1 | # _________________________________________________________________________ |
---|
2 | # |
---|
3 | # Coopr: A COmmon Optimization Python Repository |
---|
4 | # Copyright (c) 2008 Sandia Corporation. |
---|
5 | # This software is distributed under the BSD License. |
---|
6 | # Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, |
---|
7 | # the U.S. Government retains certain rights in this software. |
---|
8 | # For more information, see the Coopr README.txt file. |
---|
9 | # _________________________________________________________________________ |
---|
10 | |
---|
11 | import sys |
---|
12 | import pyutilib.component.core |
---|
13 | import types |
---|
14 | from coopr.pyomo import * |
---|
15 | import copy |
---|
16 | import os.path |
---|
17 | import traceback |
---|
18 | import copy |
---|
19 | from coopr.opt import SolverResults,SolverStatus |
---|
20 | from coopr.opt.base import SolverFactory |
---|
21 | from coopr.opt.parallel import SolverManagerFactory |
---|
22 | import time |
---|
23 | import types |
---|
24 | |
---|
25 | from scenariotree import * |
---|
26 | from phutils import * |
---|
27 | |
---|
28 | from pyutilib.component.core import ExtensionPoint |
---|
29 | |
---|
30 | from coopr.pysp.phextension import IPHExtension |
---|
31 | |
---|
32 | class AsyncProgressiveHedging(object): |
---|
33 | |
---|
34 | # |
---|
35 | # a utility intended for folks who are brave enough to script rho setting in a python file. |
---|
36 | # |
---|
37 | |
---|
38 | def setRhoAllScenarios(self, variable_value, rho_expression): |
---|
39 | |
---|
40 | variable_name = None |
---|
41 | variable_index = None |
---|
42 | |
---|
43 | if isVariableNameIndexed(variable_value.name) is True: |
---|
44 | |
---|
45 | variable_name, variable_index = extractVariableNameAndIndex(variable_value.name) |
---|
46 | |
---|
47 | else: |
---|
48 | |
---|
49 | variable_name = variable_value.name |
---|
50 | variable_index = None |
---|
51 | |
---|
52 | new_rho_value = rho_expression() |
---|
53 | |
---|
54 | if self._verbose is True: |
---|
55 | print "Setting rho="+str(new_rho_value)+" for variable="+variable_value.name |
---|
56 | |
---|
57 | for instance_name, instance in self._instances.items(): |
---|
58 | |
---|
59 | rho_param = getattr(instance, "PHRHO_"+variable_name) |
---|
60 | rho_param[variable_index] = new_rho_value |
---|
61 | |
---|
62 | # |
---|
63 | # a simple utility to count the number of continuous and discrete variables in a set of instances. |
---|
64 | # unused variables are ignored, and counts include all active indices. returns a pair - num-discrete, |
---|
65 | # num-continuous. |
---|
66 | # |
---|
67 | |
---|
68 | def compute_variable_counts(self): |
---|
69 | |
---|
70 | num_continuous_vars = 0 |
---|
71 | num_discrete_vars = 0 |
---|
72 | |
---|
73 | for stage in self._scenario_tree._stages: |
---|
74 | |
---|
75 | if stage != self._scenario_tree._stages[-1]: # no blending over the final stage |
---|
76 | |
---|
77 | for tree_node in stage._tree_nodes: |
---|
78 | |
---|
79 | for (variable, index_template, variable_indices) in stage._variables: |
---|
80 | |
---|
81 | variable_name = variable.name |
---|
82 | |
---|
83 | variable_type = variable.domain |
---|
84 | |
---|
85 | for index in variable_indices: |
---|
86 | |
---|
87 | # determine if this index is used - otherwise, don't waste time |
---|
88 | # fixing and cycle checking. for one, the code will crash :-) with |
---|
89 | # None values during the cycle checking computation! |
---|
90 | |
---|
91 | is_used = True # until proven otherwise |
---|
92 | for scenario in tree_node._scenarios: |
---|
93 | instance = self._instances[scenario._name] |
---|
94 | if getattr(instance,variable_name)[index].status == VarStatus.unused: |
---|
95 | is_used = False |
---|
96 | |
---|
97 | if is_used is True: |
---|
98 | |
---|
99 | # JPW TBD: ideally, we want an "is-discrete" check in the logic below, which COOPR doesn't currently support. |
---|
100 | if isinstance(variable_type, IntegerSet) or isinstance(variable_type, BooleanSet): |
---|
101 | num_discrete_vars = num_discrete_vars + 1 |
---|
102 | else: |
---|
103 | num_continuous_vars = num_continuous_vars + 1 |
---|
104 | |
---|
105 | return (num_discrete_vars, num_continuous_vars) |
---|
106 | |
---|
107 | """ Constructor |
---|
108 | Arguments: |
---|
109 | max_iterations the maximum number of iterations to run PH (>= 0). defaults to 0. |
---|
110 | rho the global rho value (> 0). defaults to 0. |
---|
111 | rho_setter an optional name of a python file used to set particular variable rho values. |
---|
112 | solver the solver type that PH uses to solve scenario sub-problems. defaults to "cplex". |
---|
113 | solver_manager the solver manager type that coordinates scenario sub-problem solves. defaults to "serial". |
---|
114 | keep_solver_files do I keep intermediate solver files around (for debugging)? defaults to False. |
---|
115 | output_solver_log do I dump the solver log (as it is being generated) to the screen? defaults to False. |
---|
116 | output_solver_results do I output (for debugging) the detailed solver results, including solutions, for scenario solves? defaults to False. |
---|
117 | verbose does the PH object stream debug/status output? defaults to False. |
---|
118 | output_times do I output timing statistics? defaults to False (e.g., useful in the case where you want to regression test against baseline output). |
---|
119 | |
---|
120 | """ |
---|
121 | def __init__(self, *args, **kwds): |
---|
122 | |
---|
123 | # PH configuration parameters |
---|
124 | # TBD - shift rho to a parameter of the instances (probably keep it here, and in the model) |
---|
125 | self._rho = 0.0 # TBD morph to per-variable later, and possibly per-variable, per-scenario. |
---|
126 | self._rho_setter = None # filename for the modeler to set rho. |
---|
127 | self._max_iterations = 0 |
---|
128 | |
---|
129 | # PH reporting parameters |
---|
130 | self._verbose = False # do I flood the screen with status output? |
---|
131 | self._output_continuous_variable_stats = True # when in verbose mode, do I output weights/averages for continuous variables? |
---|
132 | self._output_solver_results = False |
---|
133 | self._output_times = False |
---|
134 | |
---|
135 | # PH run-time variables |
---|
136 | self._current_iteration = 0 # the 'k' |
---|
137 | self._xbar = {} # current per-variable averages. maps (node_id, variable_name) -> value |
---|
138 | self._initialized = False # am I ready to call "solve"? Set to True by the initialize() method. |
---|
139 | |
---|
140 | # PH solver information / objects. |
---|
141 | self._solver_type = "cplex" |
