, J_BOUNDTIGHTENING," performing ABT\n"); |
---|
545 | if (! (problem_ -> aggressiveBT (nlp_, chg_bds, info, babInfo))) |
---|
546 | throw infeasible; |
---|
547 | |
---|
548 | sparse2dense (ncols, chg_bds, changed, nchanged); |
---|
549 | } |
---|
550 | |
---|
551 | // obtain solution just found by nlp solver |
---|
552 | |
---|
553 | // Auxiliaries should be correct. solution should be the one found |
---|
554 | // at the node even if not as good as the best known. |
---|
555 | |
---|
556 | // save violation flag and disregard it while adding cut at NLP |
---|
557 | // point (which are not violated by the current, NLP, solution) |
---|
558 | bool save_av = addviolated_; |
---|
559 | addviolated_ = false; |
---|
560 | |
---|
561 | // save values |
---|
562 | problem_ -> domain () -> push |
---|
563 | (problem_ -> nVars (), |
---|
564 | problem_ -> domain () -> x (), |
---|
565 | problem_ -> domain () -> lb (), |
---|
566 | problem_ -> domain () -> ub (), false); |
---|
567 | |
---|
568 | // fill originals with nlp values |
---|
569 | if (nlpSol) { |
---|
570 | CoinCopyN (nlpSol, problem_ -> nOrigVars (), problem_ -> domain () -> x ()); |
---|
571 | //problem_ -> initAuxs (); |
---|
572 | |
---|
573 | problem_ -> getAuxs (problem_ -> domain () -> x ()); |
---|
574 | } |
---|
575 | |
---|
576 | if (jnlst_ -> ProduceOutput (J_VECTOR, J_CONVEXIFYING)) { |
---|
577 | jnlst_ -> Printf(J_VECTOR, J_CONVEXIFYING,"== genrowcuts on NLP =============\n"); |
---|
578 | for (int i = 0; i < problem_ -> nVars (); i++) |
---|
579 | if (problem_ -> Var (i) -> Multiplicity () > 0) |
---|
580 | jnlst_->Printf(J_VECTOR, J_CONVEXIFYING,"%4d %+20.8g [%+20.8g,%+20.8g]\n", i, |
---|
581 | problem_ -> X (i), |
---|
582 | problem_ -> Lb (i), |
---|
583 | problem_ -> Ub (i)); |
---|
584 | jnlst_->Printf(J_VECTOR, J_CONVEXIFYING,"=============================\n"); |
---|
585 | } |
---|
586 | |
---|
587 | problem_ -> domain () -> current () -> isNlp () = true; |
---|
588 | genRowCuts (si, cs, nchanged, changed, chg_bds); // add cuts |
---|
589 | |
---|
590 | problem_ -> domain () -> pop (); // restore point |
---|
591 | |
---|
592 | addviolated_ = save_av; // restore previous value |
---|
593 | |
---|
594 | // if (!firstcall_) // keep solution if called from extractLinearRelaxation() |
---|
595 | if (babInfo) |
---|
596 | babInfo -> setHasNlpSolution (false); // reset it after use //AW HERE |
---|
597 | |
---|
598 | } else { |
---|
599 | |
---|
600 | if (jnlst_ -> ProduceOutput (J_VECTOR, J_CONVEXIFYING)) { |
---|
601 | jnlst_ -> Printf(J_VECTOR, J_CONVEXIFYING,"== genrowcuts on LP =============\n"); |
---|
602 | for (int i = 0; i < problem_ -> nVars (); i++) |
---|
603 | if (problem_ -> Var (i) -> Multiplicity () > 0) |
---|
604 | jnlst_->Printf(J_VECTOR, J_CONVEXIFYING,"%4d %+20.8g [%+20.8g,%+20.8g]\n", i, |
