PARALLEL BRANCH AND CUT FOR SET

PARTITIONING

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Marta Eso

January 1999

© Mérta Esé 1999

ALL RIGHTS RESERVED

PARALLEL BRANCH AND CUT FOR SET PARTITIONING

Marta Es6, Ph.D.

Cornell University 1999

This thesis investigates three major steps in the solution process of the Set
Partitioning Problem (SPP): problem size reduction techniques, LP-based feasible
solution heuristics and Branch-and-Cut solution methodology. SPPs arise in many
practical applications (airline crew scheduling, vehicle routing, circuit partitioning).
Theoretical aspects of this problem have been studied for a long time, but only
recently have computers become powerful enough to attack practical instances.

Problem size reduction methods reduce the set of variables and/or constraints
through logical implications without eliminating optimal solutions to the original
problem. We show that the reduction operations well-known in the literature, ap-
plied in any order to an SPP instance until no further reduction is possible, always
produce the same reduced problem.

Finding good feasible solutions is essential for upper bounding in a Branch-and-
Cut framework. Our LP-based feasible solution heuristic iterates a heuristic fixing
phase with reduced cost fixing to improve the quality of the feasible solution. Our

heuristic procedure is somewhat more conservative than earlier approaches in that

it eliminates unnecessary variables instead of forcing variables into the solution.
Our parallel Branch-and-Cut procedure was implemented using the COMPSys
framework. COMPSys provides the user with the necessary infrastructure to im-
plement an efficient Branch-and-Cut application by handling tasks common for
parallel Branch-and-Cut (search tree management, message passing, LP interface).
To interface with COMPSys we implemented procedures particular to the SPP. We
generate cuts both algorithmically and manually through a graphical user interface.
Our experiments were carried out on the IBM RS/6000 Scalable POWERpar-
allel System of the Cornell Theory Center. Our test set included problems from
airline crew scheduling and vehicle routing applications. Our computational results
demonstrate our implementation to be an effective approach for solving SPPs of

moderately large size.

Biographical Sketch

Marta Es6 was born on April 5, 1968 in Szombathely, Hungary. She completed
her undergraduate studies at the Eotvos Lorand University, Budapest, Hungary in
June 1991, receiving both her Master of Science degree in Mathematics and her
certificate for high school teaching. She entered the Ph.D. program in the School
of Operations Research and Industrial Engineering at Cornell University in the Fall
of 1991, where she received a Master of Science degree in Operations Research in
January 1995. She participated in a work-study program at the IBM T.J. Watson

Research Center, Yorktown Heights, from September 1997 to December 1998.

il

... to my Father’s memory...

v

Acknowledgements

I would like to express my gratitude to my advisor Professor Leslie E. Trotter, Jr.
for his guidance. I would also like to thank Professor Eva Tardos who served as
my advisor during my first year at Cornell, and Professors Ronitt Rubinfeld, Paul
Pedersen and Tapan Mitra for serving on my special committee. I am indebted to
the faculty and staff of the School of Operations Research and Industrial Engineering
at Cornell University for providing an excellent graduate program and a productive
research environment.

We have worked very closely on the COMPSys project with Laci Ladanyi,
Ted Ralphs, Greta Pangborn, and Leo Kopman. Our research was made possible
through the generous support of the Cornell Theory Center and the U.S. National
Science Foundation. Edoardo Amaldi, Oktay Giinliik, and Jean-Francois Puszta-
szeri gave valuable suggestions during the development phase.

[am grateful to Dr. William Pulleyblank and all those at the Department
of Mathematical Sciences at the IBM T.J. Watson Research Center who made it
possible for me to participate in their work-study program. It was a very valuable

experience to see optimization theory applied in practice. I would specifically like

to thank Ranga Anbil, Francisco Barahona, and Jane Snowdon for their friendship
and encouragement.

I thank all the graduate students at the OR&IE department and the many
friends in Ithaca who made my stay at Cornell so enjoyable.

Most importantly, I would like to thank my family for their love and support.

vi

Table of Contents

1 Introduction
1.1 The Set Partitioning Problem
1.2 Set Packing, Covering and Partitioning
1.3 The Stable Set Problem and Set Partitioning
1.4 Complexity and approximability
1.5 Outline of the thesis
1.6 Definitions and notation

2 Background
2.1 Integer Programming and polytopes
2.1.1 Cutting plane methods
2.1.2 Branch-and-Bound
2.1.3 Branch-and-Cut
2.2 The COMPSys framework
2.3 The Set Packing and Covering polytopes
231 Psp o o
232 Pse .o

3 Problem size reduction
3.1 Description of reduction methods
3.2 Theorem of exhaustive reduction
3.3 How can new instances arise?
3.4 Implementation
3.4.1 Reductionmodules
3.4.2 Reduction strategies
3.4.3 The Reduce() function
3.4.4 Computational results

4 Feasible solution heuristics
4.1 LP relaxation based heuristics

Vil

38
39
43
o7
59
61
72
74
7

88

4.2 Our algorithm oo 93

4.2.1 Heuristic variable fixing 93
4.2.2 Unmarking variables 97
4.2.3 Overview of our algorithm 98
4.3 Solving the LP relaxations (warmstart) 102
4.4 Computational results o000 105
Interfacing with the Branch-and-Cut framework 122
5.1 The COMPSys framework 123
5.2 User-written functions of the Master process 128
5.2.1 Preprocessing and upper bounding 128
5.2.2 Formulating the problem and constructing the root 129
5.3 User-written functions of the LP process 130
5.3.1 Constructing the LP relaxation 130
5.3.2 Logical fixing of variables 130
5.3.3 Generating violated inequalities 131
5.3.4 Lifting violated inequalities 132
5.3.5 Deciding whether to branch or continue solving LPs 133
5.3.6 Choosing branching objects for strong branching and compar-
ing the presolved results 134
5.4 User-written functions of the Cut Generator process 140
5.4.1 Cliques. e 142
5.4.2 Lifted odd holes, packing and cover odd holes 144
5.4.3 0Odd antiholes and lifted odd antiholes 151
5.5 Computational Results 152
5.5.1 Set lproblems 156
5.5.2 Set2problems 165
5.5.3 Set3problems, 167
5.5.4 Set 4 problems 174
5.5.5 Conclusion and future work 174
The Graphical User Interface 177
6.1 Interactive Graph Drawing (IGD) 178
6.2 The interface (DrawGraph) 182
6.3 Generating cuts by hand 00000000 183
Computation 187
A.1 Computing environment L. 187
A2 Thetestbed 188
A3 Resultsbyothers 195

B Implementing Reduce()
B.1 Reduce main data structure
B.2 Reduce parameters

C Implementing the feasible solution heuristic
C.1 CPLEX parameters
C.2 Heuristic parameters

D Implementing our Branch-and-Cut procedure
D.1 COMPSys parameters
D.2 Parameters in the user-written functions

Bibliography

1X

203
203
205

207
207
209

214
215
218

222

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3
5.4
3.5
5.6
5.7
5.8
5.9

Impact of reductions
Impact of reductions — for all six instances
Maximal reduction w/o SUMC followed by one SUMC, Set 1, part 1
Maximal reduction w/o SUMC followed by one SUMC, Set 1, part 2
Fast reduction w/o SUMC followed by one SUMC, Set 1, part 1 . .
Fast reduction w/o SUMC followed by one SUMC, Set 1, part 2 . .
Maximal reduction w/o SUMC followed by one SUMC, Set 3 . . .
Fast reduction w/o SUMC followed by one SUMC, Set 3
Maximal reduction w/o SUMC followed by one SUMC, Sets 2, 4 .
Fast reduction w/o SUMC followed by one SUMC, Sets 2,4

Feasible solution heuristic
Feasible solution heuristic
Feasible solution heuristic
Feasible solution heuristic
Feasible solution heuristic
Feasible solution heuristic
Feasible solution heuristic
Feasible solution heuristic
Feasible solution heuristic
Feasible solution heuristic

default setting), Set 1, part 1
default setting), Set 1, part 2
default setting), Set 3
default setting), Sets 2 and 4
comparison runs), Set 1, part 1
comparison runs), Set 1, part 2
comparison runs), Set 1, part 1, cont.

comparison runs), Set 1, part 2, cont. .
comparison runs), Set 3, part 1
comparison runs), Set 3, part 2

NN AN N N N N N TN N

Basic B&C experiments for aa01
Basic B&C experiments for aa04
Basic B&C experiments fornw04
Basic B&C experiments for aa05
Basic B&C experiments for aa03
Basic B&C experiments for aa06
Basic B&C experiments for k102
Basic B&C experiments fornwl7
Basic B&C experiments fornw36

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27

Al
A2
A3
A4
A5
A6
AT
A8
A9

Basic B&C experiments forus01 163
Parallel runs for aa01o 164
Parallel runs for aa04 164
Basic B&C experiments for Set 2 (branching on “close to one-half”) 166
Basic B&C experiments for Set 2 (mixed branching variable selection)166

Basic B&C experiments for v04 (branching on vars) 168
Basic B&C experiments for v04 (branching on vars/cuts) 168
Parallel runs for v0416 (branching on vars) 169
Parallel runs for v0416 (branching on vars/cuts) 169
Basic B&C experiments for v16 (branching on vars) 171
Basic B&C experiments for v16 (branching on vars/cuts) 171
Basic B&C experiments for vi6 with 16 LP-CG pairs 171
Basic B&C experiments for t04 (branching on vars) 172
Basic B&C experiments for t04 (branching on vars/cuts) 172
Basic B&C experiments for t17 (branching on vars) 173
Basic B&C experiments for t17 (branching on vars/cuts) 173

Basic B&C experiments for Set 4 (branching on “close to one-half”) 175
Basic B&C experiments for Set 4 (mixed branching variable selection)175

Basic properties of problems in set 1, part 1 191
Basic properties of problems in set 1, part 2 192
Basic properties of problemsinset 3 193
Basic properties of problems in sets 2and 4 194
Computational results by Hoffman and Padberg, Set 1, part 1 . . . 196
Computational results by Hoffman and Padberg, Set 1, part 2 . . . 197
Computational results by Borndorfer, Set 1, part 1 199
Computational results by Borndorfer, Set 1, part 2 200
Computational results by Borndorfer et al., Set 3 201

xi

List of Figures

1.1

2.1
2.2
2.3

3.1
3.2
3.3

4.1

5.1
5.2

6.1
6.2
6.3

Integer Programming formulation of the Set Partitioning, Covering

and Packing Problems 0L 6
Lower and upper bound and the optimal solution 17
The flow of the Branch-and-Cut Algorithm 23
Graphs with facet defining valid inequalities 30
The six reduction methods 44
Description of a general reduction module 64
Outline of the Reduce() function 75
Outline of Feasible Solution Heuristic 99
Processes of the COMPSys framework 125
Tailing off L 134
Communication flow between COMPSys and the GUI 178
Screen shot of the GUI: problem v0416 at the root before branching 179
Deriving a cut using the Chvatal-Gomory procedure 185

xil

Chapter 1

Introduction

1.1 The Set Partitioning Problem

The Set Partitioning Problem (SPP) in its general form can be presented as follows.
Given a ground set S of m objects and a collection of subsets of S (S1,...,S,) with
associated costs ¢(S;), 1 < j < n, select some subsets of minimum (or maximum)
total cost so that the selected subsets are disjoint and their union is the ground set.
In other words, choose a minimum (or maximum) cost partitioning of the ground
set.

A wide variety of practical applications have been modeled as SPPs during the
past 50 years, including crew scheduling ([FR87], [Ger89], [AGPT91], [HP93]) vehi-
cle routing ([BQ64], [Chr85], [BGKK97]), political districting ((GN70]), and circuit
partitioning ([ECTA96]) just to name a few. References to further applications can

be found in [GN72] (Chapter 8), [BP76], and [EDM90].

The most well studied and one of the earliest applications is Airline Crew
Scheduling. The importance of crew scheduling in the airline industry is due to
the fact that crew costs are exceeded only by the cost of fuel, thus small improve-
ments in the solution translate to large dollar savings ([AGPT91]). Crew scheduling
is a major step in schedule planning; it comes after timetables are created and air-
craft are already assigned to the flights. The goal of crew scheduling is to assign
crew members to the flights as cheaply as possible while a complex set of FAA
regulations, union requirements and other internal operational rules are met. Mod-
eled as a set partitioning problem, the ground set will be the collection of flights
that need to be covered, while the subsets correspond to sequences of flights that
a crew can operate (so called pairings). Constructing pairings is a complex process
since the legality of the pairings (compliance with the rules and regulations) must
be ensured. The cost of a subset reflects both crew compensation and penalties for
undesired events like tight connections or deadheading (crew members are passen-
gers on a flight). The SPP model itself does not capture requirements like crew
availability at different stations; these requirements are usually added in the form
of side constraints.

In the Vehicle Routing Problem (VRP) customer demands need to be served by
a fleet of vehicles that depart from and return to the same location (the depot) so
that the total cost incurred on the trips (e.g., the distance traveled by the vehicles)
is as small as possible. Each customer must be serviced by exactly one vehicle and
the vehicles have finite capacities. In the set partitioning model the customers will

be the elements of the ground set, and feasible routes for individual vehicles form

the subsets. The cost of a subset is the cost of the corresponding route. The use of
the set partitioning formulation for solving the general VRP is not practical since
too many subsets need to be enumerated and just to compute the cost of a subset
is a hard problem in itself (requires solving a Traveling Salesman Problem (TSP)
instance) [Chr85]. However, in practice very often there are additional requirements
(e.g., rest rules for the drivers of the vehicles [BGKK97]) that restrict the number of
subsets and the order in which the customers can be served within a route. While
these requirements would need to be added as side constraints in the traditional
formulation, they can be accommodated here by generating only those subsets that
obey them.