---|
142 | self._solver_manager_type = "pyro" # only pyro makes sense for async currently. |
---|
143 | |
---|
144 | self._solver = None # will eventually be unnecessary once Bill eliminates the need for a solver in the solver manager constructor. |
---|
145 | self._solver_manager = None |
---|
146 | |
---|
147 | self._keep_solver_files = False |
---|
148 | self._output_solver_log = False |
---|
149 | |
---|
150 | # PH convergence computer/updater. |
---|
151 | self._converger = None |
---|
152 | |
---|
153 | # PH history |
---|
154 | self._solutions = {} |
---|
155 | |
---|
156 | # all information related to the scenario tree (implicit and explicit). |
---|
157 | self._model = None # not instantiated |
---|
158 | self._model_instance = None # instantiated |
---|
159 | |
---|
160 | self._scenario_tree = None |
---|
161 | |
---|
162 | self._scenario_data_directory = "" # this the prefix for all scenario data |
---|
163 | self._instances = {} # maps scenario name to the corresponding model instance |
---|
164 | |
---|
165 | # for various reasons (mainly hacks at this point), it's good to know whether we're minimizing or maximizing. |
---|
166 | self._is_minimizing = None |
---|
167 | |
---|
168 | # global handle to ph extension plugin |
---|
169 | self._ph_plugin = ExtensionPoint(IPHExtension) |
---|
170 | |
---|
171 | # PH timing statistics - relative to last invocation. |
---|
172 | self._init_start_time = None # for initialization() method |
---|
173 | self._init_end_time = None |
---|
174 | self._solve_start_time = None # for solve() method |
---|
175 | self._solve_end_time = None |
---|
176 | self._cumulative_solve_time = None # seconds, over course of solve() |
---|
177 | self._cumulative_xbar_time = None # seconds, over course of update_xbars() |
---|
178 | self._cumulative_weight_time = None # seconds, over course of update_weights() |
---|
179 | |
---|
180 | # PH default tolerances - for use in fixing and testing equality across scenarios, |
---|
181 | # and other stuff. |
---|
182 | self._integer_tolerance = 0.00001 |
---|
183 | |
---|
184 | # process the keyword options |
---|
185 | for key in kwds.keys(): |
---|
186 | if key == "max_iterations": |
---|
187 | self._max_iterations = kwds[key] |
---|
188 | elif key == "rho": |
---|
189 | self._rho = kwds[key] |
---|
190 | elif key == "rho_setter": |
---|
191 | self._rho_setter = kwds[key] |
---|
192 | elif key == "solver": |
---|
193 | self._solver_type = kwds[key] |
---|
194 | elif key == "solver_manager": |
---|
195 | self._solver_manager_type = kwds[key] |
---|
196 | elif key == "keep_solver_files": |
---|
197 | self._keep_solver_files = kwds[key] |
---|
198 | elif key == "output_solver_results": |
---|
199 | self._output_solver_results = kwds[key] |
---|
200 | elif key == "output_solver_log": |
---|
201 | self._output_solver_log = kwds[key] |
---|
202 | elif key == "verbose": |
---|
203 | self._verbose = kwds[key] |
---|
204 | elif key == "output_times": |
---|
205 | self._output_times = kwds[key] |
---|
206 | else: |
---|
207 | print "Unknown option=" + key + " specified in call to PH constructor" |
---|
208 | |
---|
209 | # validate all "atomic" options (those that can be validated independently) |
---|
210 | if self._max_iterations < 0: |
---|
211 | raise ValueError, "Maximum number of PH iterations must be non-negative; value specified=" + `self._max_iterations` |
---|
212 | if self._rho <= 0.0: |
---|
213 | raise ValueError, "Value of rho paramter in PH must be non-zero positive; value specified=" + `self._rho` |
---|
214 | |
---|
215 | # validate rho setter file if specified. |
---|
216 | if self._rho_setter is not None: |
---|
217 | if os.path.exists(self._rho_setter) is False: |
---|
218 | raise ValueError, "The rho setter script file="+self._rho_setter+" does not exist" |
---|
219 | |
---|
220 | # construct the sub-problem solver. |
---|
221 | self._solver = SolverFactory(self._solver_type) |
---|
222 | if self._solver == None: |
---|
223 | raise ValueError, "Unknown solver type=" + self._solver_type + " specified in call to PH constructor" |
---|
224 | if self._keep_solver_files is True: |
---|
225 | # TBD - this is a bit kludgy, as it requires PH to know/assume that |
---|
226 | # it is dealing with a system call solver. the solver factory should take keyword options as a fix. |
---|
227 | self._solver.keepFiles = True |
---|
228 | |
---|
229 | # construct the solver manager. |
---|
230 | if self._solver_manager_type != "pyro": |
---|
231 | raise ValueError, "Only the pyro solver manager makes sense for asynch PH!" |
---|
232 | print "SOLVER MANAGER TYPE=",self._solver_manager_type |
---|
233 | self._solver_manager = SolverManagerFactory(self._solver_manager_type) |
---|
234 | if self._solver_manager is None: |
---|
235 | raise ValueError, "Failed to create solver manager of type="+self._solver_manager_type+" specified in call to PH constructor" |
---|
236 | |
---|
237 | # a set of all valid PH iteration indicies is generally useful for plug-ins, so create it here. |
---|
238 | self._iteration_index_set = Set(name="PHIterations") |
---|
239 | for i in range(0,self._max_iterations + 1): |
---|
240 | self._iteration_index_set.add(i) |
---|
241 | |
---|
242 | # spit out parameterization if verbosity is enabled |
---|
243 | if self._verbose == True: |
---|
244 | print "PH solver configuration: " |
---|
245 | print " Max iterations=" + `self._max_iterations` |
---|
246 | print " Rho=" + `self._rho` |
---|
247 | print " Sub-problem solver type=" + `self._solver_type` |
---|
248 | |
---|
249 | """ Initialize PH with model and scenario data, in preparation for solve(). |
---|
250 | Constructs and reads instances. |
---|
251 | """ |
---|
252 | def initialize(self, scenario_data_directory_name=".", model=None, model_instance=None, scenario_tree=None, converger=None): |
---|
253 | |
---|
254 | self._init_start_time = time.time() |
---|
255 | |
---|
256 | if self._verbose == True: |
---|
257 | print "Initializing PH" |
---|
258 | print " Scenario data directory=" + scenario_data_directory_name |
---|
259 | |
---|
260 | if not os.path.exists(scenario_data_directory_name): |
---|
261 | raise ValueError, "Scenario data directory=" + scenario_data_directory_name + " either does not exist or cannot be read" |
---|
262 | |
---|
263 | self._scenario_data_directory_name = scenario_data_directory_name |
---|
264 | |
---|
265 | # IMPT: The input model should be an *instance*, as it is very useful (critical!) to know |
---|
266 | # the dimensions of sets, be able to store suffixes on variable values, etc. |
---|
267 | # TBD: There may be a way to see if a model is initialized - throw an exception if it is not! |
