1 | // Copyright (C) 2002, International Business Machines |
---|
2 | // Corporation and others. All Rights Reserved. |
---|
3 | #ifndef ClpMatrixBase_H |
---|
4 | #define ClpMatrixBase_H |
---|
5 | |
---|
6 | #include "CoinPragma.hpp" |
---|
7 | |
---|
8 | #include "CoinPackedMatrix.hpp" |
---|
9 | class CoinIndexedVector; |
---|
10 | class ClpSimplex; |
---|
11 | class ClpModel; |
---|
12 | |
---|
13 | /** Abstract base class for Clp Matrices |
---|
14 | |
---|
15 | Since this class is abstract, no object of this type can be created. |
---|
16 | |
---|
17 | If a derived class provides all methods then all Clp algorithms |
---|
18 | should work. Some can be very inefficient e.g. getElements etc is |
---|
19 | only used for tightening bounds for dual and the copies are |
---|
20 | deleted. Many methods can just be dummy i.e. abort(); if not |
---|
21 | all features are being used. So if column generation was being done |
---|
22 | then it makes no sense to do steepest edge so there would be |
---|
23 | no point providing subsetTransposeTimes. |
---|
24 | */ |
---|
25 | |
---|
26 | class ClpMatrixBase { |
---|
27 | |
---|
28 | public: |
---|
29 | /**@name Virtual methods that the derived classes must provide */ |
---|
30 | //@{ |
---|
31 | /// Return a complete CoinPackedMatrix |
---|
32 | virtual CoinPackedMatrix * getPackedMatrix() const = 0; |
---|
33 | /** Whether the packed matrix is column major ordered or not. */ |
---|
34 | virtual bool isColOrdered() const = 0; |
---|
35 | /** Number of entries in the packed matrix. */ |
---|
36 | virtual CoinBigIndex getNumElements() const = 0; |
---|
37 | /** Number of columns. */ |
---|
38 | virtual int getNumCols() const = 0; |
---|
39 | /** Number of rows. */ |
---|
40 | virtual int getNumRows() const = 0; |
---|
41 | |
---|
42 | /** A vector containing the elements in the packed matrix. Note that there |
---|
43 | might be gaps in this list, entries that do not belong to any |
---|
44 | major-dimension vector. To get the actual elements one should look at |
---|
45 | this vector together with vectorStarts and vectorLengths. */ |
---|
46 | virtual const double * getElements() const = 0; |
---|
47 | /** A vector containing the minor indices of the elements in the packed |
---|
48 | matrix. Note that there might be gaps in this list, entries that do not |
---|
49 | belong to any major-dimension vector. To get the actual elements one |
---|
50 | should look at this vector together with vectorStarts and |
---|
51 | vectorLengths. */ |
---|
52 | virtual const int * getIndices() const = 0; |
---|
53 | |
---|
54 | virtual const CoinBigIndex * getVectorStarts() const = 0; |
---|
55 | /** The lengths of the major-dimension vectors. */ |
---|
56 | virtual const int * getVectorLengths() const = 0 ; |
---|
57 | /** The length of a single major-dimension vector. */ |
---|
58 | virtual int getVectorLength(int index) const ; |
---|
59 | /** Delete the columns whose indices are listed in <code>indDel</code>. */ |
---|
60 | virtual void deleteCols(const int numDel, const int * indDel) = 0; |
---|
61 | /** Delete the rows whose indices are listed in <code>indDel</code>. */ |
---|
62 | virtual void deleteRows(const int numDel, const int * indDel) = 0; |
---|
63 | #ifndef CLP_NO_VECTOR |
---|
64 | /// Append Columns |
---|
65 | virtual void appendCols(int number, const CoinPackedVectorBase * const * columns); |
---|
66 | /// Append Rows |
---|
67 | virtual void appendRows(int number, const CoinPackedVectorBase * const * rows); |
---|
68 | #endif |
---|
69 | /** Modify one element of packed matrix. An element may be added. |
---|
70 | This works for either ordering If the new element is zero it will be |
---|
71 | deleted unless keepZero true */ |
---|
72 | virtual void modifyCoefficient(int row, int column, double newElement, |
---|
73 | bool keepZero=false); |
---|
74 | /** Append a set of rows/columns to the end of the matrix. Returns number of errors |
---|
75 | i.e. if any of the new rows/columns contain an index that's larger than the |
---|
76 | number of columns-1/rows-1 (if numberOther>0) or duplicates |