Another early application of the SPP is political districting. A state is composed
of small population units (e.g., counties, census tracts) that need to be grouped into
political districts so that certain criteria on the population, contiguity and shape of
the districts are met and the grouping is as acceptable as possible. Modeled as a set
partitioning problem, the elements of the ground set correspond to the population
units, and the subsets to proposed districts. The cost of a subset measures the
undesirability of the corresponding district, and the solution to the SPP will provide
the least undesirable way of partitioning the state into districts. A side constraint
specifying the number of districts required is also added.

The circuit partitioning problem is the first step in the physical design stage
of electronic circuit design. Physical design is preceded by logical design, where
the components of the circuit and the interconnections between them are planned

on paper without considering the actual placement of the components. Then, in

the physical design stage, the plan is first divided into subcircuits (this is circuit
partitioning) then the components are placed within these partitions and a routing
between the subcircuits is determined. In a feasible partitioning the total size of
components within the subcircuits and the pins required to connect the partitions
must stay within specified bounds. The quality of a partitioning is hard to measure;
balancing wire congestion and minimizing the number of connections between the
subcircuits are commonly used. In the set partitioning model the ground set is
comprised of the components and subsets correspond to subcircuits that satisfy the
above requirements. The objective is to obtain the highest quality partitioning.

In all the applications discussed above significant effort must be spent on gen-
erating the subsets and computing their costs. The number of feasible subsets is
exponential in the size of the ground set in general which makes listing all the sub-
sets at once impractical. To overcome this problem a “good” collection of subsets
is chosen first and then solving the SPP restricted to the current subsets and in-
corporating new “improving” subsets are iterated. Real-world applications do not
always require optimal solutions, thus the iterative process can be aborted as soon
as an acceptable quality solution is found. In this dissertation we will focus on how
to solve SPPs; this task could be considered as solving “snapshots” of the above

iterative process.

1.2 Set Packing, Covering and Partitioning

If we relax the requirement in the SPP that the chosen subsets be disjoint, the
problem becomes the Set Covering Problem (SC). On the other hand, if the chosen
subsets must be disjoint but their union may be a proper subset of the ground set,
we have the Set Packing Problem (SP). Note that the objective is to minimize in
the Set Covering and to maximize in the Set Packing Problem. Although both of
these problems are relaxations of the Set Partitioning Problem, SP and SPP are
equivalent, while SC is easier than SPP in some sense. As Balas and Padberg point
it out in [BP76] this can be intuitively explained by observing that SPP and SP are
“tightly constrained” (only one of the many subsets that contain an object may be
chosen in a solution) while SC is “loosely constrained” (several subsets containing
the same object can be chosen).

The above problems can be formulated as integer programming models by assign-
ing decision variables x1,...,z, to the subsets indicating which subsets are chosen
(z; = 1if S; is chosen, 0 otherwise). The characteristic vectors of the subsets (0 —1
vectors of length m that show which objects of the ground set are contained in a
subset) are arranged into columns of a matrix A. Figure 1.1 gives the formulation
of the three problems.

SPP and SP are equivalent in the sense that each can be written in the other’s
form so that the optimal solutions for the original and transformed problems will
be the same. To see that any SP problem is an SPP, simply add slack variables

(with zero objective function coefficients) to the constraints. Since the coefficient

min ¢’z
(SPP) Ar = 1,
r € {0,1}"
min 'z max ¢’z
(SC) Az > 1, (SP) Azr < 1,
z € {0,1}" z € {0,1}"

Figure 1.1: Integer Programming formulation of the Set Partitioning, Covering and

Packing Problems

matrix is 0-1 and for any feasible solution x to (SP) the left hand side is either 0
or 1, it is true that the slacks can take only values 0 or 1. So (SP) can be written

as an SPP of the following form:

max ¢’z + 0@s

(SP) Ar + I,s = 1,
x e {0,1}"
s € {0,1}™

On the other hand, an SPP can be written as an SP problem. Switch the min to
a max and add artificial variables (y; > 0) to the constraints and charge a penalty
if they are at nonzero level (fy;). Notice that if (SPP) is feasible then y; = 0 in any
optimal solution to the new formulation as long as 6 is “large enough”, that is, at
least as large as the cost of any feasible solution to the original SPP. Z?Zl c; is an

obvious upper bound on this number. If (SPP) is not feasible then the same large

0 will force the cost of any feasible solution to the SP formulation to be at least 6.

max —clz — 01Ty
(SPP) Az + ILyy = 1,
x e {0,1}"
y =2 0

Substituting 1,, — Az in the objective function for y we get —clz — 011y =
—c'z — 011 (1,, — Az) = (011 A — ¢")x — Om. We further relax the problem by
dropping y from the constraints as well, thus increasing the size of the feasible
region. But the set of optimal solutions will be unchanged since it is too expensive
not to satisfy the constraints with equality. Thus we have obtained an SP form for

the SPP.

max —0m + (01 A — ")z
(SPP") Ar < 1,
z € {0,1}"
The SPP can be converted into an SC problem using the same logic. However,

an SC problem cannot be written in a set partitioning form.

1.3 The Stable Set Problem and Set Partitioning

Consider the finite undirected graph G = (V, E). A stable set (independent set,
vertex or node packing) is an independent subset of the nodes, i.e., a set of nodes
so that no two are connected by an edge. A maximum stable set is a stable set of

maximum cardinality, its size is denoted by a(G). Assigning weights w to the nodes

the weight of a subset of the nodes is simply the sum of the weights of the nodes.
A mazimum weight stable set is a stable set of largest weight (a,(G)).
The Maximum Weight Stable Set Problem (MWSSP) can be formulated as an

Integer Program by assigning decision variables to the nodes of the graph:

a,(G) = max w'x
Agr < i
z € {0,1}V

where Ag is the node-edge incidence matrix of G, that is, a |V| x |E| matrix of 0’s
and 1’s where each column contains exactly two 1’s in the rows that correspond to
the endpoints of the column’s edge.

Observe that this is a set packing problem with a special matrix (the transpose
of the node-edge incidence matrix of a graph). On the other hand the Set Packing
Problem can be viewed as an MWSSP on a special graph derived from the problem
matrix of the SP as we will see below, thus SP and MWSSP are equivalent.

The notion of the intersection graph (or conflict graph) of an SP (SPP or SC)
was first introduced by Edmonds ([Edm62]). The intersection graph corresponding
to an m x n 0-1 matrix A is an undirected graph G4(V, E) where the nodes are
assigned to the columns of A and edges join nodes whose corresponding columns
are nonorthogonal.

It is clear that columns corresponding to variables at level 1 in a feasible solution
to (SP) are pairwise orthogonal, thus the corresponding nodes in the intersection
graph form a stable set. The converse of this statement is true as well, a stable set

in the intersection graph corresponds to a feasible solution to (SP). Thus (SP) is

equivalent to the MWSSP on the intersection graph (Ag, denotes the node-edge

incidence matrix of G4; Ag, has n rows and O(n?) columns):

max clx

T
Ag,r < 1

zr € {0,1}"

Therefore, because of the equivalence of optimal solutions for (SPP) and (SP) and
the way an SPP can be converted into an SP, we could solve an MWSSP instead of
(SPP), only the objective function needs to be modified in the above formulation
to incorporate a penalty for not meeting the inequalities with equality. Note that
even though the coefficient matrix in this equivalent MWSS formulation has a nice
structure, it is much larger than the original matrix A. Also, as Balas and Padberg
point it out ([BP76]), the LP relaxation to the above MWSSP is much weaker than
the one to (SP). Thus solving an MWSSP instead of an SPP is not a realistic
alternative. However, the insight gained from the intersection graphs and graph
theoretical results originally derived for the MWSSP can be utilized when solving

SPPs (see Section 2.3).

1.4 Complexity and approximability

All the problems discussed in the previous sections (SPP, SP, SC and MWSSP) are
NP-complete in general ([LK79], [GJ79]). Some special cases that can be solved in
polynomial time will be mentioned in Section 2.3.

Before comparing the approximability of these problems let us define a special

10

case of set covering, the Minimum Weight Vertex Cover Problem (MWVCP). A
vertex cover in a finite undirected graph is a subset of the nodes so that every edge
is adjacent to at least one of these nodes. A minimum weight vertex cover is a
vertex cover of smallest weight. MWVCP is a special case of SC where the problem
matrix is the node-edge incidence matrix of the graph. Observe that stable sets
and vertex covers are each other’s complements; that is, a subset of the nodes is
independent if and only if the nodes not in the subset form a vertex cover, and vice
versa. From this it trivially follows that the MWVCP is also NP-complete. Note
that while MWSSP on the intersection graph is equivalent to SP, the same is not
true for MWVCP and SC.

While all the above mentioned problems belong to the same complexity class,
they differ greatly in approximability. Because of the equivalence of SP and MWSSP
we will compare here only MWVCP, SC and MWSSP.

An important approximability class is MAX-SNP (introduced in [PY91]; for a
comprehensive survey see [Shm95]; for additional discussion of packing and covering
problems see [Hoc95]). The problems in MAX-SNP turn out to be exactly those
that can be approximated within a constant factor (there is a polynomial time
algorithm that provides a solution with objective value within a constant factor
of the optimum). MAX-SNP-hard problems do not have polynomial approxima-
tion schemes (families of polynomial time algorithms that approximate the optimal
solution arbitrary closely) unless P = NP.

MWVCP is in MAX-SNP since it can be approximated within a factor of 2 (solve

the LP relaxation and round). SC is harder to approximate, a greedy approach

11

yields an O(log, n) approximation and it is proven that we cannot do significantly
better ([Shm95]). The MWSSP cannot even be approximated within a logarithmic

factor; it is shown that no approximation factor of the form ns—e

, € > 0 can be
guaranteed unless P = NP ([Shm95]). While SC and MWSSP are not in MAX-SNP,

they are MAX-SNP-hard.

1.5 Outline of the thesis

This thesis investigates three major steps in the solution process of the Set Par-
titioning Problem: problem size reduction techniques, LP-based feasible solution
heuristics and Branch-and-Cut solution methodology. The Set Partitioning Prob-
lem and its close relatives, the Set Packing and Set Covering Problems arise in
many practical applications. Theoretical aspects of these problems have been stud-
ied for a long time, but only recently have computers become powerful enough to
attack practical instances. However, there are still many advances to be made on
the implementation side.

Chapter 2 reviews some important aspects of polyhedral combinatorial optimiza-
tion. We outline the two classic methods of solving integer programming models:
the Cutting Plane and Branch-and-Bound algorithms; both of which rely on LP
relaxations. The Branch-and-Cut algorithm combines the two into a more powerful
method by incorporating cutting planes into the Branch-and-Bound framework. We
introduce COMPSys, a generic parallel Branch-and-Cut framework that we used for

implementing a Branch-and-Cut algorithm for the Set Partitioning Problem. In the

12

remainder of the chapter we focus on the polyhedra associated with the three prob-
lems. In particular, we summarize what is known about generating facet defining
valid inequalities for these problems (and how to lift them) in theory. Some of these
inequality classes will reappear in Chapter 5 where we discuss our Branch-and-Cut
implementation.

Chapter 3 discusses methods that, given a Set Partitioning Problem, reduce the
set of variables and/or constraints through logical implications without eliminating
optimal solutions to the original problem. Problem size reduction is useful not only
for the original problems (practical problem instances very often contain a large
amount of redundant information due to the way they are generated) but it can
be used to propagate the effects of setting some variables to their lower or upper
bounds (as it does in our Feasible Solution Heuristic and after reduced cost fixing in
Branch-and-Cut). These reduction operations are interesting from the theoretical
point of view as well; we show that the six reduction operations introduced in this
chapter, applied in any order to a Set Partitioning instance until no further reduction
is possible, will always produce the same reduced problem. Our implementation
contains a module for each of the six reduction operations, these modules can be
combined into strategies keeping different goals in mind.

Finding good feasible solutions for Set Partitioning Problems is notoriously dif-
ficult since the problem is usually very tightly constrained. In Chapter 4 we will
discuss LP relaxation based feasible solution heuristics, first in general, then for
our application in detail. Our implementation iterates these heuristics and reduced

cost fixing to improve the quality of the feasible solution, which enables us to prove

13

optimality of the feasible solutions found for many of the problems available in the
literature. LP relaxation based feasible solution heuristics iterate setting variables
to their upper and lower bounds, propagating the effects of these settings and re-
solving the LP relaxations. Traditionally, setting variables to their upper bounds is
favored since this reduces the problem size much faster (but can lead to a quick loss
of feasibility). We take a somewhat more conservative approach and set insignif-
icant variables to their lower bounds instead. In particular, we apply a heuristic
procedure called “follow-on” fixing that is based on an idea originating in airline
crew scheduling applications. The overall efficiency of an implementation like this
depends on that of the problem size reduction and of the LP re-optimization. The
latter is a nontrivial task; we discuss the difficulties encountered.

Chapter 5 describes our parallel Branch-and-Cut implementation in detail. The
COMPSys framework handles all the tasks which are common for parallel Branch-
and-Cut implementations (e.g., search tree and cut pool management, inter-process
communication and LP solving), “all we had to do” was to implement some problem-
specific user functions. We discuss the most interesting parts of this implementation
in detail: preprocessing of the problem, logical fixing, cut generation (both algorith-
mically and manually) and lifting and choosing branching candidates (both variables
and constraints) for strong branching.

Chapter 6 demonstrates a novel feature of the framework: cut generation “by
hand” using a Graphical User Interface. This feature allows us to examine the
current solution (in graphical form) and enter any inequalities through the GUI,;

the inequalities will be incorporated into the formulation if they are violated.

14

Our final computational experiments were carried out on the IBM RS/6000
Scalable POWERparallel System (SP) of the Cornell Theory Center. Appendix A
contains details about the computing environment, as well as the test set. Our
test problems consisted of four distinct sets of SPP models, two from airline crew
scheduling and two sets of vehicle routing models.

In general our computational results demonstrate that Set Partitioning models
of moderately large size can be solved to optimality within reasonable computation
time limits. Our results for all three phases of the solution procedure compare

favorably with other computational results in the literature.