---|
268 | if model is None: |
---|
269 | raise ValueError, "A model must be supplied to the PH initialize() method" |
---|
270 | |
---|
271 | if scenario_tree is None: |
---|
272 | raise ValueError, "A scenario tree must be supplied to the PH initialize() method" |
---|
273 | |
---|
274 | if converger is None: |
---|
275 | raise ValueError, "A convergence computer must be supplied to the PH initialize() method" |
---|
276 | |
---|
277 | self._model = model |
---|
278 | self._model_instance = model_instance |
---|
279 | self._scenario_tree = scenario_tree |
---|
280 | self._converger = converger |
---|
281 | |
---|
282 | model_objective = model.active_components(Objective) |
---|
283 | self._is_minimizing = (model_objective[ model_objective.keys()[0] ].sense == minimize) |
---|
284 | |
---|
285 | self._converger.reset() |
---|
286 | |
---|
287 | # construct instances for each scenario |
---|
288 | if self._verbose is True: |
---|
289 | if self._scenario_tree._scenario_based_data == 1: |
---|
290 | print "Scenario-based instance initialization enabled" |
---|
291 | else: |
---|
292 | print "Node-based instance initialization enabled" |
---|
293 | |
---|
294 | for scenario in self._scenario_tree._scenarios: |
---|
295 | |
---|
296 | scenario_instance = None |
---|
297 | |
---|
298 | if self._verbose is True: |
---|
299 | print "Creating instance for scenario=" + scenario._name |
---|
300 | |
---|
301 | try: |
---|
302 | if self._scenario_tree._scenario_based_data == 1: |
---|
303 | scenario_data_filename = self._scenario_data_directory_name + os.sep + scenario._name + ".dat" |
---|
304 | if self._verbose is True: |
---|
305 | print "Data for scenario=" + scenario._name + " loads from file=" + scenario_data_filename |
---|
306 | scenario_instance = (self._model).create(scenario_data_filename) |
---|
307 | else: |
---|
308 | scenario_instance = self._model.clone() |
---|
309 | scenario_data = ModelData() |
---|
310 | current_node = scenario._leaf_node |
---|
311 | while current_node is not None: |
---|
312 | node_data_filename = self._scenario_data_directory_name + os.sep + current_node._name + ".dat" |
---|
313 | if self._verbose is True: |
---|
314 | print "Node data for scenario=" + scenario._name + " partially loading from file=" + node_data_filename |
---|
315 | scenario_data.add_data_file(node_data_filename) |
---|
316 | current_node = current_node._parent |
---|
317 | scenario_data.read(model=scenario_instance) |
---|
318 | scenario_instance.load(scenario_data) |
---|
319 | scenario_instance.preprocess() |
---|
320 | except: |
---|
321 | print "Encountered exception in model instance creation - traceback:" |
---|
322 | traceback.print_exc() |
---|
323 | raise RuntimeError, "Failed to create model instance for scenario=" + scenario._name |
---|
324 | |
---|
325 | self._instances[scenario._name] = scenario_instance |
---|
326 | self._instances[scenario._name].name = scenario._name |
---|
327 | |
---|
328 | if self._verbose is True: |
---|
329 | print "PH successfully created model instances for all scenarios" |
---|
330 | |
---|
331 | # TBD - Technically, we don't need to add these parameters to the models until after the iteration 0 solve (move later). |
---|
332 | |
---|
333 | # create PH weight and xbar vectors, on a per-scenario basis, for each variable that is not in the |
---|
334 | # final stage, i.e., for all variables that are being blended by PH. the parameters are created |
---|
335 | # in the space of each scenario instance, so that they can be directly and automatically |
---|
336 | # incorporated into the (appropriately modified) objective function. |
---|
337 | |
---|
338 | if self._verbose is True: |
---|
339 | print "Creating weight, average, and rho parameter vectors for scenario instances" |
---|
340 | |
---|
341 | for (instance_name, instance) in self._instances.items(): |
---|
342 | |
---|
343 | # first, gather all unique variables referenced in any stage |
---|
344 | # other than the last, independent of specific indices. this |
---|
345 | # "gather" step is currently required because we're being lazy |
---|
346 | # in terms of index management in the scenario tree - which |
---|
347 | # should really be done in terms of sets of indices. |
---|
348 | # NOTE: technically, the "instance variables" aren't really references |
---|
349 | # to the variable in the instance - instead, the reference model. this |
---|
350 | # isn't an issue now, but it could easily become one (esp. in avoiding deep copies). |
---|
351 | instance_variables = {} |
---|
352 | |
---|
353 | for stage in self._scenario_tree._stages: |
---|
354 | |
---|
355 | if stage != self._scenario_tree._stages[-1]: |
---|
356 | |
---|
357 | for (reference_variable, index_template, reference_indices) in stage._variables: |
---|
358 | |
---|
359 | if reference_variable.name not in instance_variables.keys(): |
---|
360 | |
---|
361 | instance_variables[reference_variable.name] = reference_variable |
---|
362 | |
---|
363 | # for each blended variable, create a corresponding ph weight and average parameter in the instance. |
---|
364 | # this is a bit wasteful, in terms of indices that might appear in the last stage, but that is minor |
---|
365 | # in the grand scheme of things. |
---|
366 | |
---|
367 | for (variable_name, reference_variable) in instance_variables.items(): |
---|
368 | |
---|
369 | new_w_index = reference_variable._index # TBD - need to be careful with the shallow copy here |
---|
370 | new_w_parameter_name = "PHWEIGHT_"+reference_variable.name |
---|
371 | new_w_parameter = Param(new_w_index, name=new_w_parameter_name, mutable=True) |
---|
372 | setattr(instance,new_w_parameter_name,new_w_parameter) |
---|
373 | |
---|
374 | # if you don't explicitly assign values to each index, the entry isn't created - instead, when you reference |
---|
375 | # the parameter that hasn't been explicitly assigned, you just get the default value as a constant. I'm not |
---|
376 | # sure if this has to do with the model output, or the function of the model, but I'm doing this to avoid the |
---|
377 | # issue in any case for now. |
---|
378 | for index in new_w_index: |
---|
379 | new_w_parameter[index] = 0.0 |
---|
380 | |
---|
381 | new_avg_index = reference_variable._index # TBD - need to be careful with the shallow copy here |
---|
382 | new_avg_parameter_name = "PHAVG_"+reference_variable.name |
---|
383 | new_avg_parameter = Param(new_avg_index, name=new_avg_parameter_name, mutable=True) |
---|
384 | setattr(instance,new_avg_parameter_name,new_avg_parameter) |
---|
385 | |
---|
386 | for index in new_avg_index: |
---|