---|
77 | If 0 then rows, 1 if columns */ |
---|
78 | virtual int appendMatrix(int number, int type, |
---|
79 | const CoinBigIndex * starts, const int * index, |
---|
80 | const double * element, int numberOther=-1); |
---|
81 | |
---|
82 | /** Returns a new matrix in reverse order without gaps |
---|
83 | Is allowed to return NULL if doesn't want to have row copy */ |
---|
84 | virtual ClpMatrixBase * reverseOrderedCopy() const {return NULL;} |
---|
85 | |
---|
86 | /// Returns number of elements in column part of basis |
---|
87 | virtual CoinBigIndex countBasis(ClpSimplex * model, |
---|
88 | const int * whichColumn, |
---|
89 | int numberRowBasic, |
---|
90 | int & numberColumnBasic)=0; |
---|
91 | /// Fills in column part of basis |
---|
92 | virtual void fillBasis(ClpSimplex * model, |
---|
93 | const int * whichColumn, |
---|
94 | int & numberColumnBasic, |
---|
95 | int * row, int * start, |
---|
96 | int * rowCount, int * columnCount, |
---|
97 | CoinFactorizationDouble * element)=0; |
---|
98 | /** Creates scales for column copy (rowCopy in model may be modified) |
---|
99 | default does not allow scaling |
---|
100 | returns non-zero if no scaling done */ |
---|
101 | virtual int scale(ClpModel * , const ClpSimplex * =NULL) const |
---|
102 | { return 1;} |
---|
103 | /** Scales rowCopy if column copy scaled |
---|
104 | Only called if scales already exist */ |
---|
105 | virtual void scaleRowCopy(ClpModel * ) const |
---|
106 | { } |
---|
107 | /// Returns true if can create row copy |
---|
108 | virtual bool canGetRowCopy() const |
---|
109 | { return true;} |
---|
110 | /** Realy really scales column copy |
---|
111 | Only called if scales already exist. |
---|
112 | Up to user to delete */ |
---|
113 | inline virtual ClpMatrixBase * scaledColumnCopy(ClpModel * ) const |
---|
114 | { return this->clone();} |
---|
115 | |
---|
116 | /** Checks if all elements are in valid range. Can just |
---|
117 | return true if you are not paranoid. For Clp I will |
---|
118 | probably expect no zeros. Code can modify matrix to get rid of |
---|
119 | small elements. |
---|
120 | check bits (can be turned off to save time) : |
---|
121 | 1 - check if matrix has gaps |
---|
122 | 2 - check if zero elements |
---|
123 | 4 - check and compress duplicates |
---|
124 | 8 - report on large and small |
---|
125 | */ |
---|
126 | virtual bool allElementsInRange(ClpModel * , |
---|
127 | double, double, |
---|
128 | int =15) |
---|
129 | { return true;} |
---|
130 | /** Set the dimensions of the matrix. In effect, append new empty |
---|
131 | columns/rows to the matrix. A negative number for either dimension |
---|
132 | means that that dimension doesn't change. Otherwise the new dimensions |
---|
133 | MUST be at least as large as the current ones otherwise an exception |
---|
134 | is thrown. */ |
---|
135 | virtual void setDimensions(int numrows, int numcols); |
---|
136 | /** Returns largest and smallest elements of both signs. |
---|
137 | Largest refers to largest absolute value. |
---|
138 | If returns zeros then can't tell anything */ |
---|
139 | virtual void rangeOfElements(double & smallestNegative, double & largestNegative, |
---|
140 | double & smallestPositive, double & largestPositive); |
---|
141 | |
---|
142 | /** Unpacks a column into an CoinIndexedvector |
---|
143 | */ |
---|
144 | virtual void unpack(const ClpSimplex * model,CoinIndexedVector * rowArray, |
---|
145 | int column) const =0; |
---|
146 | /** Unpacks a column into an CoinIndexedvector |
---|
147 | ** in packed format |
---|
148 | Note that model is NOT const. Bounds and objective could |
---|
149 | be modified if doing column generation (just for this variable) */ |
---|
150 | virtual void unpackPacked(ClpSimplex * model, |
---|
151 | CoinIndexedVector * rowArray, |
---|
152 | int column) const =0; |
---|
153 | /** Purely for column generation and similar ideas. Allows |
---|
154 | matrix and any bounds or costs to be updated (sensibly). |
---|
155 | Returns non-zero if any changes. |
---|
156 | */ |