1.6 Definitions and notation

All vectors are assumed to be column vectors. Constant vectors are denoted by
bold letters, with their length in the subscript, e.g., 1,, = (1,...,1). The matrix
A is a 0-1 matrix of size m X n; columns of A are denoted by a;, rows by a’, and
entries by a;;. The index sets of rows and columns are denoted by M = {1,...,m}
and N = {1,...,n}, respectively. The set of columns with a nonzero entry in row
i is called the support of row i and it is denoted by N* = {j € N | a;; = 1}, the
set of rows intersecting column j is M; = {i € M | a;; = 1}. (The index 7 usually
runs through M, j through N.) ¢ is a length n vector of integers unless otherwise

specified. x and y are always vectors of variables. I is the k£ x k identity matrix.

Chapter 2

Background

2.1 Integer Programming and polytopes

Consider the Integer Program

T

min c'zx
(IP) Az R b
zr € {0,1}"

where R is a length m array of relations (<, = or >), A € R™" b e R™ c € R".
Many Combinatorial Optimization problems can be formulated this way, including
all the problems defined in the Introduction. In our examples the problem matrix
A is 0-1 and the right hand side b is a vector of all 1’s. However, the problem
is NP-complete even for these special cases, so no polynomial time (in the size of
the input data) algorithm is expected to be found for solving (IP). Note that here

we are interested in methods for finding an optimal solution, while in applications

15

16

near-optimal solutions obtained by heuristics might be acceptable.

In the rest of the section we review some basic facts about Integer Programming;;
standard references on this topic are [Sch86] and [NW88].

The optimal value of (IP) is denoted by z*, an optimal solution by z*. A binary
vector T is called feasible if it satisfies the constraints Az R b; in this case its
objective value z provides an upper bound on z*. The convex hull of all the feasible

solutions to (IP) is Prp:

Prp = conv{z € {0,1}" | Az R b},

which is a polytope by Weyl’s theorem; that is, P;p is the intersection of finitely
many halfspaces:

Prp={x € R" | Hx < h}.

If A and b are rational (integral) then so are H and h. If the above linear system
were known, optimization over P;p would simply mean solving a Linear Program
(which can be done in polynomial time). Since (IP) is NP-complete in general, the
complete description of P;p with a linear system (H, h) is out of reach. We would be
especially interested in minimal descriptions where no constraint can be expressed
as a nonnegative linear combination of others. If the polytope is full dimensional
the minimal description is essentially unique. However, even a minimal system may
contain exponentially many inequalities.

Given any polytope P, a hyperplane bounding the halfspace defined by a linear
constraint is a supporting hyperplane if the halfspace contains the polytope and has

a nonempty intersection with it. The intersection of a supporting hyperplane and

17

IS
!
R

Figure 2.1: Lower and upper bound and the optimal solution

P is a face of the polytope. The dim(P) — 1 dimensional faces are called facets. If
a supporting hyperplane intersects the polytope in a facet then the corresponding
linear constraint is said to be facet defining. The inequalities in a minimal linear
system (H,h) are facet defining. The search for linear inequalities describing the
IP polytope will be discussed in more detail in Sections 2.1.1 and 2.3.

A relazation of (IP) is a problem whose feasible region contains all feasible
solutions to (IP); that is, it contains Prp. Here we will consider only LP relazations;
that is, problems that are themselves Linear Programs (can be described with linear
constraints and thus their feasible regions are polyhedra P, p). LP relaxations
are useful since efficient algorithms exist to solve them and it is relatively easy to
reoptimize after small changes in the formulation. Optimizing the same objective

T2 over the LP relaxation provides a lower bound z on z*. A trivial LP

function ¢
relaxation to (IP) is to replace z € {0,1}" by 0,, <z < 1,,.

Methods for solving Integer Programs try to “close in” on the optimal solution
from one or both sides by generating better and better feasible solutions that provide
upper bounds or/and stronger and stronger LP relaxations that increase the lower

bound; see Figure 2.1. The integrality gap (Z — z)/z measures how far the two

bounds are from each other. When the optimum is known we can compute the

18

optimality gap between an upper bound and the optimum as (Z — 2*)/z".

Two traditional ways to solve general IPs are Branch-and-Bound (B&B) and
Cutting Plane methods. Both rely on relaxations, but as we will see, they are
fundamentally different. The two are combined into a third, more powerful method

called Branch-and-Cut.

2.1.1 Cutting plane methods

Cutting plane methods try to approximate the IP polytope from outside in a neigh-
borhood of the optimal solution. They start from any LP relaxation of (IP). At
each iteration the current LP relaxation is solved to optimality and then halfspaces
that contain the entire IP polytope P;p but not the optimal extreme point(s) of
PLp are identified and the corresponding linear constraints, or cuts are added to
the LP relaxation. This is repeated until the optimal solution of the LP relaxation
becomes integral (binary).

This procedure can be perceived as cutting off “corners” of the enclosing LP
polytope until an optimal corner of the IP polytope surfaces. The identified linear
constraints are not satisfied by optimal extreme points of P, p, thus they are called
violated cuts or inequalities. From the IP’s point of view these linear constraints
are valid since they do not cut into Prp. The method of finding violated valid
inequalities is called cut generation or separation (since the optimal corner of Py p is
separated from P;p). Generating facet defining inequalities is preferred since these
are part of a minimal description of P;p. Intuitively, cutting off the optimal corner

of the LP polytope with a facet defining inequality ensures that no more cuts will

19

be necessary in the direction of the inequality’s norm.

There are two important questions that must be asked here: (i) can we devise
separation algorithms that are efficient both in theory and practice and (7i) can we
ensure finite convergence of the cutting plane algorithm. In the textbook approach
(due to Gomory) the violated inequalities are derived from certain rows of the
current simplex tableau in polynomial time and the method is proved to converge
in a finite number of iterations. However, it is widely believed that Gomory cuts
are not effective in practice. For IP’s with given structure (like those discussed in
the Introduction) generating problem class specific families of cuts (preferably facet
defining) may be more effective than generating general cuts. The drawbacks of
this approach for specific problems are that not all families of valid (facet defining)
inequalities might be known, and even if a family of cuts is known to be valid, it
might be a hard problem in and of itself to separate for it. We will discuss problem

specific cuts for the Set Packing and Covering polytopes in Section 2.3.

2.1.2 Branch-and-Bound

Branch-and-Bound (B&B) is a divide-and-conquer algorithm that also relies on
relaxations. Note that although we will discuss B&B in terms of LP relaxations,
other relaxations could be used as well. B&B starts out by solving an LP relaxation
and if its solution is not integral then the IP feasible region is subdivided into
subproblems which are optimized recursively. The optimal solution will be the best
of the subproblem solutions.

A search tree keeps track of B&B’s progress; the root of the search tree corre-

20

sponds to the first LP relaxation and further nodes (children of the parent node) are
created by subdividing feasible regions. The subdivision process is called branching;
traditionally two subproblems are created by identifying a variable with a fractional
value in the current LP solution and setting it to 0 in one branch and to 1 in the
other branch (this is called variable branching). Note that we can create more than
two subproblems (although not in case of branching on binary variables); or sub-
divide the feasible region along a hyperplane that is not necessarily perpendicular
to any of the axes; that is, branch on a constraint. For instance, if the sum of
some binary variables must not exceed 1 then we can create two subproblems by
assuming that the sum is 0 in one branch and 1 in the other. We will see examples
of both variable and constraint branching in Section 5.3. Note that no branching
is necessary at a search tree node if the subproblem is infeasible or its solution is
integral (that is, a feasible solution to (IP) is found); in this case the search tree
node can be fathomed.

B&B would be a simple enumeration algorithm without bounding. Note that the
solution to the LP relaxation at the children of a search tree node will never be lower
than that at the parent (the LP relaxations at the children are more restrictive).
Therefore no integral solution with objective value lower than the LP optimal value
can be found in the subtree rooted in any search tree node. Thus, as soon as an
upper bound is known, nodes with LP optimal value exceeding the upper bound can
be fathomed.

B&B is usually implemented by keeping a list of candidate nodes that initially

contains the root only. Then, in a general step of the algorithm, a node is chosen

21

(and removed) from the candidate list of unfathomed nodes and the corresponding
LP relaxation is solved. If the LP relaxation is infeasible or its value reaches the
upper bound then the node is fathomed. If the solution is integral feasible the
node is fathomed again; the upper bound is updated in case the solution value is
lower. Otherwise a branching variable or constraint is chosen, the feasible region
at the node is subdivided and a child node is created for each new subproblem and
placed on the list of candidate nodes. The algorithm stops when the candidate list
is exhausted.

Important issues that influence the behavior of the algorithm include the choice
of the next node from the candidate list and the choice of the branching object (vari-
able or constraint). In what follows we briefly outline the most popular approaches
for general IPs. If the IP possesses a special structure other methods might be more
effective.

A very popular rule for choosing the next node from the candidate list is to
choose one with the lowest LP objective value. This rule leads to a small search
tree since the node with the lowest LP objective value must be considered no matter
how the nodes are enumerated. Another widely used rule is last in first out (LIFO)
that leads to a depth-first enumeration of the search tree. This means that if a node
is not fathomed and removed, one of its children is processed next. The advantage
of this approach is fast and easy LP reoptimization at the child node since the
formulation at the parent is already solved and going to the child node means only
a bound change or an additional constraint.

The choice of the branching object is an equally complex issue. For example,

22

choosing a variable whose value is near .5 in the LP optimal solution and has a
large objective function coefficient is a good idea since the children are expected to
have very different LP solutions and the LP optimal value in the branch where the
variable is given the value 1 will be high (and the node is hopefully fathomable).
Strong branching is a staple for any efficient B&B implementation. Here, instead
of choosing just one branching object, a set of branching candidates is selected and
the LP relaxations at the would-be children are presolved for a few iterations (this
gives some insight as what would happen if the algorithm branched on each of the
candidates). The “most promising” candidate is then chosen for branching (see

Section 5.3.6 for further details in the context of our implementation).

2.1.3 Branch-and-Cut

Branch-and-Cut (B&C) incorporates cutting planes into the B&B framework. It
generates valid inequalities at each search tree node to strengthen the LP relax-
ations and hence obtain better lower bounds. This can be viewed as implicitly
using stronger LP relaxations at the search tree nodes by generating parts of the
relaxations on the fly. This combined approach leads to faster fathoming of the
nodes and usually to a far smaller search tree than pure B&B. Branch-and-Cut is
particularly effective for those classes of problems for which problem specific cuts
can be efficiently generated.

All the terminology introduced for B&B carries over to B&C. When processing
a subproblem at a node, the operations of solving LP relaxations and adding valid

inequalities (violated by the current LP optimal solution) are iterated first. When

P
Find 7,z (UB)

'

CAND := {LP"}

)Z -

*
N

Choose LP! from CAND

'

Solve LP': z', %t

yes

no
2’ integral ">
no

Cut Generation

cuts added
to LP'

Branch, add
children to CAND

Figure 2.2: The flow of the Branch-and-Cut Algorithm

23

24

we are not able to generate more cuts or the LP objective value does not improve
sufficiently (tailing off, see Section 5.3.5) then the algorithm resorts to branching.
Note that valid inequalities might be locally valid only (valid for the search tree node
and thus for the subtree rooted at that node) and not valid globally (throughout
the search tree). Figure 2.2 gives an outline of a general B&C algorithm.

B&C implementations usually contain a cut pool, a repository of inequalities
that were found violated for some subproblem. Since it is not unlikely that a cut
generated for a particular subproblem might be both valid and violated for another
subproblem, checking the cut pool before generating cuts might save a considerable
amount of time. Of course, care has to be taken with cuts that are locally valid

only.

2.2 The COMPSys framework

We used the COMPSys framework ([ELRT97]) to implement a Branch-and-Cut
(B&C) procedure for the Set Partitioning Problem. COMPSys is a generic parallel
B&C framework that was designed to aid the development of problem class specific
B&C implementations. The user of this framework provides the problem specific
information through user-written functions, while procedures which are common for
parallel B&C implementations (like search tree and cut pool management, inter-
process communication and LP solving) are handled by the framework and are
completely transparent to the user. The user-written functions are well defined (the

user needs only a minimal knowledge of the internal workings of the framework) and

25

defaults are provided wherever possible, making adaptation to a specific problem
easier.

COMPSys works in a distributed environment employing a master-slaves model.
The search tree is managed by the master process while the slaves undertake all
the other tasks of B&C. The parallelism in the framework is realized on a high
level. The main source of parallelism is the observation that the nodes of the
search tree can be processed simultaneously. In addition to this, LP solving and
separation for a particular search tree node are also carried out in parallel, and
separate processes maintain cut pools (collections of valid inequalities). We will give
a detailed description of all the processes in Chapter 5.

COMPSys also includes such features as strong branching, reduced cost fixing
(these two are usually implemented in IP solvers); as well as the possibility of using
decomposition for separation, branching on constraints (not only variables), multi-
way branching (more than two branches at a search tree node), column generation
and a graphical user interface to aid debugging and separation (Chapter 6 provides
details of this feature).

A preliminary version of the framework was originally implemented by T.K.
Ralphs ([Ral95]) and L. Ladanyi ([Lad96]) during their thesis research. This code
has evolved into the current COMPSys framework with additional ideas and con-
tributions by the above authors and the present author in addition to L. Kopman
([Kop99]) and G. Pangborn ([Pan]).

As different applications were implemented using the framework, ideas that could

be used in a general setting were identified and “lifted” into the framework. Branch-

26

ing on cuts was first developed for the TSP ([Lad96]). A decomposition method
for separation was conceived in the context of the VRP ([Ral95]); this result was
further extended with the addition of Farkas cuts ([Kop99]). A Graphical User
Interface (GUI) was added to ease debugging and help with identifying violated
inequalities when testing was begun on SPP models (Chapter 6). The effective-
ness of column generation in an SPP setting is currently being investigated ([Pan]).
Through these research projects COMPSys has matured into a robust, efficient,

easy-to-use platform for problem class specific Branch-and-Cut implementations.