387 | new_avg_parameter[index] = 0.0 |
---|
388 | |
---|
389 | new_rho_index = reference_variable._index # TBD - need to be careful with the shallow copy here |
---|
390 | new_rho_parameter_name = "PHRHO_"+reference_variable.name |
---|
391 | new_rho_parameter = Param(new_rho_index, name=new_rho_parameter_name, mutable=True) |
---|
392 | setattr(instance,new_rho_parameter_name,new_rho_parameter) |
---|
393 | |
---|
394 | for index in new_rho_index: |
---|
395 | new_rho_parameter[index] = self._rho |
---|
396 | |
---|
397 | # if specified, run the user script to initialize variable rhos at their whim. |
---|
398 | if self._rho_setter is not None: |
---|
399 | |
---|
400 | print "Executing user rho set script from filename=", self._rho_setter |
---|
401 | execfile(self._rho_setter) |
---|
402 | |
---|
403 | # create parameters to store variable statistics (of general utility) at each node in the scenario tree. |
---|
404 | |
---|
405 | if self._verbose is True: |
---|
406 | print "Creating variable statistic (min/avg/max) parameter vectors for scenario tree nodes" |
---|
407 | |
---|
408 | for stage in self._scenario_tree._stages: |
---|
409 | if stage != self._scenario_tree._stages[-1]: |
---|
410 | |
---|
411 | # first, gather all unique variables referenced in this stage |
---|
412 | # this "gather" step is currently required because we're being lazy |
---|
413 | # in terms of index management in the scenario tree - which |
---|
414 | # should really be done in terms of sets of indices. |
---|
415 | stage_variables = {} |
---|
416 | for (reference_variable, index_template, reference_index) in stage._variables: |
---|
417 | if reference_variable.name not in stage_variables.keys(): |
---|
418 | stage_variables[reference_variable.name] = reference_variable |
---|
419 | |
---|
420 | # next, create min/avg/max parameters for each variable in the corresponding tree node. |
---|
421 | # NOTE: the parameter names below could really be empty, as they are never referenced |
---|
422 | # explicitly. |
---|
423 | for (variable_name, reference_variable) in stage_variables.items(): |
---|
424 | for tree_node in stage._tree_nodes: |
---|
425 | |
---|
426 | new_min_index = reference_variable._index # TBD - need to be careful with the shallow copy here (and below) |
---|
427 | new_min_parameter_name = "NODEMIN_"+reference_variable.name |
---|
428 | new_min_parameter = Param(new_min_index, name=new_min_parameter_name, mutable=True) |
---|
429 | for index in new_min_index: |
---|
430 | new_min_parameter[index] = 0.0 |
---|
431 | tree_node._minimums[reference_variable.name] = new_min_parameter |
---|
432 | |
---|
433 | new_avg_index = reference_variable._index |
---|
434 | new_avg_parameter_name = "NODEAVG_"+reference_variable.name |
---|
435 | new_avg_parameter = Param(new_avg_index, name=new_avg_parameter_name, mutable=True) |
---|
436 | for index in new_avg_index: |
---|
437 | new_avg_parameter[index] = 0.0 |
---|
438 | tree_node._averages[reference_variable.name] = new_avg_parameter |
---|
439 | |
---|
440 | new_max_index = reference_variable._index |
---|
441 | new_max_parameter_name = "NODEMAX_"+reference_variable.name |
---|
442 | new_max_parameter = Param(new_max_index, name=new_max_parameter_name, mutable=True) |
---|
443 | for index in new_max_index: |
---|
444 | new_max_parameter[index] = 0.0 |
---|
445 | tree_node._maximums[reference_variable.name] = new_max_parameter |
---|
446 | |
---|
447 | |
---|
448 | # indicate that we're ready to run. |
---|
449 | self._initialized = True |
---|
450 | |
---|
451 | self._init_end_time = time.time() |
---|
452 | |
---|
453 | if self._verbose is True: |
---|
454 | print "PH is successfully initialized" |
---|
455 | if self._output_times is True: |
---|
456 | print "Initialization time=" + str(self._init_end_time - self._init_start_time) + " seconds" |
---|
457 | |
---|
458 | # let plugins know if they care. |
---|
459 | if len(self._ph_plugin) == 1: |
---|
460 | self._ph_plugin.service().post_ph_initialization(self) |
---|
461 | |
---|
462 | """ Perform the non-weighted scenario solves and form the initial w and xbars. |
---|
463 | """ |
---|
464 | def iteration_0_solve(self): |
---|
465 | |
---|
466 | if self._verbose == True: |
---|
467 | print "------------------------------------------------" |
---|
468 | print "Starting PH iteration 0 solves" |
---|
469 | |
---|
470 | self._current_iteration = 0 |
---|
471 | |
---|
472 | solve_start_time = time.time() |
---|
473 | |
---|
474 | # STEP 1: queue up the solves for all scenario sub-problems. |
---|
475 | # grab all the action handles for the subsequent barrier sync. |
---|
476 | |
---|
477 | action_handles = [] |
---|
478 | action_handle_instance_map = {} |
---|
479 | |
---|
480 | for scenario in self._scenario_tree._scenarios: |
---|
481 | |
---|
482 | instance = self._instances[scenario._name] |
---|
483 | |
---|
484 | if self._verbose == True: |
---|
485 | print "Queuing solve for scenario=" + scenario._name |
---|
486 | |
---|
487 | # TBD - need to have the solver be able to solve a particular instance, with a specific objective |
---|
488 | |
---|
489 | # there's nothing to warm-start from in iteration 0. |
---|
490 | new_action_handle = self._solver_manager.queue(instance, opt=self._solver, warmstart=False, tee=self._output_solver_log) |
---|
491 | |
---|
492 | action_handle_instance_map[scenario._name] = new_action_handle |
---|
493 | |
---|
494 | action_handles.append(new_action_handle) |
---|
495 | |
---|
496 | # STEP 2: barrier sync for all scenario sub-problem solves. |
---|
497 | print "Waiting for scenario sub-problem solves" |
---|
498 | self._solver_manager.wait_all(action_handles) |
---|
499 | |
---|
500 | solve_end_time = time.time() |
---|
501 | self._cumulative_solve_time += (solve_end_time - solve_start_time) |
---|
502 | |
---|
503 | # STEP 3: Load the results! |
---|
504 | for scenario_name, action_handle in action_handle_instance_map.items(): |
---|
505 | |
---|
506 | instance = self._instances[scenario_name] |
---|
507 | results = self._solver_manager.get_results(action_handle) |
---|
508 | |
---|
509 | if len(results.solution) == 0: |
---|
510 | raise RuntimeError, "Solve failed for scenario="+scenario._name+"; no solutions generated" |
---|
511 | |
---|
512 | if self._verbose is True: |
---|
513 | print "Solve completed successfully" |
---|
514 | |
---|
515 | # if self._output_times is True: |
---|
516 | # print "Solve time=%8.2f" % (solve_end_time - solve_start_time) |
---|
517 | |
---|
518 | # if self._output_solver_results == True: |
---|
519 | print "Results:" |
---|
520 | results.write(num=1) |
---|
521 | |
---|
522 | instance.load(results) |
---|
