1 | # _________________________________________________________________________ |
---|
2 | # |
---|
3 | # Coopr: A COmmon Optimization Python Repository |
---|
4 | # Copyright (c) 2008 Sandia Corporation. |
---|
5 | # This software is distributed under the BSD License. |
---|
6 | # Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, |
---|
7 | # the U.S. Government retains certain rights in this software. |
---|
8 | # For more information, see the Coopr README.txt file. |
---|
9 | # _________________________________________________________________________ |
---|
10 | |
---|
11 | import sys |
---|
12 | import types |
---|
13 | from coopr.pyomo import * |
---|
14 | import copy |
---|
15 | import os.path |
---|
16 | import traceback |
---|
17 | |
---|
18 | from math import fabs |
---|
19 | |
---|
20 | from scenariotree import * |
---|
21 | |
---|
22 | # |
---|
23 | # This module contains a hierarchy of convergence "computers" for PH (or any |
---|
24 | # other scenario-based decomposition strategy). Their basic function is to |
---|
25 | # compute some measure of convergence among disparate scenario solutions, |
---|
26 | # and to track the corresponding history of the metric. the sole inputs |
---|
27 | # are a scenario tree and a (time-varying) set of instances (with solutions). |
---|
28 | # |
---|
29 | |
---|
30 | class ConvergenceBase(object): |
---|
31 | |
---|
32 | """ Constructor |
---|
33 | Arguments: |
---|
34 | convergence_threshold numeric threshold at-or-below which a set of scenario solutions is considered converged. must be >= 0.0. |
---|
35 | """ |
---|
36 | def __init__(self, *args, **kwds): |
---|
37 | |
---|
38 | # key is the iteration number, passed in via the update() method. |
---|
39 | self._metric_history = {} |
---|
40 | |
---|
41 | # the largest iteration key thus far - we assume continugous values from 0. |
---|
42 | self._largest_iteration_key = 0 |
---|
43 | |
---|
44 | # at what point do I consider the scenario solution pool converged? |
---|
45 | self._convergence_threshold = 0.0 |
---|
46 | |
---|
47 | for key in kwds.keys(): |
---|
48 | if key == "convergence_threshold": |
---|
49 | self._convergence_threshold = kwds[key] |
---|
50 | else: |
---|
51 | print "Unknown option=" + key + " specified in call to ConvergenceBase constructor" |
---|
52 | |
---|
53 | def reset(self): |
---|
54 | |
---|
55 | self._metric_history.clear() |
---|
56 | |
---|
57 | def lastMetric(self): |
---|
58 | |
---|
59 | if len(self._metric_history) == 0: |
---|
60 | raise RuntimeError, "ConvergenceBase::lastMetric() invoked with 0-length history" |
---|
61 | |
---|
62 | last_key = self._metric_history.keys()[-1] |
---|
63 | return self._metric_history[last_key] |
---|
64 | |
---|
65 | def update(self, iteration_id, ph, scenario_tree, instances): |
---|
66 | |
---|
67 | current_value = self.computeMetric(ph, scenario_tree, instances) |
---|
68 | self._metric_history[iteration_id] = current_value |
---|
69 | self._largest_iteration_key = max(self._largest_iteration_key, iteration_id) |
---|
70 | |
---|
71 | def computeMetric(self, ph, scenario_tree, solutions): |
---|
72 | |
---|
73 | raise RuntimeError, "ConvergenceBase::computeMetric() is an abstract method" |
---|
74 | |
---|
75 | def isConverged(self, ph): |
---|
76 | |
---|
77 | if (ph._total_discrete_vars > 0) and (ph._total_discrete_vars == ph._total_fixed_discrete_vars): |
---|
78 | return True |
---|
79 | else: |
---|
80 | return self.lastMetric() <= self._convergence_threshold |
---|
81 | |
---|
82 | def isImproving(self, iteration_lag): |
---|
83 | |
---|
84 | last_iteration = self._largest_iteration_key |
---|
85 | reference_iteration = min(0,self._largest_iteration_key - iteration_lag) |
---|
86 | return self._metric_history[last_iteration] < self._metric_history[reference_iteration] |
---|
87 | |
---|
88 | def pprint(self): |
---|
89 | |
---|
90 | print "Iteration Metric Value" |
---|
91 | for key in self._metric_history.keys(): |
---|
92 | print ' %5d %12.4f' % (key, self._metric_history[key]) |
---|
93 | |
---|
94 | # |
---|
95 | # Implements the baseline "term-diff" metric from our submitted CMS paper. |
---|
96 | # For each variable, take the fabs of the difference from the mean at that |
---|
97 | # node, and weight by scenario probability. |
---|
98 | # |
---|
99 | |
---|
100 | class TermDiffConvergence(ConvergenceBase): |
---|
101 | |
---|
102 | """ Constructor |
---|
103 | Arguments: None beyond those in the base class. |
---|
104 | |
---|
105 | """ |
---|
106 | def __init__(self, *args, **kwds): |
---|
107 | |
---|
108 | ConvergenceBase.__init__(self, *args, **kwds) |
---|
109 | |
---|
110 | def computeMetric(self, ph, scenario_tree, instances): |
---|
111 | |
---|
112 | term_diff = 0.0 |
---|
113 | |
---|
114 | for stage in scenario_tree._stages: |
---|
115 | |
---|