---|
157 | virtual int refresh(ClpSimplex * ) |
---|
158 | { return 0;} |
---|
159 | |
---|
160 | // Really scale matrix |
---|
161 | virtual void reallyScale(const double * rowScale, const double * columnScale); |
---|
162 | /** Given positive integer weights for each row fills in sum of weights |
---|
163 | for each column (and slack). |
---|
164 | Returns weights vector |
---|
165 | Default returns vector of ones |
---|
166 | */ |
---|
167 | virtual CoinBigIndex * dubiousWeights(const ClpSimplex * model,int * inputWeights) const; |
---|
168 | /** Adds multiple of a column into an CoinIndexedvector |
---|
169 | You can use quickAdd to add to vector */ |
---|
170 | virtual void add(const ClpSimplex * model,CoinIndexedVector * rowArray, |
---|
171 | int column, double multiplier) const =0; |
---|
172 | /** Adds multiple of a column into an array */ |
---|
173 | virtual void add(const ClpSimplex * model,double * array, |
---|
174 | int column, double multiplier) const =0; |
---|
175 | /// Allow any parts of a created CoinPackedMatrix to be deleted |
---|
176 | virtual void releasePackedMatrix() const =0; |
---|
177 | /// Says whether it can do partial pricing |
---|
178 | virtual bool canDoPartialPricing() const; |
---|
179 | /// Returns number of hidden rows e.g. gub |
---|
180 | virtual int hiddenRows() const; |
---|
181 | /// Partial pricing |
---|
182 | virtual void partialPricing(ClpSimplex * model, double start, double end, |
---|
183 | int & bestSequence, int & numberWanted); |
---|
184 | /** expands an updated column to allow for extra rows which the main |
---|
185 | solver does not know about and returns number added. |
---|
186 | |
---|
187 | This will normally be a no-op - it is in for GUB but may get extended to |
---|
188 | general non-overlapping and embedded networks. |
---|
189 | |
---|
190 | mode 0 - extend |
---|
191 | mode 1 - delete etc |
---|
192 | */ |
---|
193 | virtual int extendUpdated(ClpSimplex * model,CoinIndexedVector * update,int mode); |
---|
194 | /** |
---|
195 | utility primal function for dealing with dynamic constraints |
---|
196 | mode=0 - Set up before "update" and "times" for primal solution using extended rows |
---|
197 | mode=1 - Cleanup primal solution after "times" using extended rows. |
---|
198 | mode=2 - Check (or report on) primal infeasibilities |
---|
199 | */ |
---|
200 | virtual void primalExpanded(ClpSimplex * model,int mode); |
---|
201 | /** |
---|
202 | utility dual function for dealing with dynamic constraints |
---|
203 | mode=0 - Set up before "updateTranspose" and "transposeTimes" for duals using extended |
---|
204 | updates array (and may use other if dual values pass) |
---|
205 | mode=1 - Update dual solution after "transposeTimes" using extended rows. |
---|
206 | mode=2 - Compute all djs and compute key dual infeasibilities |
---|
207 | mode=3 - Report on key dual infeasibilities |
---|
208 | mode=4 - Modify before updateTranspose in partial pricing |
---|
209 | */ |
---|
210 | virtual void dualExpanded(ClpSimplex * model,CoinIndexedVector * array, |
---|
211 | double * other,int mode); |
---|
212 | /** |
---|
213 | general utility function for dealing with dynamic constraints |
---|
214 | mode=0 - Create list of non-key basics in pivotVariable_ using |
---|
215 | number as numberBasic in and out |
---|
216 | mode=1 - Set all key variables as basic |
---|
217 | mode=2 - return number extra rows needed, number gives maximum number basic |
---|
218 | mode=3 - before replaceColumn |
---|
219 | mode=4 - return 1 if can do primal, 2 if dual, 3 if both |
---|
220 | mode=5 - save any status stuff (when in good state) |
---|
221 | mode=6 - restore status stuff |
---|
222 | mode=7 - flag given variable (normally sequenceIn) |
---|
223 | mode=8 - unflag all variables |
---|
224 | mode=9 - synchronize costs and bounds |
---|
225 | mode=10 - return 1 if there may be changing bounds on variable (column generation) |
---|
226 | mode=11 - make sure set is clean (used when a variable rejected - but not flagged) |
---|
227 | mode=12 - after factorize but before permute stuff |