523 | |
---|
524 | if self._verbose == True: |
---|
525 | print "Successfully loaded solution" |
---|
526 | |
---|
527 | # TBD - save the solutions for history tracking |
---|
528 | |
---|
529 | if self._verbose == True: |
---|
530 | print "Successfully completed PH iteration 0 solves" |
---|
531 | print " Scenario Objective Value" |
---|
532 | for scenario in self._scenario_tree._scenarios: |
---|
533 | instance = self._instances[scenario._name] |
---|
534 | for objective_name in instance.active_components(Objective): |
---|
535 | objective = instance.active_components(Objective)[objective_name] |
---|
536 | # TBD: I don't know how to deal with objective arrays, so I'll assume they aren't there |
---|
537 | print "%20s %15s %14.4f" % (scenario._name, objective.name, objective._data[None].expr()) |
---|
538 | print "------------------------------------------------" |
---|
539 | print "" |
---|
540 | |
---|
541 | # |
---|
542 | # recompute the averages, minimum, and maximum statistics for all variables to be blended by PH, i.e., |
---|
543 | # not appearing in the final stage. technically speaking, the min/max aren't required by PH, but they |
---|
544 | # are used often enough to warrant their computation and it's basically free if you're computing the |
---|
545 | # average. |
---|
546 | # |
---|
547 | def update_variable_statistics(self): |
---|
548 | |
---|
549 | start_time = time.time() |
---|
550 | |
---|
551 | for stage in self._scenario_tree._stages: |
---|
552 | |
---|
553 | if stage != self._scenario_tree._stages[-1]: # no blending over the final stage |
---|
554 | |
---|
555 | for tree_node in stage._tree_nodes: |
---|
556 | |
---|
557 | for (variable, index_template, variable_indices) in stage._variables: |
---|
558 | |
---|
559 | variable_name = variable.name |
---|
560 | |
---|
561 | avg_parameter_name = "PHAVG_"+variable_name |
---|
562 | |
---|
563 | for index in variable_indices: |
---|
564 | min = float("inf") |
---|
565 | avg = 0.0 |
---|
566 | max = float("-inf") |
---|
567 | node_probability = 0.0 |
---|
568 | |
---|
569 | is_used = True # until proven otherwise |
---|
570 | for scenario in tree_node._scenarios: |
---|
571 | |
---|
572 | instance = self._instances[scenario._name] |
---|
573 | |
---|
574 | if getattr(instance,variable_name)[index].status == VarStatus.unused: |
---|
575 | is_used = False |
---|
576 | else: |
---|
577 | node_probability += scenario._probability |
---|
578 | var_value = getattr(instance, variable.name)[index].value |
---|
579 | if var_value < min: |
---|
580 | min = var_value |
---|
581 | avg += (scenario._probability * var_value) |
---|
582 | if var_value > max: |
---|
583 | max = var_value |
---|
584 | |
---|
585 | if is_used is True: |
---|
586 | tree_node._minimums[variable.name][index] = min |
---|
587 | tree_node._averages[variable.name][index] = avg / node_probability |
---|
588 | tree_node._maximums[variable.name][index] = max |
---|
589 | |
---|
590 | # distribute the newly computed average to the xbar variable in |
---|
591 | # each instance/scenario associated with this node. only do this |
---|
592 | # if the variable is used! |
---|
593 | for scenario in tree_node._scenarios: |
---|
594 | instance = self._instances[scenario._name] |
---|
595 | avg_parameter = getattr(instance, avg_parameter_name) |
---|
596 | avg_parameter[index] = avg / node_probability |
---|
597 | |
---|
598 | end_time = time.time() |
---|
599 | self._cumulative_xbar_time += (end_time - start_time) |
---|
600 | |
---|
601 | def update_weights(self): |
---|
602 | |
---|
603 | # because the weight updates rely on the xbars, and the xbars are node-based, |
---|
604 | # I'm looping over the tree nodes and pushing weights into the corresponding scenarios. |
---|
605 | start_time = time.time() |
---|
606 | |
---|
607 | for stage in self._scenario_tree._stages: |
---|
608 | |
---|
609 | if stage != self._scenario_tree._stages[-1]: # no blending over the final stage, so no weights to worry about. |
---|
610 | |
---|
611 | for tree_node in stage._tree_nodes: |
---|
612 | |
---|
613 | for (variable, index_template, variable_indices) in stage._variables: |
---|
614 | |
---|
615 | variable_name = variable.name |
---|
616 | |
---|
617 | weight_parameter_name = "PHWEIGHT_"+variable_name |
---|
618 | |
---|
619 | for index in variable_indices: |
---|
620 | |
---|
621 | tree_node_average = value(tree_node._averages[variable.name][index]) |
---|
622 | |
---|
623 | for scenario in tree_node._scenarios: |
---|
624 | |
---|
625 | instance = self._instances[scenario._name] |
---|
626 | |
---|
627 | if getattr(instance,variable.name)[index].status != VarStatus.unused: |
---|
628 | |
---|
629 | current_variable_weight = value(getattr(instance, weight_parameter_name)[index]) |
---|
630 | # if I'm maximizing, invert value prior to adding (hack to implement negatives) |
---|
631 | if self._is_minimizing is False: |
---|
632 | current_variable_weight = (-current_variable_weight) |
---|
633 | current_variable_value = getattr(instance,variable.name)[index].value |
---|
634 | new_variable_weight = current_variable_weight + self._rho * (current_variable_value - tree_node_average) |
---|
635 | # I have the correct updated value, so now invert if maximizing. |
---|
636 | if self._is_minimizing is False: |
---|
637 | new_variable_weight = (-new_variable_weight) |
---|
638 | getattr(instance, weight_parameter_name)[index] = new_variable_weight |
---|
639 | |
---|
640 | # we shouldn't have to re-simplify the expression, as we aren't adding any constant-variable terms - just modifying parameters. |
---|
641 | |
---|
642 | end_time = time.time() |
---|
643 | self._cumulative_weight_time += (end_time - start_time) |
---|
644 | |
---|
645 | def update_scenario_weights(self, instance): |
---|
646 | |
---|
647 | # because the weight updates rely on the xbars, and the xbars are node-based, |
---|
648 | # I'm looping over the tree nodes and pushing weights into the corresponding scenarios. |
---|
649 | start_time = time.time() |
---|
650 | |
---|
651 | for stage in self._scenario_tree._stages: |
---|
652 | |
---|
653 | if stage != self._scenario_tree._stages[-1]: # no blending over the final stage, so no weights to worry about. |
---|
654 | |
---|
655 | for tree_node in stage._tree_nodes: |
---|
656 | |
---|
657 | for (variable, index_template, variable_indices) in stage._variables: |
---|
658 | |
---|
659 | variable_name = variable.name |
---|
660 | |
---|
661 | weight_parameter_name = "PHWEIGHT_"+variable_name |
---|
662 | |
---|
663 | for index in variable_indices: |
---|
664 | |
---|
665 | tree_node_average = value(tree_node._averages[variable.name][index]) |