---|
605 | problem_ -> X (i), |
---|
606 | problem_ -> Lb (i), |
---|
607 | problem_ -> Ub (i)); |
---|
608 | jnlst_->Printf(J_VECTOR, J_CONVEXIFYING,"=============================\n"); |
---|
609 | } |
---|
610 | |
---|
611 | genRowCuts (si, cs, nchanged, changed, chg_bds); |
---|
612 | } |
---|
613 | |
---|
614 | // change tightened bounds through OsiCuts |
---|
615 | if (nchanged) |
---|
616 | genColCuts (si, cs, nchanged, changed); |
---|
617 | |
---|
618 | if (firstcall_ && (cs.sizeRowCuts () >= 1)) |
---|
619 | jnlst_->Printf(J_ITERSUMMARY, J_CONVEXIFYING, |
---|
620 | "Couenne: %d initial row cuts\n", cs.sizeRowCuts ()); |
---|
621 | |
---|
622 | if (realOpt && // this is a good time to check if we have cut the optimal solution |
---|
623 | isOptimumCut (realOpt, cs, problem_)) |
---|
624 | jnlst_->Printf(J_ITERSUMMARY, J_CONVEXIFYING, |
---|
625 | "Warning: Optimal solution was cut\n"); |
---|
626 | } |
---|
627 | |
---|
628 | catch (int exception) { |
---|
629 | |
---|
630 | if ((exception == infeasible) && (!firstcall_)) { |
---|
631 | |
---|
632 | jnlst_ -> Printf (J_ITERSUMMARY, J_CONVEXIFYING, |
---|
633 | "Couenne: Infeasible node\n"); |
---|
634 | |
---|
635 | WipeMakeInfeas (cs); |
---|
636 | } |
---|
637 | |
---|
638 | if (babInfo) // set infeasibility to true in order to skip NLP heuristic |
---|
639 | babInfo -> setInfeasibleNode (); |
---|
640 | } |
---|
641 | |
---|
642 | delete [] chg_bds; |
---|
643 | |
---|
644 | if (changed) |
---|
645 | free (changed); |
---|
646 | |
---|
647 | if (firstcall_) { |
---|
648 | |
---|
649 | jnlst_ -> Printf (J_SUMMARY, J_CONVEXIFYING, |
---|
650 | "Couenne: %d cuts (%d row, %d col) for linearization\n", |
---|
651 | cs.sizeRowCuts () + cs.sizeColCuts (), |
---|
652 | cs.sizeRowCuts (), cs.sizeColCuts ()); |
---|
653 | |
---|
654 | fictitiousBound (cs, problem_, true); |
---|
655 | firstcall_ = false; |
---|
656 | ntotalcuts_ = nrootcuts_ = cs.sizeRowCuts (); |
---|
657 | |
---|
658 | } else { |
---|
659 | |
---|
660 | problem_ -> domain () -> pop (); |
---|
661 | |
---|
662 | ntotalcuts_ += (cs.sizeRowCuts () - nInitCuts); |
---|
663 | |
---|
664 | if (saveOptimum) |
---|
665 | realOpt = saveOptimum; // restore debug optimum |
---|
666 | } |
---|
667 | |
---|
668 | septime_ += CoinCpuTime () - now; |
---|
669 | |
---|
670 | if (jnlst_ -> ProduceOutput (J_ITERSUMMARY, J_CONVEXIFYING)) { |
---|
671 | |
---|
672 | if (cs.sizeColCuts ()) { |
---|
673 | jnlst_ -> Printf (J_ITERSUMMARY, J_CONVEXIFYING,"Couenne col cuts:\n"); |
---|
674 | for (int i=0; i<cs.sizeColCuts (); i++) |
---|
675 | cs.colCutPtr (i) -> print (); |
---|
676 | } |
---|
677 | } |
---|
678 | |
---|
679 | if (!(info.inTree)) |
---|
680 | rootTime_ = CoinCpuTime (); |
---|
681 | } |
---|
682 | |
---|
683 | } |
---|