2.3 The Set Packing and Covering polytopes

Let us denote the Set Partitioning, Packing and Covering Polytopes by Pspp, Psp

and Pgc. It is easy to show that
Pspp ="Psp N Psc.

Thus inequalities that are valid for Pgp or Pgc are also valid for Pgpp. While
there is very little known about the SPP polytope, the other two polytopes are
well studied. Below we summarize some important facts about these polytopes, in
particular, the characterizations of certain facet defining inequality classes. [BP76]
and [Bor97] provide comprehensive surveys about these polytopes, including aspects

that we will not discuss here.

27

2.3.1 Psp

Recall (Section 1.3) that SP is equivalent to MWSSP on the intersection graph
G4 = (V, E) corresponding to the problem matrix A. The argument there showed
that the two problems have exactly the same feasible solutions; thus Psp and the
Stable Set polytope Pgg = conv{z € {0,1}" | AL & < 1|} are the same; we will
simply denote this polytope by P in the remainder of this section. Also, we will use
the words variable, column (of the problem matrix) and node (of the intersection
graph) interchangeably.

Subproblems of the original problem play a very important role as we will see
below. A subproblem arises from a submatriz Ary of A (where I is a subset of
the rows and J is a subset of the columns). Then Gj,,,, the intersection graph
corresponding to A;y, is a subgraph of G 4. If I is the entire set of rows then G4,
is a node induced subgraph of G 4; we will deal only with this kind of subproblem in
this section and we use the usual notation G[.J] for node induced subgraphs instead
of G4,,. The SP (SS) polytope of the subproblem is denoted by P(G[J]).

P is full dimensional, dim(P) = n, since the null vector and the n unit vectors
are affinely independent and are all in P. Thus P has a unique (up to positive
scalar multiplication) minimal description with facet-defining linear inequalities.

P is lower comprehensive; that is, all nonnegative vectors not larger than a vector
in the polytope are also in the polytope (z € P and 0 < y < x implies y € P).
Therefore, P(G[J]) is the same as the projection of P onto the subspace defined by
the variables in J. From this it follows that inequalities valid for P(G[J]) can be

“extended” with zero coefficients for the nodes in V'\ J to obtain valid inequalities

28

for P. Note that this is a trivial extension; these valid inequalities for P could most
likely be made stronger by assigning nonzero coefficients to some of the variables in
VA J.

The process of computing coefficients for nodes in V' \ J to obtain a valid in-
equality for P from a valid inequality of P(G]J]) is called lifting and the coefficients
are called [lifting coefficients. Note that the right hand side of the valid inequality
will not change and the lifting coefficients cannot exceed this value. The lifting
coefficients for nodes in V'\ J could be computed one by one (take a node not in .J,
compute its coefficient, add the node to J and continue), this is sequential lifting,
or all at once (simultaneous lifting). Note that the valid inequality obtained at the
end of sequential lifting depends on the order in which the nodes were considered
(lifting order). Whether sequential or simultaneous lifting is used, the goal is to
determine the largest possible lifting coefficients so that the lifted valid inequality
is as strong as possible.

First consider sequential lifting. Given the valid inequality ZjeJ ajz; < o for
P(G[J]), the largest possible lifting coefficient of a v € V'\ J is a,, = max{0, a® —z*}

where 2* is the optimal solution value of the following SP:

Y =max) o, 04
(LIFT) Zjej Ajz; < 1, —A,
z € {01}
Or equivalently, assume the node is chosen into a stable set, compute the value of
a MWSS on its non-neighbors and subtract it from the right hand side to obtain

the node’s lifting coefficient. Note that a, will be an integer. Also, the lifting

29

coefficients of the variables not yet included into the inequality cannot increase as
a result of lifting other variables first.
Solving (LIFT) is itself a difficult problem. In certain cases when G[.J] admits a

0 is small, efficient algorithms can be devised for (LIFT), see

special structure or «
Section 5.4 for some examples. Also, a weaker lifting coefficient can be obtained by
using an upper bound on z* instead of z* (for instance, by optimizing the dual of
its LP relaxation, [HP93]).

Sequential lifting with (LIFT) as a subroutine not only lifts a valid inequality
of P(G[J]) into a valid inequality of P, but lifting facet defining inequalities results
in facet defining inequalities as well (see [Pad73] and [NT74]). Thus each facet
defining inequality of P is either (sequentially) lifted from a facet defining inequality
of P(G]J]) for some node induced subgraph G[J], or it is facet defining only for P
(i.e, its projection is not facet defining for any P(G[J])). Therefore our goal is
to characterize graph classes for which the corresponding polytopes have easily
identifiable facets and then to look for such graphs as node induced subgraphs in
the intersection graph G 4.

Now we outline some well-known graph classes and corresponding valid inequal-
ities that are facet defining for the graph’s Stable Set polytope. For each graph
class we also indicate the complexity of the corresponding separation problem (that
is, given a fractional solution vector x for a relaxation of the stable set problem
of a graph, decide whether or not any inequality in the given class is violated

by the solution). Figure 2.3 illustrates each graph class. For references to addi-

tional graph/inequality classes see [Bor97]. Note that the nonnegativity constraints

30

a. The clique Kjg b. Wheel with 5 spoke-ends
£ =1{3,4}, 0O ={1,2,5}

c. The odd hole H(7)

Y

Poicid
ikimi

e. The web W (8, 3) f. The antiweb W (8, 3)

Figure 2.3: Graphs with facet defining valid inequalities

31

(xz; > 0) are trivially facet defining for any Stable Set polytope.

Cliques

Graph:

Inequality:

Separation:

A clique K, is a complete graph on n nodes.

ZjeK x; <1 where K is the node set of a clique.

Facet defining for P(G[K]); also facet defining for P if the clique is
maximal ([Pad73]).

NP-complete (equivalent to maximum weight clique). Clique in-
equalities are in the class of orthonormal representation constraints

which are polynomial time separable [GLSS88].

Odd Holes and Antiholes

Graph:

Inequality:

Separation:

Note that the inequality

An odd hole H(2k + 1) is a cycle on an odd number of nodes and no
chord (edge between two non-consecutive nodes on the cycle).

An odd antihole H(2k + 1) is the (edge) complement of an odd hole.
> jen @i < (|H[—1)/2, (odd hole inequality)

> jen @i <2 (odd antihole inequality), where H is the node set of
an odd hole. Facet defining for P(G[H]) / P(G[H]) ([Pad73]).
Polynomial time for odd holes ([GLS88], also in Section 5.4.2).
Complexity is not known for odd antiholes, but odd antihole inequal-

ities are in the class of matriz inequalities which are polynomial time

separable [LS90].

jen T < ([H| —1)/2 is still valid if H is only an odd

32

cycle (not chordless), but the inequality is facet defining for P(G[H]) only if the

cycle is chordless.

Webs and Antiwebs

Graph: A web W(n,k) (n> 2,1 <k <n/2integers) has n nodes and edges
(t,i +k),...,(i,i +n — k) (sums taken mod n) for all nodes i. An
antiweb (or circulant) W (n, k) is the (edge) complement of the web
W (n, k). Note: cliques, odd holes and antiholes are special cases.

Inequality: >y v; < k, (web inequality)
> jew i < [n/k| (antiweb inequality), where W is the node set of
a web. Facet defining for P(G[W]) / P(G[W]) if n and k are relative
prime [Tro75].

Separation: Complexity not known.
Wheels

Graph: A wheelis an odd cycle (spoke-ends) with an additional node adjacent
to all nodes on the cycle (hub), each edge possibly replaced by a
sequence of edges so that all the face cycles (cycles through the hub
and two neighboring spoke-ends) are odd.

Inequality: > ey vj+ D 5cevj+ (b — Dao < (W[+1€])/2—1 (L) and
diew Ti T X jeo i+ kg < ((W]+|0[+1)/2 -1 (lo)
where W is the node set of the wheel, z; is the hub and £ and O are

spoke-ends of even/odd distance from the hub (|€]| + |O| = 2k + 1).

33

Both facet defining for P(G[W]) if the distance between any two &
(for (Ig)) or O (for (Ip)) nodes is at least 2 ([CCIT]).
Separation: Polynomial time ([CC97], see [BM94b] for special case of wheel with

3 spoke-ends — subdivision of Kj).

Note that wheels with no nodes on the spokes (that is, the spoke ends are of distance
one from the hub) can be obtained by lifting the hub into the odd hole inequality

of the rim cycle.

There are well-known classes of graphs whose stable set polytopes can be char-
acterized by a well determined set of inequality classes. If these inequalities can be
separated in polynomial time then the corresponding MWSSP (and thus SP) can
also be solved in polynomial time for these problems ([GLS88], the polynomial time
equivalence of separation and optimization). Graphs for which the MWSSP can
be solved in polynomial time using the above listed inequalities include (with the
characterizing inequalities in parentheses): bipartite graphs with no isolated nodes
(nonnegativity and edge (z; + x; < 1)); perfect graphs (nonnegativity and clique);
t-perfect graphs, e.g., series-parallel graphs (nonnegativity, edge and odd hole). In
genaral we say that a graph is perfect for a set of inequality classes if all the facet
defining inequalities of the corresponding stable set polytope belong to one of the
given inequality classes.

An interesting question is how to verify that the inequalities listed above are
valid and facet defining. The clique, odd hole, odd antihole, web and antiweb

inequalities are so called rank inequalities; the coefficients on the left hand sides

34

are all ones and the right hand side is exactly the size of the maximum cardinality
stable set in the corresponding graph:

Z r; < o(G).

jev
Note that wheel inequalities are not rank inequalities in general. Rank inequalities
are obviously valid for P(G) and for the stable set polytope of any graph that
contains G' as a node induced subgraph. Rank inequalities are also facet defining
if the following condition due to Chvétal ([Chv75]) is met. An edge of G is called
a-critical if the size of the maximum stable set increases when the edge is removed.
Then if the a-critical edges on the original set of nodes form a connected graph,
the rank inequality is facet defining for P(G). It is easy to check that the Chvétal-
condition holds if G is a clique, odd hole, odd antihole, web or antiweb. Note that
the Chvétal-condition is only sufficient; necessary conditions can be given in terms
of critical cutsets ([BP76]).

Another very useful tool to derive valid inequalities is the Chvatal-Gomory pro-
cedure ([Chv73]). Intuitively, applying this method means taking nonnegative linear
combinations of known valid inequalities for node induced subgraphs of G, rounding
down to the nearest integer first each coefficient on the left hand side and then the
right hand side value. As an illustration of this method, consider the odd cycle
(with or without chords) C'(2k 4+ 1). Adding up the edge inequalities z; + z;4; <1

for all 2k + 1 edges (sums taken mod 2k + 1) we obtain
2(:12‘1 +...+ ZL‘Qk_H) S 2k + 1.

Dividing the sum by 2 and rounding down the right hand side to the nearest integer

35

yields the odd cycle inequality

$1+...+3§'2k+1§k.

See Section 6.3 for a nontrivial application of this procedure.

The Chvéatal-Gomory procedure can be used to generate packing odd hole in-
equalities. After an odd hole is located in the intersection graph, a row whose
support contains the endpoints of the edge is chosen for each edge of the odd hole.
Note that the nodes of the odd hole have coefficients two in the sum of these in-
equalities. Dividing the sum by two and rounding down both the coefficients and
the value on the right hand side yields a valid inequality for the SP polytope. In
fact, this inequality is a lifted odd hole inequality since variables in the odd hole
have coefficients one and the right hand side is that of the odd hole inequality. This
method is documented in [Bor97]; we have also used it in our implementation (see
Section 5.4.2).

The wheel inequalities described above have been derived using the same method
(the odd cycle inequalities for the face cycles and edge inequalities for some appro-
priately chosen edges on the rim were added up); this proves the validity of these
inequalities. Proving that the wheel inequalities are facet defining for P(G[W]) is
based on subdividing edges (replacing an edge with a path), see [CC97] for details.
Using graph operations (like extending graphs with nodes or cliques, substituting
nodes and edges with paths, (de)composition of graphs ([BM94al), clique identifica-
tion ([Chv75]) are other standard ways of deriving valid (facet defining) inequalities,

see [Bor97] for a comprehensive survey.

36

2.3.2 Psc

Unlike the Set Packing Problem, the Set Covering Problem does not have an equiv-
alent graph theoretic formulation (it can be modeled with hypergraphs only). The
SC polytope will be denoted by Q in this section. Q is full dimensional if each row
of A contains at least two entries (the vector of all ones and vectors with one zero
and n — 1 ones are affinely independent and are in Q).

Subproblems of the original problem are defined here again by submatrices; Ay
is a submatrix of A with row set I and column set J. Q(A;,) denotes the SC
polytope of the subproblem.

Q is upper comprehensive; that is, all vectors not smaller than a vector (but not
larger than 1) in the polytope are also in the polytope (z € Q and < y < 1 implies
y € Q). This property implies that the polytope QN {z € R" | z; =1Vj ¢ J} is
the same as the polytope resulting from projecting @ “upwards” onto the subspace
defined by setting all variables not in .J to one. Therefore valid inequalities for this
polytope can be naturally extended to a valid inequalities for Q with zero coefficients
for the variables not in J. Unfortunately, the parallel with set packing stops here;
the polytope just defined is not the same as the SC polytope of the subproblem
(whichis QN {z e R | z; =0Vj & J}).

Therefore, valid inequalities for a subproblem’s SC polytope do not simply carry
over to Q; they have to be lifted. Lifting for SC is somewhat more complicated
than for SP because the not yet lifted variables cannot simply be ignored (for
more details see [NT74], [Sas89] and [NS89]). Thus valid inequalities for Q may

be obtained by identifying classes of submatrices for which the corresponding SC

37

polytopes have easily identifiable facets and then trying to lift these inequalities.
However, lifting may result in an inequality which is not restrictive enough (or at
all). A comprehensive list of references to such submatrix classes can be found
in [Bor97]. Rank inequalities can be defined analogously (with the right hand side
being the size of a minimum cover in the subproblem), along with sufficient or
necessary conditions for the facet defining property.