---|
666 | |
---|
667 | if getattr(instance,variable.name)[index].status != VarStatus.unused: |
---|
668 | |
---|
669 | current_variable_weight = value(getattr(instance, weight_parameter_name)[index]) |
---|
670 | # if I'm maximizing, invert value prior to adding (hack to implement negatives) |
---|
671 | if self._is_minimizing is False: |
---|
672 | current_variable_weight = (-current_variable_weight) |
---|
673 | current_variable_value = getattr(instance,variable.name)[index].value |
---|
674 | new_variable_weight = current_variable_weight + self._rho * (current_variable_value - tree_node_average) |
---|
675 | # I have the correct updated value, so now invert if maximizing. |
---|
676 | if self._is_minimizing is False: |
---|
677 | new_variable_weight = (-new_variable_weight) |
---|
678 | getattr(instance, weight_parameter_name)[index] = new_variable_weight |
---|
679 | |
---|
680 | # we shouldn't have to re-simplify the expression, as we aren't adding any constant-variable terms - just modifying parameters. |
---|
681 | |
---|
682 | end_time = time.time() |
---|
683 | self._cumulative_weight_time += (end_time - start_time) |
---|
684 | |
---|
685 | def form_iteration_k_objectives(self): |
---|
686 | |
---|
687 | if self._verbose == True: |
---|
688 | print "Forming PH-weighted objective" |
---|
689 | |
---|
690 | # for each blended variable (i.e., those not appearing in the final stage), |
---|
691 | # add the linear and quadratic penalty terms to the objective. |
---|
692 | for instance_name, instance in self._instances.items(): |
---|
693 | |
---|
694 | objective_name = instance.active_components(Objective).keys()[0] |
---|
695 | objective = instance.active_components(Objective)[objective_name] |
---|
696 | objective_expression = objective._data[None].expr # TBD: we don't deal with indexed expressions (not even sure how to interpret them) |
---|
697 | # the quadratic expression is really treated as just a list - eventually should be treated as a full expression. |
---|
698 | quad_expression = 0.0 |
---|
699 | |
---|
700 | for stage in self._scenario_tree._stages: |
---|
701 | |
---|
702 | # skip the last stage, as no blending occurs |
---|
703 | if stage != self._scenario_tree._stages[-1]: |
---|
704 | # find the instance objective. |
---|
705 | # TBD - for simiplicity, I'm assuming a single objective - we should select "active" objectives later. |
---|
706 | # also, can create a quadratic objective and leave the original alone. |
---|
707 | |
---|
708 | for (reference_variable, index_template, variable_indices) in stage._variables: |
---|
709 | |
---|
710 | variable_name = reference_variable.name |
---|
711 | |
---|
712 | w_parameter_name = "PHWEIGHT_"+variable_name |
---|
713 | w_parameter = instance.active_components(Param)[w_parameter_name] |
---|
714 | |
---|
715 | average_parameter_name = "PHAVG_"+variable_name |
---|
716 | average_parameter = instance.active_components(Param)[average_parameter_name] |
---|
717 | |
---|
718 | rho_parameter_name = "PHRHO_"+variable_name |
---|
719 | rho_parameter = instance.active_components(Param)[rho_parameter_name] |
---|
720 | |
---|
721 | for index in variable_indices: |
---|
722 | |
---|
723 | instance_variable = instance.active_components(Var)[variable_name][index] |
---|
724 | |
---|
725 | if (instance_variable.status is not VarStatus.unused) and (instance_variable.fixed is False): |
---|
726 | |
---|
727 | # TBD - if maximizing, here is where you would want "-=" - however, if you do this, the collect/simplify process chokes. |
---|
728 | objective_expression += (w_parameter[index] * instance_variable) |
---|
729 | quad_expression += (rho_parameter[index] * (instance_variable - average_parameter[index]) ** 2) |
---|
730 | |
---|
731 | # strictly speaking, this probably isn't necessary - parameter coefficients won't get |
---|
732 | # pre-processed out of the expression tree. however, if the under-the-hood should change, |
---|
733 | # we'll be covered. |
---|
734 | objective_expression.simplify(instance) |
---|
735 | instance.active_components(Objective)[objective_name]._data[None].expr = objective_expression |
---|
736 | instance.active_components(Objective)[objective_name]._quad_subexpr = quad_expression |
---|
737 | |
---|
738 | def iteration_k_plus_solves(self): |
---|
739 | |
---|
740 | if self._verbose == True: |
---|
741 | print "Starting PH iteration k+ solves" |
---|
742 | |
---|
743 | # things progress at different rates - keep track of what's going on. |
---|
744 | scenario_ks = {} |
---|
745 | for scenario in self._scenario_tree._scenarios: |
---|
746 | scenario_ks[scenario._name]=0 |
---|
747 | |
---|
748 | # keep track of action handles mapping to scenarios. |
---|
749 | action_handle_instance_map = {} |
---|
750 | |
---|
751 | # STEP 1: queue up the solves for all scenario sub-problems. |
---|
752 | |
---|
753 | for scenario in self._scenario_tree._scenarios: |
---|
754 | |
---|
755 | instance = self._instances[scenario._name] |
---|
756 | |
---|
757 | if self._verbose == True: |
---|
758 | print "Queuing solve for scenario=" + scenario._name |
---|
759 | |
---|
760 | # IMPT: You have to re-presolve, as the simple presolver collects the linear terms together. If you |
---|
761 | # don't do this, you won't see any chance in the output files as you vary the problem parameters! |
---|
762 | # ditto for instance fixing! |
---|
763 | instance.preprocess() |
---|
764 | |
---|
765 | # once past iteration 0, there is always a feasible solution from which to warm-start. |
---|
766 | new_action_handle = self._solver_manager.queue(instance, opt=self._solver, warmstart=True, tee=self._output_solver_log) |
---|
767 | |
---|
768 | action_handle_instance_map[new_action_handle] = scenario._name |
---|
769 | |
---|
770 | # STEP 2: wait for the first action handle to return, process it, and keep chugging. |
---|
771 | |
---|
772 | while(True): |
---|
773 | |
---|
774 | this_action_handle = self._solver_manager.wait_any() |
---|
775 | scenario_name = action_handle_instance_map[this_action_handle] |
---|
776 | |
---|
777 | scenario_ks[scenario_name] += 1 |
---|
778 | |
---|
779 | print "SOLVE FOR SCENARIO=",scenario_name," COMPLETED - NEW SOLVE COUNT=", scenario_ks[scenario_name] |
---|
780 | |
---|
781 | instance = self._instances[scenario_name] |
---|
782 | results = self._solver_manager.get_results(this_action_handle) |
---|
783 | |
---|
784 | if len(results.solution) == 0: |
---|
785 | raise RuntimeError, "Solve failed for scenario="+scenario_name+"; no solutions generated" |
---|
786 | |
---|
787 | if self._verbose is True: |
---|
788 | print "Solve completed successfully" |
---|
789 | |