116 | # we don't blend in the last stage, so we don't current care about printing the associated information. |
---|
117 | if stage != scenario_tree._stages[-1]: |
---|
118 | |
---|
119 | for (reference_variable, index_template) in stage._variables: |
---|
120 | |
---|
121 | reference_variable_name = reference_variable.name |
---|
122 | |
---|
123 | for tree_node in stage._tree_nodes: |
---|
124 | |
---|
125 | variable_indices = tree_node._variable_indices[reference_variable_name] |
---|
126 | |
---|
127 | node_variable_average = tree_node._averages[reference_variable_name] |
---|
128 | |
---|
129 | for index in variable_indices: |
---|
130 | |
---|
131 | is_used = True # until proven otherwise |
---|
132 | |
---|
133 | for scenario in tree_node._scenarios: |
---|
134 | |
---|
135 | instance = instances[scenario._name] |
---|
136 | |
---|
137 | if getattr(instance, reference_variable_name)[index].status == VarStatus.unused: |
---|
138 | is_used = False |
---|
139 | |
---|
140 | if is_used is True: |
---|
141 | |
---|
142 | for scenario in tree_node._scenarios: |
---|
143 | |
---|
144 | instance = instances[scenario._name] |
---|
145 | this_value = getattr(instance, reference_variable_name)[index].value |
---|
146 | term_diff += scenario._probability * fabs(this_value - value(node_variable_average[index])) |
---|
147 | |
---|
148 | return term_diff |
---|
149 | |
---|
150 | |
---|
151 | # |
---|
152 | # Implements the normalized "term-diff" metric from our submitted CMS paper. |
---|
153 | # For each variable, take the fabs of the difference from the mean at that |
---|
154 | # node, and weight by scenario probability - but normalize by the mean. |
---|
155 | # If I wasn't being lazy, this could be derived from the TermDiffConvergence |
---|
156 | # class to avoid code replication :) |
---|
157 | # |
---|
158 | |
---|
159 | class NormalizedTermDiffConvergence(ConvergenceBase): |
---|
160 | |
---|
161 | """ Constructor |
---|
162 | Arguments: None beyond those in the base class. |
---|
163 | |
---|
164 | """ |
---|
165 | def __init__(self, *args, **kwds): |
---|
166 | |
---|
167 | ConvergenceBase.__init__(self, *args, **kwds) |
---|
168 | |
---|
169 | def computeMetric(self, ph, scenario_tree, instances): |
---|
170 | |
---|
171 | normalized_term_diff = 0.0 |
---|
172 | |
---|
173 | for stage in scenario_tree._stages: |
---|
174 | |
---|
175 | # we don't blend in the last stage, so we don't current care about printing the associated information. |
---|
176 | if stage != scenario_tree._stages[-1]: |
---|
177 | |
---|
178 | for (reference_variable, index_template) in stage._variables: |
---|
179 | |
---|
180 | reference_variable_name = reference_variable.name |
---|
181 | |
---|
182 | for tree_node in stage._tree_nodes: |
---|
183 | |
---|
184 | node_variable_average = tree_node._averages[reference_variable_name] |
---|
185 | |
---|
186 | variable_indices = tree_node._variable_indices[reference_variable_name] |
---|
187 | |
---|
188 | for index in variable_indices: |
---|
189 | |
---|
190 | # should think about nixing the magic constant below (not sure how to best pararamterize it). |
---|
191 | if fabs(value(node_variable_average[index])) > 0.0001: |
---|
192 | |
---|
193 | is_used = True # until proven otherwise |
---|
194 | |
---|
195 | for scenario in tree_node._scenarios: |
---|
196 | |
---|
197 | instance = instances[scenario._name] |
---|
198 | |
---|
199 | if getattr(instance, reference_variable_name)[index].status == VarStatus.unused: |
---|
200 | is_used = False |
---|
201 | |
---|
202 | if is_used is True: |
---|
203 | |
---|
204 | average_value = value(node_variable_average[index]) |
---|
205 | |
---|
206 | for scenario in tree_node._scenarios: |
---|
207 | |
---|
208 | instance = instances[scenario._name] |
---|
209 | this_value = getattr(instance, reference_variable_name)[index].value |
---|
210 | normalized_term_diff += scenario._probability * fabs((this_value - average_value)/average_value) |
---|
211 | |
---|
212 | return normalized_term_diff |
---|
213 | |
---|
214 | # |
---|
215 | # Implements a super-simple convergence criterion based on when a particular number of |
---|
216 | # discrete variables are free (e.g., 20 or fewer). |
---|
217 | # |
---|
218 | |
---|
219 | class NumFixedDiscreteVarConvergence(ConvergenceBase): |
---|
220 | |
---|
221 | """ Constructor |
---|
222 | Arguments: None beyond those in the base class. |
---|
223 | |
---|
224 | """ |
---|
225 | def __init__(self, *args, **kwds): |
---|
226 | |
---|
227 | ConvergenceBase.__init__(self, *args, **kwds) |
---|
228 | |
---|
229 | def computeMetric(self, ph, scenario_tree, instances): |
---|
230 | |
---|
231 | # the metric is brain-dead; just look at PH to see how many free discrete variables there are! |
---|
232 | return ph._total_discrete_vars - ph._total_fixed_discrete_vars |
---|
233 | |
---|
234 | |
---|