---|
228 | mode=13 - at end of simplex to delete stuff |
---|
229 | |
---|
230 | */ |
---|
231 | virtual int generalExpanded(ClpSimplex * model,int mode,int & number); |
---|
232 | /** |
---|
233 | update information for a pivot (and effective rhs) |
---|
234 | */ |
---|
235 | virtual int updatePivot(ClpSimplex * model,double oldInValue, double oldOutValue); |
---|
236 | /** Creates a variable. This is called after partial pricing and may modify matrix. |
---|
237 | May update bestSequence. |
---|
238 | */ |
---|
239 | virtual void createVariable(ClpSimplex * model, int & bestSequence); |
---|
240 | /** Just for debug if odd type matrix. |
---|
241 | Returns number of primal infeasibilities. */ |
---|
242 | virtual int checkFeasible(ClpSimplex * model,double & sum) const ; |
---|
243 | /// Returns reduced cost of a variable |
---|
244 | double reducedCost(ClpSimplex * model,int sequence) const; |
---|
245 | /// Correct sequence in and out to give true value (if both -1 maybe do whole matrix) |
---|
246 | virtual void correctSequence(const ClpSimplex * model,int & sequenceIn, int & sequenceOut) ; |
---|
247 | //@} |
---|
248 | |
---|
249 | //--------------------------------------------------------------------------- |
---|
250 | /**@name Matrix times vector methods |
---|
251 | They can be faster if scalar is +- 1 |
---|
252 | Also for simplex I am not using basic/non-basic split */ |
---|
253 | //@{ |
---|
254 | /** Return <code>y + A * x * scalar</code> in <code>y</code>. |
---|
255 | @pre <code>x</code> must be of size <code>numColumns()</code> |
---|
256 | @pre <code>y</code> must be of size <code>numRows()</code> */ |
---|
257 | virtual void times(double scalar, |
---|
258 | const double * x, double * y) const=0; |
---|
259 | /** And for scaling - default aborts for when scaling not supported |
---|
260 | (unless pointers NULL when as normal) |
---|
261 | */ |
---|
262 | virtual void times(double scalar, |
---|
263 | const double * x, double * y, |
---|
264 | const double * rowScale, |
---|
265 | const double * columnScale) const; |
---|
266 | /** Return <code>y + x * scalar * A</code> in <code>y</code>. |
---|
267 | @pre <code>x</code> must be of size <code>numRows()</code> |
---|
268 | @pre <code>y</code> must be of size <code>numColumns()</code> */ |
---|
269 | virtual void transposeTimes(double scalar, |
---|
270 | const double * x, double * y) const = 0; |
---|
271 | /** And for scaling - default aborts for when scaling not supported |
---|
272 | (unless pointers NULL when as normal) |
---|
273 | */ |
---|
274 | virtual void transposeTimes(double scalar, |
---|
275 | const double * x, double * y, |
---|
276 | const double * rowScale, |
---|
277 | const double * columnScale, |
---|
278 | double * spare=NULL) const; |
---|
279 | /** Return <code>x * scalar *A + y</code> in <code>z</code>. |
---|
280 | Can use y as temporary array (will be empty at end) |
---|
281 | Note - If x packed mode - then z packed mode |
---|
282 | Squashes small elements and knows about ClpSimplex */ |
---|
283 | virtual void transposeTimes(const ClpSimplex * model, double scalar, |
---|
284 | const CoinIndexedVector * x, |
---|
285 | CoinIndexedVector * y, |
---|
286 | CoinIndexedVector * z) const = 0; |
---|
287 | /** Return <code>x *A</code> in <code>z</code> but |
---|
288 | just for indices in y. |
---|
289 | This is only needed for primal steepest edge. |
---|
290 | Note - z always packed mode */ |
---|
291 | virtual void subsetTransposeTimes(const ClpSimplex * model, |
---|
292 | const CoinIndexedVector * x, |
---|
293 | const CoinIndexedVector * y, |
---|
294 | CoinIndexedVector * z) const = 0; |
---|
295 | /** Returns true if can combine transposeTimes and subsetTransposeTimes |
---|
296 | and if it would be faster */ |
---|
297 | virtual bool canCombine(const ClpSimplex * , |
---|
298 | const CoinIndexedVector * ) const {return false;} |
---|
299 | /// Updates two arrays for steepest and does devex weights (need not be coded) |
---|
300 | virtual void transposeTimes2(const ClpSimplex * model, |
---|