---|
790 | if self._output_solver_results == True: |
---|
791 | print "Results:" |
---|
792 | results.write(num=1) |
---|
793 | |
---|
794 | instance.load(results) |
---|
795 | |
---|
796 | if self._verbose == True: |
---|
797 | print "Successfully loaded solution" |
---|
798 | |
---|
799 | # we're assuming there is a single solution. |
---|
800 | # the "value" attribute is a pre-defined feature of any solution - it is relative to whatever |
---|
801 | # objective was selected during optimization, which of course should be the PH objective. |
---|
802 | ph_objective_value = float(results.solution(0).value) |
---|
803 | |
---|
804 | if self._verbose == True: |
---|
805 | for objective_name in instance.active_components(Objective): |
---|
806 | objective = instance.active_components(Objective)[objective_name] |
---|
807 | print "%20s %18.4f %14.4f" % (scenario_name, ph_objective_value, 0.0) |
---|
808 | |
---|
809 | # update variable statistics prior to any output. |
---|
810 | self.update_variable_statistics() |
---|
811 | self.update_scenario_weights(instance) |
---|
812 | |
---|
813 | print "Variable averages and weights prior to scenario solves:" |
---|
814 | self.pprint(True,True,False) |
---|
815 | |
---|
816 | # see if we've converged. |
---|
817 | all_good = True |
---|
818 | for scenario in self._scenario_tree._scenarios: |
---|
819 | instance = self._instances[scenario._name] |
---|
820 | if scenario_ks[scenario._name] < self._max_iterations: |
---|
821 | all_good = False |
---|
822 | break |
---|
823 | if all_good is True: |
---|
824 | return |
---|
825 | |
---|
826 | if scenario_ks[scenario_name] < self._max_iterations: |
---|
827 | |
---|
828 | # IMPT: You have to re-presolve, as the simple presolver collects the linear terms together. If you |
---|
829 | # don't do this, you won't see any chance in the output files as you vary the problem parameters! |
---|
830 | # ditto for instance fixing! |
---|
831 | instance.preprocess() |
---|
832 | |
---|
833 | # once past iteration 0, there is always a feasible solution from which to warm-start. |
---|
834 | new_action_handle = self._solver_manager.queue(instance, opt=self._solver, warmstart=True, tee=self._output_solver_log) |
---|
835 | |
---|
836 | action_handle_instance_map[new_action_handle] = scenario_name |
---|
837 | |
---|
838 | print "Queued up solve k=",str(scenario_ks[scenario_name]+1)," for scenario=",scenario_name |
---|
839 | |
---|
840 | print "Variable values following scenario solve:" |
---|
841 | self.pprint(False,False,True) |
---|
842 | |
---|
843 | def solve(self): |
---|
844 | |
---|
845 | self._solve_start_time = time.time() |
---|
846 | self._cumulative_solve_time = 0.0 |
---|
847 | self._cumulative_xbar_time = 0.0 |
---|
848 | self._cumulative_weight_time = 0.0 |
---|
849 | |
---|
850 | print "Starting PH" |
---|
851 | |
---|
852 | if self._initialized == False: |
---|
853 | raise RuntimeError, "PH is not initialized - cannot invoke solve() method" |
---|
854 | |
---|
855 | print "Initiating PH iteration=" + `self._current_iteration` |
---|
856 | |
---|
857 | self.iteration_0_solve() |
---|
858 | |
---|
859 | # update variable statistics prior to any output. |
---|
860 | self.update_variable_statistics() |
---|
861 | |
---|
862 | if self._verbose == True: |
---|
863 | print "Variable values following scenario solves:" |
---|
864 | self.pprint(False,False,True) |
---|
865 | |
---|
866 | # let plugins know if they care. |
---|
867 | if len(self._ph_plugin) == 1: |
---|
868 | self._ph_plugin.service().post_iteration_0_solves(self) |
---|
869 | |
---|
870 | self._converger.update(self._current_iteration, self._scenario_tree, self._instances) |
---|
871 | print "Convergence metric=%12.4f" % self._converger.lastMetric() |
---|
872 | |
---|
873 | self.update_weights() |
---|
874 | |
---|
875 | if self._max_iterations > 0: |
---|
876 | self.form_iteration_k_objectives() |
---|
877 | |
---|
878 | # let plugins know if they care. |
---|
879 | if len(self._ph_plugin) == 1: |
---|
880 | self._ph_plugin.service().post_iteration_0(self) |
---|
881 | |
---|
882 | # iteration 0 is done, plugins are good to go. enter the async solve loop. |
---|
883 | self.iteration_k_plus_solves() |
---|
884 | |
---|
885 | print "PH complete" |
---|
886 | |
---|
887 | print "Final variable values:" |
---|
888 | self.pprint(False,False,True) |
---|
889 | |
---|
890 | print "Final costs:" |
---|
891 | self._scenario_tree.pprintCosts(self._instances) |
---|
892 | |
---|
893 | self._solve_end_time = time.time() |
---|
894 | |
---|
895 | if (self._verbose is True) and (self._output_times is True): |
---|
896 | print "Overall solve time=" + str(self._solve_end_time - self._solve_start_time) + " seconds" |
---|
897 | |
---|
898 | # let plugins know if they care. |
---|
899 | if len(self._ph_plugin) == 1: |
---|
900 | self._ph_plugin.service().post_ph_execution(self) |
---|
901 | |
---|
902 | # |
---|
903 | # prints a summary of all collected time statistics |
---|
904 | # |
---|
905 | def print_time_stats(self): |
---|
906 | |
---|
907 | print "PH run-time statistics (user):" |
---|
908 | |
---|
909 | print "Initialization time= %8.2f seconds" % (self._init_end_time - self._init_start_time) |
---|
910 | print "Overall solve time= %8.2f seconds" % (self._solve_end_time - self._solve_start_time) |
---|
911 | print "Scenario solve time= %8.2f seconds" % self._cumulative_solve_time |
---|
912 | print "Average update time= %8.2f seconds" % self._cumulative_xbar_time |
---|
913 | print "Weight update time= %8.2f seconds" % self._cumulative_weight_time |
---|
914 | |
---|
915 | # |
---|
916 | # a utility to determine whether to output weight / average / etc. information for |
---|
917 | # a variable/node combination. when the printing is moved into a callback/plugin, |
---|
918 | # this routine will go there. for now, we don't dive down into the node resolution - |
---|
919 | # just the variable/stage. |
---|
920 | # |
---|
921 | def should_print(self, stage, variable, variable_indices): |
---|
922 | |
---|
923 | if self._output_continuous_variable_stats is False: |
---|
924 | |
---|
925 | variable_type = variable.domain |
---|
926 | |
---|
927 | if (isinstance(variable_type, IntegerSet) is False) and (isinstance(variable_type, BooleanSet) is False): |
---|
928 | |
---|
929 | return False |
---|
930 | |
---|
931 | return True |
---|
932 | |
---|
933 | # |
---|
934 | # pretty-prints the state of the current variable averages, weights, and values. |
---|
935 | # inputs are booleans indicating which components should be output. |
---|
936 | # |
---|
937 | def pprint(self, output_averages, output_weights, output_values): |
