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This document briefly presents an implementation for COIN-OR of the lift-and-project
procedure executed in the LP simplex tableau as described by Balas and Perregaard [5].
This lift-and-project cut generator is available under the Common Public License [10]
(therefore it is an open-source code). The implementation follows the standards of the
COIN-OR Cut Generation Library: Cgl [7].

This document does not cover the algorithmic details of the procedure and its imple-
mentation, but its intention is just to provide a reference for the usage of the code. For
an in-depth description of the algorithm and of the mathematical concepts on which it is
based, the reader is invited to refer to the paper of Balas and Perregaard [5]; for detailed
descriptions of implementations of the procedure and extended computational experiments,
the reader is invited to refer to Michael Perregaard Thesis [11] and the working paper [?].

Along with the procedure described in [5], the procedure implements two closely related
variants [4, 6] which can be used as options.

Consider a mixed integer linear program of the form:

min cT x

such that:
Ax ≥ b,

l ≤ x ≤ u,

xj ∈ Z j ∈ I, x ∈ Rn

(MILP )

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm andl and u ∈ Rn are the (possibly infinite) lower and
upper bounds on the variables and finally I ⊆ {1, . . . , n} is the subset of integer constrained
variables.
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We denote by (LP ) the continuous relaxation of (MILP ).

The lift-and-project procedure generates a set of linear inequalities cutting the optimal
solution of (LP ) x∗. More precisely a round of lift-and-project generates a cut for each of
the integer constrained variables xk ∈ I whose value x∗k is not integral. To obtain each cut,
the method proceeds by performing pivots in the simplex tableau of (LP ). These pivots
have the property that each of them makes the Intersection Cut obtained from the row
corresponding to variable xk more violated in the next tableau (obtained after the pivot)
than in the current one.

The procedure stops either when the current intersection cut is optimal in the sense
that it is the most violated by x∗ which can be obtained by taking into account only the
integrality of variable xk or when a prescribed pivot or time limit is attained.

When the optimal lift-and-project cut is found it is usually strengthened in a cut which
can be shown to be equivalent to the Gomory cut in the current basis. It is important to
note that the optimal basis from which the strengthened lift-and-project cut is generated
is often an infeasible basis and also that the cut obtained is different (and usually stronger)
than the Gomory cut from the optimal tableau of (LP ).

1 Usage and parameters of the procedure

Like all generator from the Cut Generation Library Cgl[7], the class CglLandP which imple-
ments the lift-and-project cut generation procedure inherits from the class CglCutGenerator
and its main function is CglLandP::generateCuts which performs a round of lift-and-
project cuts at the current optimal basic solution.

To generate each individual cut the function CglLandP::generatesCuts uses the class
CglLandPSimplex which implements the lift-and-project pivoting procedure briefly de-
scribed above.

In this procedure, all the tableau operations (such as computing rows, columns and
pivoting) are performed by using the standard functions provided in the LP solver at hand
through the use of an OsiSolverInterface. Therefore, any OsiSolverInterface which
provides an implementation of the functions

• pivot,

• getBInvARow,

• getBInvACol,

(see documentation in OsiSolverInterface) can be used for generating the lift-and-
project cuts.
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Unfortunately at the moment only the interface for Clp [8] provides these 3 functions.

For the generation of the cuts besides the classical procedure (which is used by default
by the generator), two variants can be optionally used:

• a procedure which uses an alternative criterion for selecting pivoting variables based
on searching for the adjacent basis which has the most violated intersection cut [6].

• a procedure which after each pivot replaced the source row by its modularized version
[?],

The cuts can either be separated in the full space or in the reduced space (as described
in [2]), the default procedure is to separate the cuts in the reduced space.

The cut generation procedure has a certain number of limits which can be changed by
the user. The main one is the limit on the number of cuts generated at each round which
is set to 50 by default (the behavior is to generate a cut for each of the 50 most fractional
variables in the solution to cut x∗.

The separation of each cut is also limited by several parameters. In particular there is
an upper limit on the number of pivots performed for separating each cut, which is 20 by
default.

Once a cut has been separated, a number of operations are performed in order to clean
its small coefficients and possibly reject it following a number of criterion explained in
Appendix A.

1.1 Summary of the parameters and their default values

Below we give the name the default value and a brief description of each of the parameters.
These parameters can be changed by using the member function parameters() of the class
CglLandP.