301 | const CoinIndexedVector * pi1, CoinIndexedVector * dj1, |
---|
302 | const CoinIndexedVector * pi2, CoinIndexedVector * dj2, |
---|
303 | CoinIndexedVector * spare, |
---|
304 | double referenceIn, double devex, |
---|
305 | // Array for exact devex to say what is in reference framework |
---|
306 | unsigned int * reference, |
---|
307 | double * weights, double scaleFactor); |
---|
308 | /// Updates second array for steepest and does devex weights (need not be coded) |
---|
309 | virtual void subsetTimes2(const ClpSimplex * model, |
---|
310 | CoinIndexedVector * dj1, |
---|
311 | const CoinIndexedVector * pi2, CoinIndexedVector * dj2, |
---|
312 | double referenceIn, double devex, |
---|
313 | // Array for exact devex to say what is in reference framework |
---|
314 | unsigned int * reference, |
---|
315 | double * weights, double scaleFactor); |
---|
316 | /** Return <code>x *A</code> in <code>z</code> but |
---|
317 | just for number indices in y. |
---|
318 | Default cheats with fake CoinIndexedVector and |
---|
319 | then calls subsetTransposeTimes */ |
---|
320 | virtual void listTransposeTimes(const ClpSimplex * model, |
---|
321 | double * x, |
---|
322 | int * y, |
---|
323 | int number, |
---|
324 | double * z) const; |
---|
325 | //@} |
---|
326 | //@{ |
---|
327 | ///@name Other |
---|
328 | /// Clone |
---|
329 | virtual ClpMatrixBase * clone() const = 0; |
---|
330 | /** Subset clone (without gaps). Duplicates are allowed |
---|
331 | and order is as given. |
---|
332 | Derived classes need not provide this as it may not always make |
---|
333 | sense */ |
---|
334 | virtual ClpMatrixBase * subsetClone ( |
---|
335 | int numberRows, const int * whichRows, |
---|
336 | int numberColumns, const int * whichColumns) const; |
---|
337 | /// Gets rid of any mutable by products |
---|
338 | virtual void backToBasics() {} |
---|
339 | /** Returns type. |
---|
340 | The types which code may need to know about are: |
---|
341 | 1 - ClpPackedMatrix |
---|
342 | 11 - ClpNetworkMatrix |
---|
343 | 12 - ClpPlusMinusOneMatrix |
---|
344 | */ |
---|
345 | inline int type() const |
---|
346 | { return type_;} |
---|
347 | /// Sets type |
---|
348 | void setType(int type) {type_=type;} |
---|
349 | /// Sets up an effective RHS |
---|
350 | void useEffectiveRhs(ClpSimplex * model); |
---|
351 | /** Returns effective RHS offset if it is being used. This is used for long problems |
---|
352 | or big gub or anywhere where going through full columns is |
---|
353 | expensive. This may re-compute */ |
---|
354 | virtual double * rhsOffset(ClpSimplex * model,bool forceRefresh=false, |
---|
355 | bool check=false); |
---|
356 | /// If rhsOffset used this is iteration last refreshed |
---|
357 | inline int lastRefresh() const |
---|
358 | { return lastRefresh_;} |
---|
359 | /// If rhsOffset used this is refresh frequency (0==off) |
---|
360 | inline int refreshFrequency() const |
---|
361 | { return refreshFrequency_;} |
---|
362 | inline void setRefreshFrequency(int value) |
---|
363 | { refreshFrequency_=value;} |
---|
364 | /// whether to skip dual checks most of time |
---|
365 | inline bool skipDualCheck() const |
---|
366 | { return skipDualCheck_;} |
---|
367 | inline void setSkipDualCheck(bool yes) |
---|
368 | { skipDualCheck_=yes;} |
---|
369 | /** Partial pricing tuning parameter - minimum number of "objects" to scan. |
---|
370 | e.g. number of Gub sets but could be number of variables */ |
---|
371 | inline int minimumObjectsScan() const |
---|
372 | { return minimumObjectsScan_;} |
---|
373 | inline void setMinimumObjectsScan(int value) |
---|
374 | { minimumObjectsScan_=value;} |
---|
375 | /// Partial pricing tuning parameter - minimum number of negative reduced costs to get |
---|
376 | inline int minimumGoodReducedCosts() const |
---|
377 | { return minimumGoodReducedCosts_;} |
---|
378 | inline void setMinimumGoodReducedCosts(int value) |
---|
379 | { minimumGoodReducedCosts_=value;} |
---|
380 | /// Current start of search space in matrix (as fraction) |
---|
381 | inline double startFraction() const |