The Chvétal-Gomory procedure can be readily adapted (rounding up instead
of down). Indeed, similarly to the packing odd holes we can derive cover odd hole
inequalities which are generated exactly the same way as the packing version (except

for the direction of the rounding); see Section 5.4.2.

Chapter 3

Problem size reduction

Problem size reduction is the collective name for methods that, given a Set Par-
titioning Problem, reduce the set of variables and/or constraints through logical
implications without eliminating optimal solutions to the original problem (but
probably reducing the feasible region). Problem size reduction is an essential part
of our feasible solution heuristic (Chapter 4) and is also invoked from the Branch-
and-Cut framework to propagate the effects of variable fixing based on reduced costs
and branching decisions (Section 5.3.2).

In the following sections first we define the reduction operations known in the
literature, then we show that applying these reduction methods to a problem in-
stance in any order until no more reductions are possible will always produce the
same result. Then we discuss our implementation of these methods and conclude

with computational results.

38

39
3.1 Description of reduction methods

First we give a few technical definitions that are used in the description of the
reduction operations. Consider the Integer Programming formulation of the SPP
introduced in Section 1.2. Fizing a variable to zero means that the variable, its ob-
jective function coefficient and the corresponding column are permanently removed
from the problem formulation. Removing a row means removing that row from the
problem matrix along with the corresponding right-hand side entry, and fixing any
variable to zero whose resulting column has only zero entries. Variables can also be
fized to one during reduction. In this case all rows in this column’s support can be
removed since they will be satisfied by the variable fixed to one. Moreover, all other
columns that belong to the support of any of these rows can be fixed to zero. Indices
of variables fixed to one are recorded in a list we call ONES. Sometimes columns
are merged during reduction which means that the (orthogonal) columns of two
variables are combined into one column and the original columns are deleted from
the formulation. The objective function coefficient of the merged variable will be
the sum of the two objective function coefficients. Index pairs of merged variables
are recorded in a list we call MERGES.

Variable fixing and merging can be interpreted in terms of the intersection graph
(see Section 1.3). Fixing a variable to zero corresponds to removing a node with its
adjacent edges from the graph. Fixing a variable to one corresponds to removing a
node (and recording its index in ONES) and then removing all the nodes that are

adjacent to it. Merging two columns corresponds to contracting two nonadjacent

40

nodes of the graph into one node (and listing their indices in MERGES).
In the following we describe the reduction methods that are known in the liter-
ature ([BP76], [HP93]). For each method we justify that no optimal solution is lost

by applying it. Figure 3.1 illustrates each case.

1. Duplicate Columns (DUPC)
If two columns are identical then the one with the larger objective function

coefficient can be removed from the problem.
a; = ay, for some j,k € N =

if ¢; > ¢, then x; is fixed to 0, else zy, is fixed to 0.

Justification: A solution is not optimal if the more expensive of the identical

columns is in the solution since it could be replaced by the cheaper one.

2. Column is a sum of other columns (SUMC)
If a column can be expressed as a sum of other columns and the total cost of
the columns in the sum is smaller than the cost of the single column then the
column can be removed from the problem.

aj:ZakandchchforsomejENanngN\{j} —

keK keK

x; is fixed to 0.

Justification: A solution is not optimal if the expensive single column is in
the solution since it could be replaced by the columns in the sum without

increasing the cost of the solution.

41

Note: Although SUMC contains DUPC as a special case, it is reasonable to

consider them separately since detecting duplicate columns is very fast.

. Row clique can be extended (CLEXT)

If a column is nonorthogonal to all columns in the support of a row, but is
not in the support itself, then the variable corresponding to this column can
be fixed to zero. In terms of the intersection graph, a node that extends a row

clique can be removed.
ajar > 1Vk € N* for some i € M and j € N\ N' =

x; is fixed to 0.

Justification: One of the columns from the support of the row must be chosen
in every feasible solution. Since the column is nonorthogonal to every column
in the support, it cannot be chosen if any of the columns in the support is

chosen.

. Dominated rows (DOMR)

If the support of a row contains the support of another row then the row with
the smaller support (the “shorter row”) dominates the row with the larger
support (the “longer row”). In this case the longer row can be removed along
with the variables that are in the longer row’s but not in the shorter row’s
support.

N* C N' for some i £ =

x; is fixed to 0 Vj € N'\ N’, row [is removed.

42

Justification: One of the columns from the shorter row’s support has to be
chosen in any feasible solution. This column will make the longer row’s equal-
ity satisfied as well, so variables corresponding to columns that are in the
longer but not in the shorter row can be fixed to zero. After fixing these vari-
ables to zero the two rows become identical, so one of them (not necessarily

the one which was originally the longer) can be removed.

Note that columns deleted with this method could be deleted by CLEXT, but
DOMR is more efficient since it discovers many deletable columns at once,

rather than one by one as CLEXT would do.

. Singleton row (SINGL)

If a row has only one nonzero entry in it (that is, only one column intersects

the row) then the variable corresponding to this column can be fixed to 1.
aij =1for j €N, but ajyp =0Vk € N\ {j} for somei e M =

x; is fixed to 1.

Justification: The equality in the row that has only one column intersecting
can be met only if the variable corresponding to this column is set to 1. (Note
that according to the definition of fixing a variable to 1 variables with columns

nonorthogonal to column j are fixed to zero.)

. Two rows differ by two entries (DTWO)

If the supports of two rows are identical except for two entries, one of which

is in one of the rows and the other is in the other row, then, depending on

43

whether the two columns are nonorthogonal or orthogonal, the two columns
can either be removed or merged into one column (also one of the rows can

be removed).
IN*| = |N'| and N* @ N' = {j, k} for some i,l € M =

if aJTak > 1 then z;, z;, are both fixed to 0, else z; and x;, are merged;
one of the rows is removed in both cases.

Justification: Observe that the two variables will take identical values in any
feasible solution. If they are nonorthogonal then they cannot both be one,
thus they have to be fixed to zero. If they are orthogonal then they can be
merged into a new column (with their costs added). In either case, there will

be two identical rows, one of which can be deleted.

In the following sections the abbreviations introduced above will be used for

both the occurrences of the above conditions and for the operations described.

3.2 Theorem of exhaustive reduction

Our main goal in this section is to prove that the above-described reduction opera-
tions, applied in any order to an SPP instance until no more reductions are possible,
will always produce the same reduced problem.

We say that two reduction sequences (sequences of reduction operations) are

equivalent if, when applied to the same SPP instance, the resulting reduced matrices

44

DUPC SUMC
J J k, 2
9 2 9| = |2 T |3
1 1 1 1 0
0 0 1 _ o |1
0 0 0 0 0
1 1 1 1 0
0 0 0 0 0
CLEXT . DOMR
J
1/]0 1
0|0 0 1 .. 1/1111]l0 0
ilol1]]1 0|0
01 0 i|1 .. 1/0000]| 00
0|1 1
ol|o 1
SINGL DTWO c
J
1
0 i1 111//0/0..0
i |0 1/0..0
1 g 1]10/l1]l0.0
0
0

Figure 3.1: The six reduction methods

45

are identical up to a permutation of the rows and columns of one of the matrices.

A reduction sequence is erhaustive if no reductions are possible after applying it.

Theorem 3.1 Given an SPP instance, any two exhaustive sequences of DUPC,

SUMC, CLEXT, DOMR, SINGL and DTWO are equivalent.

First we show that any sequence of the above six reduction operations can be re-
placed by an equivalent sequence using only three types of these operations: SUMC,
CLEXT and MERGE (which is a simplified version of DTWO defined below) fol-
lowed by the possible deletion of duplicate rows and possible fixing of variables to
one.

Observe that a SINGL operation can be thought of as a sequence of DOMR
operations since the row with the singleton in it dominates all the other rows that
the corresponding column intersects. After the DOMR, operations the singleton row
along with its column are still in the problem, but the column will intersect only
this row (that is, we have an isolated node in the intersection graph). Fixing this
column to one now means only recording its index in ONES and deleting its column
and row from the matrix.

Also, DOMR can be replaced by a sequence of CLEXT operations since columns
in the longer but not in the shorter row are all nonorthogonal to all columns in the
shorter row. Then we are left with two identical rows and we delete the one that
was deleted with DOMR.

Note that if the two columns are nonorthogonal in a DTWO instance (that is

they can be deleted) then each extends the other row’s clique, so these two columns

46

could be deleted with two CLEXT operations. If the two columns are orthogonal,
we replace DTWO with MERGE which simply merges the two columns but does
not delete either row. In both cases we are left with two identical rows and we
delete the one that was deleted with the original DTWO operation.

As we have seen earlier, DUPC is a special case of SUMC, so every DUPC
operation can be replaced by a SUMC with only one summand.

It is obvious that the reduction sequence obtained by the above substitutions
is equivalent to the original sequence. Also, since deletion of duplicate rows will
not destroy old instances of reduction, will not create new instances and the other
operations can only create but not destroy duplicate rows, these operations can
be shuffled to the end of the reduction sequence while equivalence is preserved.
Similarly, the fixing of isolated variables to one can be postponed until the very end
of the reduction.

Now consider the original two exhaustive reduction sequences and apply the
described substitutions (with removal of duplicate rows and fixing of isolated vari-
ables postponed to the end). In the rest of the proof we will show that the
two sequences are equivalent up to the point where duplicate rows are
removed and isolated variables are fixed. From this statement the theorem
follows easily. Note that since SUMC, CLEXT and MERGE do not remove any of
the rows, the two resulting matrices before the deletion of duplicate rows and fix-
ing of isolated variables will be identical up to a permutation on the columns only.
After this point the two sequences can differ only in which row of each duplicate

pair to remove, and this difference can be accommodated by a permutation on the

47

rows. Obviously the same isolated variables will be fixed to one. Thus the theorem

is proved.

Consider the two exhaustive reduction sequences of the three operations SUMC,
CLEXT and MERGE. Note that SUMC and CLEXT delete one column, and
MERGE merges two columns; that is, the total number of columns in the cur-
rent problem matrix is reduced by exactly one each time a reduction operation is
applied, thus the reduction sequences are finite. For ease of explanation we asso-
ciate time with the sequences and say that the reductions start at time 0 with each
reduction step taking one unit of time.

We will prove the equivalence of the two sequences by induction on the number
of columns in the matrix. If the number of columns is 1 then the statement is
trivially true (the reduction sequences are empty). So we assume the statement is
true for matrices with n — 1 columns, and we prove the statement for matrices with
n columns.

Consider the first operation in one of the exhaustive sequences. We will show
that we can find an equivalent sequence to the other exhaustive sequence which
starts with the same reduction. By applying the first operation to the original
problem instance we are left with n — 1 columns in the matrix; then the inductive
statement shows that the two sequences are equivalent.

The whole proof is based on exchanging operations until the desired one is at
the beginning of the other sequence. The first two lemmas show that an operation

which is done at some time in a sequence can be swapped with operations preceding

48

it one by one, back down to the time when the operation could have been first done.
Then the last two lemmas show how to find the first operation of one sequence in
the other (and what operations to look for if the first operation does not explicitly

appear in the other sequence).

First we will see that that deletable/mergable columns do not become non-

deletable/non-mergable as a result of other operations.

Lemma 3.2 If a column s deletable at some time in a reduction sequence then it
will remain deletable after any reduction operation that does not involve (does not
delete or merge) this column. Similarly, if two columns are mergable then they will
remain mergable after any reduction operation that does not involve either of the

two columns.

The following is a trivial corollary of Lemma 3.2 if the reduction sequence is

exhaustive.

Corollary 3.3 In an ezhaustive reduction sequence, if a column could be deleted at
some point then it is either deleted or merged with another column at some later
time. If two columns could be merged at some point then they will either be merged

or one of the columns is deleted or merged with another column at some later time.

proof of Lemma 3.2 First assume that column v is deletable with SUMC at
some time; that is, v = Y o' and ¢(v) > Y ¢(v!) for some columns v', ..., v*. This
instance could disappear if one of the summands is deleted or merged with another

column. We will show that v remains deletable after such an operation.

49

1. If a summand v' is deleted with SUMC; that is, ! = >~ w’ and ¢(v') > Y c(w?)
then the w”’s can be used for v' in the sum for v since c¢(v) > 3., ¢(v) +

c(v) > 30 c(v') + 37 c(w?). Thus v is still deletable with SUMC.

2. If a summand v' is deleted with CLEXT; that is, there exists a row i so
that v' is nonorthogonal to all columns in the support of row 7. Then v is
nonorthogonal to all columns in row 7’s support since v intersects all rows that
v' does. Also, v does not intersect row i itself, since otherwise a summand
would need to cover row ¢ and thus be in row ¢’s support and orthogonal to

v!, which contradicts our assumption. Therefore v can be still deleted, now

with CLEXT instead of SUMC.

3. If a summand v is merged with a column then v must be among the common
columns of the two rows that differ by two, thus the other column that v’ is
merged with must be also a summand (since this is the only column that can
cover the other differ-by-two row that v’ does not intersect). Therefore the

merged column could be used instead of v’ and the other summand, thus v is

still deletable using SUMC.

Second, assume that column v is deletable with CLEXT at some time; that is,
there is a row ¢ so that v is nonorthogonal to all columns in ¢’s support. Then,
since column deletion does not change the orthogonality relationship of remaining
columns, v remains deletable with the same CLEXT operation after columns other
than v are deleted from the problem. Also, when two columns are merged, all

columns that were nonorthogonal to either of them will be nonorthogonal to the

50

merged column. Therefore v remains deletable with the same CLEXT operation if
a column in row ¢’s support is merged.