---|
938 | |
---|
939 | # TBD - write a utility routine to figure out the longest identifier width for indicies and other names, |
---|
940 | # to make the output a bit more readable. |
---|
941 | |
---|
942 | if self._initialized is False: |
---|
943 | raise RuntimeError, "PH is not initialized - cannot invoke pprint() method" |
---|
944 | |
---|
945 | # print tree nodes and associated variable/xbar/ph information in stage-order |
---|
946 | for stage in self._scenario_tree._stages: |
---|
947 | |
---|
948 | # we don't blend in the last stage, so we don't current care about printing the associated information. |
---|
949 | if stage != self._scenario_tree._stages[-1]: |
---|
950 | |
---|
951 | print "\tStage=" + stage._name |
---|
952 | |
---|
953 | num_outputs_this_stage = 0 # tracks the number of outputs on a per-index basis. |
---|
954 | |
---|
955 | for (variable, index_template, variable_indices) in stage._variables: |
---|
956 | |
---|
957 | variable_name = variable.name |
---|
958 | |
---|
959 | if self.should_print(stage, variable, variable_indices) is True: |
---|
960 | |
---|
961 | num_outputs_this_variable = 0 # track, so we don't output the variable names unless there is an entry to report. |
---|
962 | |
---|
963 | for index in variable_indices: |
---|
964 | |
---|
965 | weight_parameter_name = "PHWEIGHT_"+variable_name |
---|
966 | |
---|
967 | num_outputs_this_index = 0 # track, so we don't output the variable index more than once. |
---|
968 | |
---|
969 | for tree_node in stage._tree_nodes: |
---|
970 | |
---|
971 | # determine if the variable/index pair is used across the set of scenarios (technically, |
---|
972 | # it should be good enough to check one scenario). will be deleted once we have |
---|
973 | # implemented a "cull" method to get rid of unused variables and variable indices. |
---|
974 | |
---|
975 | is_used = True # should be consistent across scenarios, so one "unused" flags as invalid. |
---|
976 | |
---|
977 | for scenario in tree_node._scenarios: |
---|
978 | instance = self._instances[scenario._name] |
---|
979 | if getattr(instance,variable_name)[index].status == VarStatus.unused: |
---|
980 | is_used = False |
---|
981 | |
---|
982 | # IMPT: this is far from obvious, but variables that are fixed will - because |
---|
983 | # presolve will identify them as constants and eliminate them from all |
---|
984 | # expressions - be flagged as "unused" and therefore not output. |
---|
985 | |
---|
986 | if is_used is True: |
---|
987 | |
---|
988 | minimum_value = value(tree_node._minimums[variable_name][index]) |
---|
989 | maximum_value = value(tree_node._maximums[variable_name][index]) |
---|
990 | |
---|
991 | num_outputs_this_stage = num_outputs_this_stage + 1 |
---|
992 | num_outputs_this_variable = num_outputs_this_variable + 1 |
---|
993 | num_outputs_this_index = num_outputs_this_index + 1 |
---|
994 | |
---|
995 | if num_outputs_this_variable == 1: |
---|
996 | print "\t\tVariable=",variable_name |
---|
997 | |
---|
998 | if num_outputs_this_index == 1: |
---|
999 | print "\t\t\tIndex:", indexToString(index) |
---|
1000 | |
---|
1001 | print "\t\t\t\tTree Node=",tree_node._name,"\t\t (Scenarios: ", |
---|
1002 | for scenario in tree_node._scenarios: |
---|
1003 | print scenario._name," ", |
---|
1004 | if scenario == tree_node._scenarios[-1]: |
---|
1005 | print ")" |
---|
1006 | |
---|
1007 | if output_values is True: |
---|
1008 | average_value = value(tree_node._averages[variable_name][index]) |
---|
1009 | print "\t\t\t\tValues: ", |
---|
1010 | for scenario in tree_node._scenarios: |
---|
1011 | instance = self._instances[scenario._name] |
---|
1012 | this_value = getattr(instance,variable_name)[index].value |
---|
1013 | print "%12.4f" % this_value, |
---|
1014 | if scenario == tree_node._scenarios[-1]: |
---|
1015 | print " Max-Min=%12.4f" % (maximum_value-minimum_value), |
---|
1016 | print " Avg=%12.4f" % (average_value), |
---|
1017 | print "" |
---|
1018 | if output_weights: |
---|
1019 | print "\t\t\t\tWeights: ", |
---|
1020 | for scenario in tree_node._scenarios: |
---|
1021 | instance = self._instances[scenario._name] |
---|
1022 | print "%12.4f" % value(getattr(instance,weight_parameter_name)[index]) |
---|
1023 | if scenario == tree_node._scenarios[-1]: |
---|
1024 | print "" |
---|
1025 | if output_averages: |
---|
1026 | print "\t\t\t\tAverage: %12.4f" % (value(tree_node._averages[variable_name][index])) |
---|
1027 | |
---|
1028 | if num_outputs_this_stage == 0: |
---|
1029 | print "\t\tNo non-converged variables in stage" |
---|
1030 | |
---|
1031 | # cost variables aren't blended, so go through the gory computation of min/max/avg. |
---|
1032 | # TBD: possibly move these into the tree node anyway, as they are useful in general. |
---|
1033 | # TBD: these should also be probability-weighted - fix with above-mentioned TBD fix. |
---|
1034 | # we currently always print these. |
---|
1035 | cost_variable_name = stage._cost_variable[0].name |
---|
1036 | cost_variable_index = stage._cost_variable[1] |
---|
1037 | if cost_variable_index is None: |
---|
1038 | print "\t\tCost Variable=" + cost_variable_name |
---|
1039 | else: |
---|
1040 | print "\t\tCost Variable=" + cost_variable_name + indexToString(cost_variable_index) |
---|
1041 | for tree_node in stage._tree_nodes: |
---|
1042 | print "\t\t\tTree Node=" + tree_node._name + "\t\t (Scenarios: ", |
---|
1043 | for scenario in tree_node._scenarios: |
---|
1044 | print scenario._name," ", |
---|
1045 | if scenario == tree_node._scenarios[-1]: |
---|
1046 | print ")" |
---|
1047 | maximum_value = 0.0 |
---|
1048 | minimum_value = 0.0 |
---|
1049 | sum_values = 0.0 |
---|
1050 | num_values = 0 |
---|
1051 | first_time = True |
---|
1052 | print "\t\t\tValues: ", |
---|
1053 | for scenario in tree_node._scenarios: |
---|
1054 | instance = self._instances[scenario._name] |
---|
1055 | this_value = getattr(instance,cost_variable_name)[cost_variable_index].value |
---|
1056 | print "%12.4f" % this_value, |
---|
1057 | num_values += 1 |
---|
1058 | sum_values += this_value |
---|
1059 | if first_time is True: |
---|
1060 | first_time = False |
---|
1061 | maximum_value = this_value |
---|
1062 | minimum_value = this_value |
---|
1063 | else: |
---|
1064 | if this_value > maximum_value: |
---|
1065 | maximum_value = this_value |
---|
1066 | if this_value < minimum_value: |
---|
1067 | minimum_value = this_value |
---|
1068 | if scenario == tree_node._scenarios[-1]: |
---|
1069 | print " Max-Min=%12.4f" % (maximum_value-minimum_value), |
---|
1070 | print " Avg=%12.4f" % (sum_values/num_values), |
---|
1071 | print "" |
---|
1072 | |
---|