---|
382 | { return startFraction_;} |
---|
383 | inline void setStartFraction(double value) |
---|
384 | { startFraction_ = value;} |
---|
385 | /// Current end of search space in matrix (as fraction) |
---|
386 | inline double endFraction() const |
---|
387 | { return endFraction_;} |
---|
388 | inline void setEndFraction(double value) |
---|
389 | { endFraction_ = value;} |
---|
390 | /// Current best reduced cost |
---|
391 | inline double savedBestDj() const |
---|
392 | { return savedBestDj_;} |
---|
393 | inline void setSavedBestDj(double value) |
---|
394 | { savedBestDj_ = value;} |
---|
395 | /// Initial number of negative reduced costs wanted |
---|
396 | inline int originalWanted() const |
---|
397 | { return originalWanted_;} |
---|
398 | inline void setOriginalWanted(int value) |
---|
399 | { originalWanted_ = value;} |
---|
400 | /// Current number of negative reduced costs which we still need |
---|
401 | inline int currentWanted() const |
---|
402 | { return currentWanted_;} |
---|
403 | inline void setCurrentWanted(int value) |
---|
404 | { currentWanted_ = value;} |
---|
405 | /// Current best sequence |
---|
406 | inline int savedBestSequence() const |
---|
407 | { return savedBestSequence_;} |
---|
408 | inline void setSavedBestSequence(int value) |
---|
409 | { savedBestSequence_ = value;} |
---|
410 | //@} |
---|
411 | |
---|
412 | |
---|
413 | protected: |
---|
414 | |
---|
415 | /**@name Constructors, destructor<br> |
---|
416 | <strong>NOTE</strong>: All constructors are protected. There's no need |
---|
417 | to expose them, after all, this is an abstract class. */ |
---|
418 | //@{ |
---|
419 | /** Default constructor. */ |
---|
420 | ClpMatrixBase(); |
---|
421 | /** Destructor (has to be public) */ |
---|
422 | public: |
---|
423 | virtual ~ClpMatrixBase(); |
---|
424 | protected: |
---|
425 | // Copy |
---|
426 | ClpMatrixBase(const ClpMatrixBase&); |
---|
427 | // Assignment |
---|
428 | ClpMatrixBase& operator=(const ClpMatrixBase&); |
---|
429 | //@} |
---|
430 | |
---|
431 | |
---|
432 | protected: |
---|
433 | /**@name Data members |
---|
434 | The data members are protected to allow access for derived classes. */ |
---|
435 | //@{ |
---|
436 | /** Effective RHS offset if it is being used. This is used for long problems |
---|
437 | or big gub or anywhere where going through full columns is |
---|
438 | expensive */ |
---|
439 | double * rhsOffset_; |
---|
440 | /// Current start of search space in matrix (as fraction) |
---|
441 | double startFraction_; |
---|
442 | /// Current end of search space in matrix (as fraction) |
---|
443 | double endFraction_; |
---|
444 | /// Best reduced cost so far |
---|
445 | double savedBestDj_; |
---|
446 | /// Initial number of negative reduced costs wanted |
---|
447 | int originalWanted_; |
---|
448 | /// Current number of negative reduced costs which we still need |
---|
449 | int currentWanted_; |
---|
450 | /// Saved best sequence in pricing |
---|
451 | int savedBestSequence_; |
---|
452 | /// type (may be useful) |
---|
453 | int type_; |
---|
454 | /// If rhsOffset used this is iteration last refreshed |
---|
455 | int lastRefresh_; |
---|
456 | /// If rhsOffset used this is refresh frequency (0==off) |
---|
457 | int refreshFrequency_; |
---|
458 | /// Partial pricing tuning parameter - minimum number of "objects" to scan |
---|
459 | int minimumObjectsScan_; |
---|
460 | /// Partial pricing tuning parameter - minimum number of negative reduced costs to get |
---|
461 | int minimumGoodReducedCosts_; |
---|
462 | /// True sequence in (i.e. from larger problem) |
---|
463 | int trueSequenceIn_; |
---|
464 | /// True sequence out (i.e. from larger problem) |
---|
465 | int trueSequenceOut_; |
---|
466 | /// whether to skip dual checks most of time |
---|
467 | bool skipDualCheck_; |
---|
468 | //@} |
---|
469 | }; |
---|
470 | // bias for free variables |
---|
471 | #define FREE_BIAS 1.0e1 |
---|
472 | // Acceptance criteria for free variables |
---|
473 | #define FREE_ACCEPT 1.0e2 |
---|
474 | |
---|
475 | #endif |
---|