Finally, assume that MERGE could be applied to two columns, v and w at some
time; that is, there exist rows ¢ and j such that their supports differ by two columns
only: row ’s support contains v but not w and row j’s support contains w but
not v. Since the two rows ¢ and j are the same except for columns v and w, a
column deletion or merge that does not involve v or w will not remove the MERGE

opportunity for v and w. [|

As the previous lemma stipulates, we do not need to distinguish between deleting
a column by SUMC or CLEXT. Thus, as shorthand we will write del(v) for the

deletion of column v, and merge(v, w) for the merging of columns v and w.

Given two consecutive operations in a reduction sequence we say that the second
operation is independent of the first if the column(s) deleted or merged in the second
operation is (are) already deletable/mergable before the first operation. Now we
show that two such operations can be interchanged. This will make sure that a
reduction instance present at time 7y but not done until time 7" can be “bubbled

back” to time Tj.

Lemma 3.4 Given a sequence of reductions containing two consecutive operations
with the second independent of the first, there is an equivalent sequence with the two

operations interchanged.

proof Let us denote the two operations by O; and O, and assume their or-

der is 0,0, originally. Since the second operation is independent of the first, it

ol

could be done at the time when O; occurs in the original sequence. Moreover,
columns involved in Oy are not involved in O; thus, by Lemma 3.2, the column(s)
deleted/merged by O; can be deleted/merged by an operation O (perhaps not the
same as 01, see the proof of Lemma 3.2 for details) after Oy. So 010, can be re-
placed by 0,0/ resulting in an equivalent reduction sequence (the resulting problem
matrices will be identical if merged columns are inserted into the same positions in

the new sequence as in the old sequence). [|

The following claims summarize small but important observations needed later

in the proof.

Claim 3.5 If a deletable column v is merged with another column w then the merged

column vw 1s also deletable.

proof Suppose the two differ-by-two rows are ¢ and j, row ¢’s support contains
v but not w and row j’s support contains w but not v. At the time when v and
w are merged, v can be deleted only with CLEXT (based on some row k # j) and
not with SUMC since a summand would need to cover row i, but all the columns
in row ¢’s support are in row j’s support as well and v does not intersect row j.
After merging v and w, the merged column vw is nonorthogonal to every column
in row k’s support and it does not intersect row k itself (otherwise w would need to
intersect row k but w is orthogonal to v while columuns in row £’s support are not);

thus it can be deleted with CLEXT based on the same row k. [|

Claim 3.6 If v and w are mergable columns and v is deleted then w becomes

deletable as well.

52

proof Let i and j be the two differ-by-two rows as in the proof of Claim 3.5. After
v is deleted w becomes nonorthogonal to all columns in ¢’s support but it is not in

the support itself, so it can be deleted with a CLEXT. [|

Claim 3.7 Assume v and w are mergable but v is merged with a third column z
instead. If z and w are orthogonal then vz and w are mergable, otherwise both vz

and w are deletable.

proof Let i and j be the two differ-by-two rows which show that v and w can be
merged. Since v and z are orthogonal, the two rows ¢ and j will differ by the two
columns vz and w. Now if z and w are orthogonal then vz and w are orthogonal as

well, so the two columns become mergable as soon as v and z are merged. Otherwise

both vz and w can be deleted with CLEXT. [|

Claim 3.8 The following replacements are equivalence-preserving.

1. Suppose merge(v,w) del(vw) is in the reduction sequence at some time. Then

it can be replaced by del(v) del(w) if v is deletable at the same time.

2. Suppose del(v) del(w) is in the reduction sequence at some time. Then it can

be replaced by merge(v,w) del(vw) if v and w are mergable.

3. Suppose merge(v, w) merge(vw, z) is in the reduction sequence at some time.
Then it can be replaced by merge(v, z) merge(vz,w) if v and z are mergable.

(Note that w and w are orthogonal.)

4. Suppose merge(v, w) del(vw) del(z) is in the reduction sequence at some time.

53

Then it can be replaced by merge(v, z) del(vz) del(w) if v and z are mergable

and w and z are nonorthogonal.

proof These four statements follow directly from Claims 3.6, 3.5, 3.7 and 3.7,
respectively. Observe that the resulting problem matrices will remain the same if
in the new sequence the merged columns are inserted into the same positions as in

the old sequence. [|

Now we go back to the proof of our main theorem. The first operation is either
a column deletion or a merge of two columns. In Lemmas 3.9 and 3.10 we show
that if a deletion/merge could be done at time T} in a reduction sequence then there
is an equivalent sequence in which the deletion/merge is done at Ty. Applying the
lemmas for time T = 0 will prove the theorem since the first reduction instance is

already present in the problem.

Lemma 3.9 If v is a column deletable at time Ty in an exhaustive sequence of

reductions, then there is an equivalent sequence in which v is deleted at Ty.

proof The column v can be deleted or merged at time 7T}, or nothing happens to
it. If it is deleted, we are done.

If it is merged then the merged column is deletable at time T + 1 (Claim 3.5).
The matrix has one less column at time 7y 4+ 1, so by induction there exists an
equivalent sequence in which the merged column is deleted at time 7y + 1. By
replacing the merge of v and the other column and then the deletion of the merged
column by the deletion of v followed by the deletion of the other column (part 1 of

Claim 3.8) we obtain an equivalent sequence in which v is deleted at time Tj.

54

If nothing happens to column v at time T, then v is still deletable at time
To + 1 (Lemma 3.2). Applying the inductive statement there exists an equivalent
sequence in which v is deleted at time 7 + 1. We can swap the first two operations
(Lemma 3.4) to obtain an equivalent sequence in which v is deleted at time 7. W

Note that while the above proof is existential, it is easy to give an algorithm
that constructs the equivalent sequence. Indeed, if v is deleted at some time in
the sequence of reductions then the deletion of v can be bubbled back to time T
(Lemma 3.4) and we are done. Otherwise, since the sequence is exhaustive, v will be
merged with another column at some later time (Lemma 3.2). The merged column
is deletable (Claim 3.5), so in turn it will be either deleted or merged further, and
so on. The “supercolumn” V that contains v will be deleted sooner or later since
the reduction sequence is exhaustive and finite.

Now consider the time when V' is deleted. V' became deletable right after it was
merged from two columns, V' (containing v) and some column z. By Lemma 3.4,
the deletion of V' can be bubbled back to be right after the merge of V' and z. Then,
since V' is deletable, merge(V', z) del(V') can be replaced by del(V') del(z) (part
1 of Claim 3.8). Continue this procedure with V' until the deletion of v appears in

the equivalent sequence, and then bubble this operation back to time 1.

Lemma 3.10 If v and w are mergable at time Ty in an exhaustive sequence of

reductions, then there is an equivalent sequence in which v and w are merged at Ty.

proof At time T the two columns are either merged, one of them is deleted, one

of them is merged with a third column or nothing happens to them. If they are

%)

merged with each other then we are done.

If one of the two columns is deleted then the other column becomes deletable at
time Ty + 1 (Claim 3.6), so there exists an equivalent sequence in which the other
column is deleted at time T + 1 (Lemma 3.9). Then applying part 2 of Claim 3.8
shows that we are done.

If one of the columns is merged with a third column (say v is merged with some
column z) then vz and w are mergable or both are deletable at time Ty+1, depending
on whether z was orthogonal to w or not (Claim 3.7). If they are mergable then,
by the inductive statement, there exists an equivalent sequence in which vz and w
are merged at time Ty + 1. Applying part 3 of Claim 3.8 shows that we are done.
Otherwise, there exists an equivalent sequence in which vz is deleted at time 7y + 1
and w is deleted at time Ty + 2 (Lemma 3.9). Now apply part 4 of Claim 3.8 to see
that we are done.

If nothing happens to the two columns at time 7 then they are still mergable
at time Ty + 1. By the inductive statement there exists an equivalent sequence in
which these columns are merged at time T + 1. Swapping the first two operations
(Lemma 3.4) we get an equivalent sequence in which the two columns are merged

at time Tj. |

We can devise a constructive algorithm as in the previous case. If the two
columns are merged at any time in the sequence then this operation can be bubbled
back to time 7. Otherwise one of the two columns is deleted or merged with another
column (Lemma 3.2). Now columns containing v and w can be further merged until

one of the supercolumns V and W is deleted or V and W are merged together.

56

Since the reduction sequence is exhaustive and finite, one of these two cases must
happen eventually.

Assume that one of the supercolumns is deleted, say V. When this happens, W
becomes deletable as well (Claim 3.6), and, as in Lemma 3.9, we can modify the
sequence so that W is deleted immediately. If V' and W are orthogonal then they
are mergable at the time when V' is deleted (Claim 3.7) thus we can replace del(V')
del(W) with merge(V, W) del(VW) (part 2 of Claim 3.8) and default to the case
in which the supercolumns are merged together.

Otherwise V' and W are nonorthogonal, which means that there was a time
when one of the supercolumns was merged with a column that was nonorthogonal
to the other supercolumn (since then both of the columns could have been merged
with other, different columns). After this merge both of the supercolumns became
deletable (Claim 3.7), thus we can find an equivalent sequence in which V' and
W are deleted right after this merge. Assume that this merge produced V from
V' and z. Since V' and W are orthogonal, z must be nonorthogonal to WW; thus
merge(V',z) del(V) del(W) can be replaced by merge(V',W) del(V'W) del(z)
(part 4 of Claim 3.8) and we can default to the case in which the supercolumns are
merged together.

Now assume that V' and W are merged together. These columns became mer-
gable right at the time when V' and W were created (whichever happened later).
Suppose V' is the column that was created later by merging V' (a column containing
v) and z. Since W already existed when this merge happened, the merge of V' and

W can be bubbled back to immediately follow the merge of V' and z. merge(V’, z)

57

merge(V, W) can be replaced by merge(V', W) merge(V'W, z) (part 3 of Claim 3.8)
since V' and W are mergable (Claim 3.7) and z and W must be orthogonal if V'
and W are. We now continue this procedure with V' and W until the merge of v

and w appears in the sequence.

3.3 How can new instances arise?

In the previous sections we have described six reduction methods and have shown
that the order in which they are applied to a problem instance does not matter,
provided the reductions are carried out exhaustively. For an efficient implementa-
tion we also need to know which reductions can lead to (and to what kind of) new
reduction instances, so that we can avoid checking for reduction instances unneces-
sarily.

Consider first the three operations (SUMC, CLEXT and MERGE) that the six
reduction methods can be replaced with. In Table 3.1 below entry (7,) indicates
whether reduction operation i can cause a new instance of type j.

It is clear that a new SUMC instance cannot be created by column deletion, so
SUMC or CLEXT cannot create a new SUMC instance. On the other hand, SUMC
can arise as the result of a MERGE when a merged column becomes the sum of
some already existing columns.

It is possible to create a new CLEXT instance by column deletion, when all but
one “bad” column in a row clique are nonorthogonal to a given “outside” column,

and this bad column is deleted. This deletion cannot be a SUMC since all the

58

Table 3.1: Impact of reductions

SUMC CLEXT MERGE

SUMC NO NO YES

CLEXT NO YES YES

MERGE | YES YES YES

summands that make up the deleted column must be orthogonal to the outside
column and one of them must be in the row clique. On the other hand, it is
easy to construct an example where the bad column in the row clique is deleted
via a CLEXT operation. Merging columns can also create new CLEXT instances;
either by merging the outside column with some other column and thus making it
nonorthogonal to all columns in a row clique, or by merging the bad column in the
row clique with another column and thus making it nonorthogonal to the outside
column.

New MERGE instances can be created by all three operations; by deleting an
“extra” column (via SUMC or CLEXT) so that two rows will differ by exactly two
columns, or by merging two extra columns (based on two rows, one of which is
different from the rows in the new instance).

Based on the observations that enabled us to substitute the original six reduction
methods with three, we can extend the above table to include all the reduction
methods.

DUPC is a special case of SUMC. New DUPC and SUMC instances can be cre-

59

ated only by merging columns; deleting columns or duplicate rows has no influence
here.

As a new CLEXT instance cannot be created by a SUMC operation, it cannot
be created by a DUPC either. On the other hand, it can be created by any of the
other four reduction operations.

A new DOMR instance is created by column deletion if the only column that
intersects the shorter but not the longer row is removed. This column cannot be
deleted by a DUPC or SUMC operation since a copy or summand of the deleted
column that intersects the short but not the long row would remain in the problem.
On the other hand, DOMR can be created by any of the other four operations.

A new SINGL instance can be created by any operation except by merging two
columns (in this case the two rows based on which the columns are merged can
have only one nonzero in them, but then the SINGL instance is already present).
A SINGL can arise however by DTWO when the two columns are deleted.

A new DTWO instance can be created by any of the reduction operations.

3.4 Implementation

Our primary goal in the implementation was to achieve the most reduction in a
reasonable amount of time. In our experience maximal reduction can usually be
reached reasonably quickly if SUMC is not considered. Running SUMC to its full
extent is prohibitively expensive for all but the smallest problems. Nevertheless, we

have implemented an adaptive (limited) strategy for SUMC that proves to be both

60

Table 3.2: Impact of reductions — for all six instances

DUPC SUMC CLEXT DOMR SINGL DTWO

DUPC NO NO NO NO YES YES

SUMC NO NO NO NO YES YES

CLEXT | NO NO YES YES YES YES

DOMR NO NO YES YES YES YES

SINGL NO NO YES YES YES YES

DTWO | YES* | YES* YES YES | YES** | YES

* only if the two columns are merged
** only if the two columns are deleted

effective and efficient. We are not aware of any other implementation that uses the
SUMC reduction.