1.1.1 algorithm choices

• selectionRule Rule for choosing pivoting variables. Possible values are:

– mostNegativeRc Select variable with most negative reduced cost for entering
the basis,

– bestPivot Select leaving and entering variables according to the Most Violated
Cut Selection Rule.

The default value is mostNegativeRc.

• modularize If set to 1, after each pivot modularize source row (set to 0 by default)
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• reducedSpace If set to 1, perform the cut generation in the reduced space (set to 1
by default).

1.1.2 Per round limits

• maxCutPerRound Maximum number of cuts generated in each round, the default value
is 50.

• timeLimit global time limit in seconds for performing one round of separation (de-
fault value is +∞).

• away In the current LP optimum, a basic variable have to be at least this much away
from an integer value for a cut to be generated for the corresponding row. The default
value is 5.10−3.

1.1.3 Limits for the separation of each cut

• pivotLimit Maximum number of pivots performed for each cut. The default value
is 20.

• degeneratePivotLimit limit the number of consecutive degenerate pivot, default
value is 0.

• singleCutTimeLimit time limit in seconds for each cut separation (default value is
+∞).

1.1.4 Cut parameters

• scaleCuts If set to true cuts are scaled to have +-1 right-hand-side. Most linear
programming solvers (Clp, Cplex, Xpress,. . . ) already include an automatic scaling
of the problem and therefore by default no scaling is performed.

1.1.5 Pivoting tolerances

• pivotTol if the pivot element aij is less than this value we don’t consider this pivot,
the default tolerance is 10−6.

2 Small example

We give here a small example where one round of lift-and-project cut is performed on the
problem stored in the OsiSolverInterface si. The default parameters for the time limit
and the maximum number of pivots per cut are changed respectively to 10 seconds and 2
pivots.
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CglLandP landpGen;

landpGen.parameter().timeLimit = 10.;
landpGen.parameter().pivotLimit = 2;

OsiCuts cuts;

landpGen.generateCuts(si, cuts);

si.applyCuts(si);
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A Cut checks, and rules for cut rejection

Here we give the details of the procedure applied to validate a cut after its generation and
before it is eventually added to the formulation of the problem.

The goal of this procedure is to try and avoid generating invalid cuts, or cuts which
intrinsically have a bad numerical behavior and would give trouble to the LP solver. All the
rules applied here are simple heuristics and do not give any guarantee that these goals are
completely attained. Although most cut generators (for instance the generators available in
the COIN-OR library Cgl) and mixed integer programming solvers implements comparable
rules, they are rarely discussed. Since they can play an important role in the quality of
the cut generated and the overall cut generation procedure and its integration in a global
branch-and-cut, we believe it is worth giving a precise account of the rules we apply here.

Let αT x ≥ β be the cut generated by the lift-and-project procedure put in the structural
space of the problem. Let

ν =
max

i∈{1,...,n}
|αi|

min
i∈{1,...,n}:αi 6=0

αi

be the ratio between the coefficient of largest magnitude and the non-zero coefficient of
smallest magnitude in the cut. In general we want to avoid having ν to big since it would
cause trouble in floating point computation, therefore the first part of the validation pro-
cedure is to try and control the size of ν by removing small coefficients in the cut without
making the cut invalid. Assume that the cut is scaled so that max

i∈{1,...,n}
|αi| = 1 and that ν is

the maximal value we accept for ν. We try to remove all the coefficients of the cut such that
|αi| < 1

ν . If αi > 0 and the variable xi has a finite lower bound li, the coefficient is set to 0
and the right hand side β is modified to β − αili. Conversely if αi < 0 and the variable xi

has a finite upper bound, the right hand side is modified to β−αiui. If either the coefficient
αi > 0 and the variable xi has no lower bound or the coefficient is negative and the vari-
able has no upper bound, the coefficient can not be safely removed and the cut is discarded.

If all the coefficient could be safely removed so that in the resulting cut ν ≤ ν, we check
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for the density of the cut obtained:

d =
|{i ∈ {1, . . . , n} : αi 6= 0}|

n
.

If d is bigger than a prescribed value d the cut is rejected otherwise we recompute the cut
violation and it is sufficiently large the cut is accepted. The value of d is usually set as a
function of the density of A, the default is d = 1.
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