We approach the question of efficiency from three directions. First, for each
of the six reduction types we have implemented a module that invokes a reduction
function and a matrix compression subroutine repeatedly. The reduction function
scans through all the columns or rows (or pairs of rows) of the current matrix
to identify all instances of the particular reduction type. The deletable/mergable
columns and rows are only marked during the scan, they are physically removed later
during matrix compression. The use of reduction functions decreases the average
time spent on examining a column or row for a reduction instance since some data
structures commonly used by all columns/rows can be prepared in advance. Also,

time is saved by not compressing the matrix every time a deletable column/row is

61

identified.

Second, utilizing the results of Section 3.3, the modules are organized into strate-
gies. Depending on our requirements, we can create strategies that achieve maximal
reduction, or that cut down on the running time by limiting the use of the more
expensive modules.

Third, the reduction functions are implemented assuming that the columns of
the matrix are arranged in lexicographically increasing order (vector a is lexico-
graphically smaller than vector b if the first nonzero entry of b — a is positive). This
allows us to use special techniques that speed up reduction instance identification
considerably (see the description of DUPC, SUMC and CLEXT reduction functions
below). The ordering is carried out before any reduction is started and then main-
tained throughout the computation. The initial ordering is reasonably inexpensive
to obtain, and it takes very little effort to maintain. Removing columns from the
matrix obviously does not destroy the ordering, but extra care must be taken when
marking rows for deletion, or when inserting merged columns into the matrix.

In the remainder of this section we discuss the reduction modules and then the
strategies in detail. At the end we summarize our computational results. Details
about the main data structure and the parameters used in Reduce() are given in

Appendix B.

3.4.1 Reduction modules

In this section we describe the reduction modules in general, then we give details

about the implementation of the individual functions. But we first give a few more

62

words about the matrix compression module.

As we have mentioned before, when a column or row is “deleted” during one of
the reduction operations, it is not removed physically from the matrix right away
since rewriting (possibly) the entire matrix would be too costly. Instead, the column
or row is marked for removal, and the matrix is periodically updated; that is, the
marked columns and rows are removed and the matrix (along with the objective
vector) is compressed. This matrix compression is a module in itself that may be
invoked from other modules or from the reduction strategies. Note that removing
the marked columns and removing the marked rows are two independent tasks, so
the two updates have been separated into two different modules. This is reasonable
since, as we have seen earlier, the removal of duplicate rows could wait until the
very end of the reduction without influencing the outcome. However, even though
marked rows are skipped when the rows of the matrix are enumerated, it may be
effective to remove them, as columns become shorter and thus operations involving
entire columuns (like determining orthogonality) become more efficient.

A general reduction module takes the problem matrix and objective vector as in-
put along with the vectors ONES and MERGES, and a parameter repeat_fraction
(see Figure 3.2). A reduced matrix (with some rows possibly marked for deletion),
updated ONES and MERGES vectors, and the feasibility status of the problem
(feasible, infeasible or feasibility not yet known) are returned. Each module invokes
a particular reduction function that enumerates every column or row (or pairs of
rows) of the matrix to see if the corresponding reduction operation can be applied.

Columns marked for deletion are removed and the matrix is compressed if there

63

was any reduction. The reduction function (and the compression afterwards) is
repeated if at least repeat_fraction fraction of the columns in the current matrix
are marked for deletion by the most recent application of this function.

We claim that in order to decide whether or not to repeat the reduction function
it is enough to check whether columns were marked for deletion (even if both rows
and columns could be marked). To see this assume that a reduction function marked
some rows but no columns for deletion. Then it is clear that all the rows marked are
duplicates of some other rows that remain in the problem. Thus, since removal of
duplicate rows does not create new reduction instances, only duplicate rows already
in the matrix could be deleted if the reduction function were repeated. However,
as we will discuss for the individual reduction functions, in both of the cases when
duplicate rows but no columns can be marked for deletion (namely, DOMR, and
DTWO) all pairs of unmarked rows are checked, so all the duplicate rows will be
marked with one call of the reduction function. Thus the reduction function need
not be repeated.

Note that the reduction functions in the DUPC and SUMC modules need not
be repeated since these reduction operations do not lead to new instances of the
same types, as we have seen in 3.3.

Finally, observe that if repeat_fraction is set to 0 then the reduction function
will be repeated until no further reduction of this type is possible. On the other
hand, the reduction function will be invoked only once if this parameter is set to 1.
For each reduction function there are separate repeat_fraction parameters; they

could be varied from the reduction strategies that invoke the modules.

64

Reduction module
Input: A, c, ONES, MERGES, repeat_fraction
OQutput: A’, c’, ONES’, MERGES’, feasibility status

do {
invoke reduction function
if no reduction, return
if infeasibility is detected in reduction function, return
remove columns that are marked for deletion, compress matrix
if matrix has no columns left then problem is feasible, return
} while (at least repeat_fraction fraction of the columns
have been deleted)
end

Figure 3.2: Description of a general reduction module
The DUPC reduction function

In the DUPC reduction function the columns of the matrix are enumerated one by
one, from lexicographically smaller to larger. Due to the ordering, identical columns
are located next to each other in the matrix. When duplicate columns are discovered
then all but the cheapest column is marked for removal. To make this comparison
even easier, identical columns are ordered from cheapest to most expensive during
the initial lexicographical ordering (if two columns are identical in the matrix then
the one with the smaller objective coefficient is considered to be lexicographically
smaller). Therefore the first of the identical columns will be the one kept. Another

way of detecting duplicate columns is to use hashing ([HP93]).

65

The SUMC reduction function

The SUMC reduction function enumerates columns of the matrix from left to right,
for each column v trying to find columns that sum up to v with combined cost less
than that of v. Any column which could be a summand for v is lexicographically
smaller than v itself, so the lexicographical ordering of the columns insures that
all potential summands lie left from v in the matrix (thus they have already been
processed when v is being examined). Columns with the first nonzero at the same
position as that in v are considered one by one, from right to left, as the first
summand. When a column can be subtracted from v (with nonnegative remainder)
then this method is continued for the remainder recursively (although the remainder
is usually not a column in the matrix itself, its would-be position is determined and
the process is continued from there). If there is no remainder left then costs are
compared. If the sum is the more expensive then we backtrack, forcing the last
summand to be the remainder. Otherwise, if the sum is the cheaper then v can
be marked for deletion and the next column in the matrix is considered. However,
since marked columns are skipped by the function, the sum replacing this marked
column would need to be determined again if the column were to be a summand
later. Therefore, to make use of the columns that could be marked for deletion by
this reduction function, the columns are marked with a temporary marker and their
objective function coefficient is replaced with the cost of the sum. Note that we
are not looking for a cheapest sum to replace columns, we continue with the next
column as soon as any sum cheaper than v is found. The recursion stops when a

sum cheaper than v is discovered or there are no more columns as potential first

66

summands for v. After each column is processed, columns marked temporarily are
marked for deletion.

Although the use of temporary markers saves some time since already discov-
ered sums are not searched for again, the above described algorithm still runs in
time exponential in the size of the matrix. Therefore we introduced techniques that
significantly reduce the running time by restricting the group of columns examined
and by limiting the scope of search for suitable summands. We might not find all
the SUMC reduction instances in the current matrix this way, so our implemen-
tation of the reduction function can be repeated. In order to compare columns
we compute their cost per length ratios (the cost of the column over the number
of ones in it). Then we examine only the (in this sense) most expensive columuns,
and only if a significant fraction of these are marked for deletion by SUMC will
we continue with the next most expensive set of columns. This method prohibits
too many columns from being examined when only a few could be deleted with
SUMC. Also, examining the most expensive columns is only a heuristic guess; a
group of columns could be chosen based on different criteria as well. The search
for summands is limited by restricting the depth of recursion to a small number
and by forbidding columns whose cost per length ratio is much larger than that
of the remainder, to become summands. Note that limiting the depth of recursion
limits the number of summands, though not necessarily to the same number since
temporarily marked columns which can be expressed as sums of other columns can
be summands themselves.

Although the above enhancements speed up SUMC considerably, it still remains

67

slow in comparison to the other reductions. A good estimate on the running time
of SUMC for a particular column can be obtained by observing that columns which
are candidates to be first summands must have a common first row with our column
(that is, they must lie in the same block of the lexicographically ordered matrix).
Thus half of the columns of our column’s block need to be considered on average
as first summands. After the first summand is subtracted from the column, the
same is true for the remainder. Therefore, if the depth of recursion is k, the amount
of computation for one column is proportional to (average block length)*. So
in our implementation the depth of recursion and other parameters influencing
computation time (e.g., whether expensive columns are considered as summands)
are decided using the average block length. For problems with very large average

block length SUMC is not even attempted.

The CLEXT reduction function

Our CLEXT reduction function enumerates the rows of the matrix one by one,
for each row scanning through the columns and marking any column for deletion
that extends the row’s clique ([HP93] apparently do this similarly). A different
approach would be to enumerate the columns of the matrix, marking a column for
deletion when it extends at least one row’s clique ([BC96]). Since with either of these
methods every column has to be checked for nonorthogonality against all columns
intersecting all rows not in the column’s support, this algorithm is inefficient if it
is implemented in a straightforward manner. However, the computation can be

speeded up by not examining rows and columns unnecessarily, and by making the

68

test of whether a particular column extends a row’s clique more efficient. Some of
our techniques rely heavily on the lexicographical ordering of columns.

First of all, observe that if a column intersects only one row then the corre-
sponding row clique is maximal. Due to the lexicographical ordering of columns,
columns of length one are very easy to spot because they are the lexicographically
smallest columns intersecting their rows. Another observation is that if a row has
a column with only two ones in it then all columns which could extend the row’s
clique must intersect the other row determined by the column with two ones. So
only those columns that intersect the “other row” need to be considered, which is a
significant reduction in the number of columns for sparse matrices. Also, if there are
several “length two” columns intersecting the row then only columns that intersect
all the “other rows” need to be considered. Since it would be costly to construct
the intersection of several rows explicitly, the shortest of these other rows is chosen
instead, and we make sure that columns which are candidates for extending the row
clique are tested against the “length two” columns first. A third observation that
further restricts the set of candidate columns is the following. Two columns are
surely orthogonal if the last row which the first column intersects comes earlier in
the matrix than the first row for the second column. Thus a column cannot extend
a row’s clique if this is true for the column and any of the columns in the row’s
support. Moreover, the row itself does not need to be included in the check since
candidate columns do not intersect the row itself. Therefore, by determining the
last (or second-to-last if the row to be extended is the last) row for each column in

the row and then taking the earliest of these last rows, columns whose first row is

69

later than the earliest last row need not be considered. Due to the lexicographical
ordering of columns, all columns that precede the first column of the earliest last
row can be skipped, that is, the enumeration of columns can begin with the first
column of the earliest last row. Similarly, the last first row of columns intersecting
a row can be determined, thus columns not intersecting the row whose last column
comes earlier than the last first row need not be considered since they cannot be
nonorthogonal to all columns in the row.

We have organized our CLEXT reduction function so that the rows of the matrix
are enumerated in an outer loop. This enables us to prepare the row so that the one-
by-one tests for the many columns not intersecting this row will be more efficient.
First the row is sampled and the candidate columns are tested against the columns
in the sample. Only if a candidate is nonorthogonal to every column in the sample
will testing continue for the entire row. To make the test more effective, the “length
two” columns intersecting the row are listed first in the sample; the rest is chosen
randomly. The length of the sample is proportional to the size of the row’s support;

the factor of proportionality is regulated through parameters.

The DOMR reduction function

The DOMR reduction function considers each pair of rows and examines whether
the shorter row dominates the longer; that is, whether the support of the shorter
row is a subset of the support of the longer row. When a pair of dominating rows
is found, columns whose indices are in the longer but not the shorter row’s support

are marked for deletion, along with one of the rows. Columns marked for deletion

70

are removed from the matrix only after a full pass through the row pairs, so DOMR
instances not yet in the matrix at the time when the function is invoked might not
be discovered. This function also detects when two rows are duplicates of each other
(the two supports are identical). Since this function enumerates all the row pairs
in the matrix, the test for domination between two rows must be done efficiently.
Our data structures provide us with ordered lists for the supports, enabling a fast
comparison. Also, checking whether the first and last entries of the shorter support
are between the first and last entries of the longer support before comparing the
two supports entry-by-entry eliminates the need for explicit comparison of many
row pairs.

As we have mentioned earlier, care must be exercised when deleting duplicate
rows so as not to destroy the increasing lexicographical order of the columns. We
claim that if the duplicate row which comes later in the matrix is deleted then
the ordering will be maintained. Assume that 7 and j are two identical rows so
that ¢ comes first in the matrix, and that v and w are two columns so that v is
lexicographically smaller than w. The only way for w to become lexicographically
smaller than v by deleting one of the rows is if v and w are identical up to the
removed row, v has a 0 while w has a 1 in this row, and v has a 1 while w has a
0 in the next row in which the two columns differ. This could occur if 7 is the row
removed. On the other hand, if j is the row to be removed then, since the two rows
are identical, the two columns would not be the same up to row j, contradicting
our assumption. This shows that always removing the second of the two rows is

justified.

71

The SINGL reduction function

The SINGL reduction function enumerates the rows of the matrix one-by-one. When
a row with a single one in it is found, the index of the only intersecting column is
added to ONES, and the consequences of this fixing are propagated; that is, rows
intersecting this column are taken one-by-one, and for each row, the columns in
its support and the row itself are marked for deletion. The implementation of this

reduction function is straightforward, and the function itself is very fast.

The DTWO reduction function

The DTWO reduction function enumerates all pairs of rows, and for each pair
checks whether the supports of the rows are of equal size and if so, whether they
differ only in two entries. If this is the case, the two columns corresponding to these
entries are compared, and if they are nonorthogonal then they are simply marked for
deletion, otherwise their indices are listed in MERGES and the columns themselves
are marked for deletion. Also, similar to DOMR, the later of the now identical
rows is marked for deletion. The merged column will be constructed and inserted
into the matrix when the matrix is compressed after the reduction function returns.
As with the DOMR reduction function, this function will detect duplicate rows as
well. Maintaining row supports as ordered lists makes a fast and straightforward
implementation possible.

We have also implemented the module DUPR that marks duplicate rows for
deletion. Although duplicate rows could be eliminated by DOMR, and DTWO, this

routine can be useful when our goal is the fast elimination of duplicate rows.

72

3.4.2 Reduction strategies

Reduction strategies are algorithms comprised of reduction modules. We have im-
plemented two main reduction strategies, one that achieves maximal reduction,
and another that achieves less reduction but generally executes much more quickly.
Although all six reduction modules are included in both reduction strategies, indi-
vidual reduction modules can be turned off through parameters.

Flags are introduced for the reduction modules indicating whether the previous
application of the corresponding module was successful; that is, whether the reduc-
tion module has removed any columns. (As we have argued above, removing rows
only will not create new reduction instances.) We note here that since SUMC is
the least efficient among the reduction procedures, we invoke it only after the other
modules are finished, so that the input matrix is as small as possible.

In the maximal reduction strategy the five reduction modules DUPC, SINGL,
DOMR, DTWO and CLEXT are invoked (in this order) within a loop that repeats
until no further reduction is possible. Each module is invoked at least once, but re-
peated only if there was success in other modules that might produce new instances
for it (Table 3.2). Rows marked for deletion are removed from the matrix after we
exit from the loop, and also after the DOMR and DTWO modules if at least 10% of
the rows are marked for deletion. Within the modules the reduction functions are
repeated until no more reduction of the type is possible (that is, repeat_fraction
is zero). The SUMC reduction module is invoked after the loop (and the possible
compression of the matrix); repetition of the reduction function is allowed. SINGL

and DTWO are invoked if there was any reduction in the SUMC module, then

73

the whole process (the five reduction modules followed by SUMC, a SINGL and a
DTWO) repeats until no more reduction is possible.

Out of the five traditionally implemented modules CLEXT is by far the most
expensive, and DOMR, can take a significant amount of time when the number of
rows is large. Therefore we try to invoke these modules sparingly in the fast reduc-
tion. Also, we make use of the repeat_fraction parameters to limit the number of
times the reduction functions are invoked within the modules. In addition, another
parameter, a global repeat_fraction, is introduced which does not allow the main
loop in the strategy to repeat unless at least this fraction of the columns has been
marked for deletion by the modules during the most recent pass through the loop.
DUPC and SINGL are invoked only twice, first at the very beginning and then after
the loop. The second DUPC is executed only if some columns have been merged.
SINGL is repeated. Since DTWO is inexpensive, the module is invoked frequently,
repetition of the reduction function is enabled. DOMR and CLEXT are repeated
in a loop until one of these deletes significantly fewer columns than the other did
the previous time it was invoked. On the other hand, if one of the modules deletes
significantly more columns than the other did, then the other module is forced to
repeat. The loop is repeated only if the overall number of columns marked for
deletion is at least as much as stipulated by the global repeat_fraction parame-
ter. Rows marked for deletion are removed after each call of the DOMR, module.
Then SUMC is invoked at the end of this strategy. We call this strategy the “fast”
strategy.

In Section 3.4.4 the two strategies are compared in detail.

74

3.4.3 The Reduce() function

These strategies are accessible through a function called Reduce(). This function
returns TRUE if the function completed successfully, and FALSE otherwise. Reduce()
takes as an input and returns as an output a pointer to a structure containing,
among other things, a column and row ordered version of the problem matrix, a
set of parameters which determine the way the reduction is carried out, an array
containing names of variables that are fixed to one (ONES), an array with names of
variables whose columns have been merged (MERGES), and an entry that indicates
the feasibility status of the problem.

When Reduce() is invoked, only part of this data structure (part of the column
ordered matrix that describes the problem matrix, and the parameters) has to be
filled, the rest will be added at the beginning of the function. After the local data
structures are initialized, the columns of the matrix are ordered into lexicographi-
cally increasing order. Variables whose names are listed in ONES are fixed to one,
and the effect of this fixing is propagated throughout the matrix. If any column or
row is marked for deletion then the matrix is compressed (columns or rows might
have been marked before the function was invoked). Then the reduction strategy
indicated by the parameters is invoked and finally the local data structures are dis-
mantled. Names of variables fixed to one during reduction are appended to the array
ONES, and similarly names of merged variable pairs are appended to MERGES.
Figure 3.3 gives an outline of Reduce().

If the matrix can be reduced to nothing, an optimal solution to the original

problem can be deduced from the arrays ONES and MERGES. If there is a row

75

Reduce ()
Input: pointer to the main data structure
Output: pointer to the main data structure
Return value: TRUE if succeeded, FALSE otherwise

initialize data structures (fill out optional fields)
order columns of input matrix (lex increasing)
fix variables listed in ONES to one
compress matrix if necessary
invoke reduction strategy
clean up
end

Figure 3.3: Outline of the Reduce() function

with an empty support at any stage of the computation the original problem is
infeasible. Otherwise the feasibility status of the problem could not be determined
during reduction.

The main data structure and the parameters are described in Appendix B.

3.4.4 Computational results

In our test runs we have tried two main strategies: maximal and fast, each with
the SUMC reduction function once enabled and once turned off (as we have in-
dicated above, SUMC was invoked only after the other reductions had finished).
Preliminary testing revealed that it is not worth to repeat the other reductions af-
ter SUMC since new reduction instances were created only a few times, and these
were always isolated SINGL instances (the column intersecting the singleton row is
also a singleton).

Four tests were conducted on the SP for all four sets of data (Section A.2): the

76

maximal and fast strategies with SUMC disabled and our adaptive SUMC applied
to the outputs of both. Tables 3.3, 3.4, 3.7 and 3.9 summarize our results for the
maximal strategy and the SUMC following it while Tables 3.5, 3.6, 3.8 and 3.10
do the same for the fast strategy. For each problem instance the tables contain
its name, original size (number of columns and rows); the lexicographical ordering
time; the problem’s size after the maximal/fast strategy (SUMC disabled) along
with the running time; the time spent in CLEXT and DOMR routines (with their
multiplicity); the average block length (Section 3.4.1), the percentage of columns
deleted by and the running time of the adaptive SUMC routine; the final size of the
reduced problem with the percentage of nonzeros deleted during the entire process.
The experiments were carried out on a thin node of the SP (see Section A.1 for
details about the architecture).

The input parameter settings are based on test runs. In the CLEXT reduction
function 3% of each row’s support was sampled (at least 10 but at most 200 columns
were chosen). In the SUMC reduction function average block length was computed
using the longest blocks that made up 90% of the columns (so that the very short
blocks would not decrease the average too much). For problems with average block
length less than 100 the depth of recursion was restricted to 3; for the rest of the
problems, it was restricted to 2. Columns were considered in groups of 10% of the
size of the matrix, and at least 20% (up to 50% for problems with large average
block length) of these columns had to be deleted to continue with the next group of
columns. Columns with cost per length ratio more than 1.5 times (down to 1.0 times

for problems with large average block length) the remainder were not considered

77

as prospective summands. SUMC was not even attempted for problems of average
block size larger than 500. Note that SUMC was invoked with the same parameters
on the output of both the maximal and fast strategies.

As described earlier (Section 3.4.2), the maximal reduction repeated each reduc-
tion function until there was no more reduction. In the fast strategy SINGL and
DTWO were always repeated; DOMR was repeated if at least 5% of the columns
were deleted with its previous application, and CLEXT was repeated when this per-
centage was at least 12.5%. The outer loop (invoking DOMR, CLEXT and DTWO
repeatedly) was repeated if at least 12.5% of the columns were removed during
the last pass through the loop. In addition to this, a heuristic version of CLEXT
was run in the fast strategy; rows longer than the average row length were skipped
(unless a “length two” column is present).

Our fast strategy (without SUMC) compares very well with the maximal reduc-
tion (without SUMC). As we expected, the execution time of CLEXT and DOMR
dominate the total running time of both strategies. The fast strategy is consider-
ably faster when it is able to cut down on the number of times these two reduction
functions are invoked. In addition to the speed-up, the fast strategy has achieved
the same reduction on many of the problems considered; the percentage of nonzeros
deleted compared to the maximal strategy was worse by more than 2% on only 1 Set
1 and 4 Set 4 problems. Since these two strategies produced almost identical results,
SUMC behaved the same way in the last two tests. As we have discussed earlier,
our adaptive SUMC routine is very restricted. Nevertheless, when it is attempted

at all, it can be very effective on certain sets of problems (nw and v* problems,

78

deleting up to 85% of the columns). This fact might be attributed to the column
generation techniques used for these problems.

For the problems in Set 1 we compare our results with those of Hoffman and
Padberg ([HP93|) and Borndérfer ([Bor97]). Hoffman and Padberg implemented an
equivalent (in terms of reduction) of DUPC, CLEXT, DOMR, SINGL and DTWO.
However, they cut short the more time consuming routines (like the CLEXT and
DOMR/DTWO equivalents) based on heuristics. Our maximal strategy (with
SUMC disabled) achieves at least as much reduction as they did except for two
problems (nw26 and nw24, most likely typos in their paper). SUMC applied after
the maximal or fast strategies further reduces the number of columns by at least
25% on 26 of the 43 nw problems.

We have learned about Borndorfer’s work only after our implementation of Re-
duce() and this chapter were completed. His implementation contains two addi-
tional reduction methods that we were not aware of before: the first substitutes for
singleton columns (columns with only one nonzero) in certain situations and the
second removes all columns from the symmetric difference of two rows’ supports if
the entire symmetric difference is contained in a third row’s support. He did not
implement, however, the DTWO procedure, and applied only a limited version of
CLEXT (considered only rows with supports not larger than 16). Our fast strat-
egy (SUMC disabled) usually deletes a few more columns but a few less rows than
his method on the Set 1 problems with the exception of nw16 which is reduced to
nothing by his method.

Borndorfer’s method was also applied to the problems in Set 3 ([BGKK97)).

79

While his method deletes about 10% more rows on these problems than our fast
strategy (SUMC disabled), our method removed more columns from the v04x and
t04* problems but less from the v16#* problems. Note that for the t17* problems the
only reduction possible was DUPC. SUMC further reduced the number of columns
by at least 30% in 7 of the 14 v* problems (although it was rather time consuming
for 3 of these problems).

Our running times cannot be directly compared to those of the other two groups
since they provide only a cumulative time for all reductions during a Branch-and-
Cut algorithm.

In our final runs we used the fast strategy with SUMC for the first reduction. The
reduced problems were saved into files, this is what the feasible solution heuristics
and the Branch-and-Cut algorithm use as input. We use the fast strategy without

SUMC everywhere else.

80

Table 3.3: Maximal reduction w/o SUMC followed by one SUMC, Set 1, part 1

Original lex Maximal no SUMC Expensive redn fns SUMC reduction Final size %nzs

name cols rows | time cols rows time | CLEXT DOMR av bl % time cols rows deld
aall 8904 823 | 0.07 7532 607 7.29 | 4.86 (4) 2.28 (6) 27.01 0.04 0.04 7529 607 | 34.95
aa02 5198 531 | 0.03 3846 360 1.47 | 1.07 (4) 0.35(H) 24.06 0.03 0.02 3845 360 | 41.42
aa03 8627 825 | 0.07 6694 537 8.06 | 5.53 (6) 2.31 (6) 27.80 0.07 0.04 6689 537 | 42.54
aa04 7195 426 | 0.05 6122 342 1.43 | 1.05 (2) 0.34 (4) 40.86 0.02 0.03 6121 342 | 27.87
aa0b 8308 801 | 0.06 6235 521 5.79 | 3.24 (4) 237 (9) 26.00 0.18 0.02 6224 521 | 44.88
2a06 7292 646 | 0.06 5862 488 5.97 | 4.85 (6) 0.97 (7) 28.07 0.20 0.03 5850 488 | 33.15
klo1 7479 55 | 0.06 5915 47 0.83 | 0.78 (2) 0.02 (3) 300.00 0.00 0.04 5915 47 | 33.56

kl02 36699 71 | 0.33 16542 69 0.64 | 0.54 (1) 0.01 (1) 683.77 0.00 0.00 16542 69 | 55.21

nw01 51975 135 | 0.09 49903 135 3.10 | 1.29 (2) 1.68 (2) 619.27 0.00 0.00 49903 135 3.82
nw02 87879 145 | 0.18 85256 145 550 | 2.02 (2) 3.26 (2) 963.40 0.00 0.00 85256 145 2.74
nw03 43749 59 | 0.09 38956 53 0.73 | 0.01 (1) 0.49 (2) | 1617.05 0.00 0.00 38956 53 | 12.35
nw04 87482 36 | 0.20 46189 35 146 | 1.06 (1) 0.17 (2) | 2666.06 0.00 0.00 46189 35 | 47.98
nw05 | 288507 71 | 0.69 | 202593 62 4.02 | 0.03 (1) 2.86 (2) | 7014.27 0.00 0.00 | 202593 62 | 30.93
nw06 6774 50 | 0.01 5956 38 0.10 | 0.00 (1) 0.05(2) 321.47 6.28 1.52 5582 38 | 30.56
nw07 5172 36 | 0.02 3105 34 0.03 | 0.00 (1) 0.02(2) 189.60 45.70 1.04 1686 34 | 69.52
nw08 434 24 | 0.00 352 21 0.00 | 0.00 (1) 0.00 (2) 29.27 72.73 0.01 96 21 | 83.36
nw09 3103 40 | 0.01 2301 38 0.02 | 0.00 (1) 0.02(2) 138.07 58.02 0.98 966 38 | 71.12
nwl0 853 24 | 0.00 655 21 0.01 | 0.00 (1) 0.00 (2) 54.36 85.50 0.02 95 21 | 92.92
nwll 8820 39 | 0.02 6482 34 0.07 | 0.00 (1) 0.04(2) 395.13 74.58 12.62 1648 34 | 82.72
nwl2 626 27 | 0.00 451 25 0.00 | 0.00 (1) 0.00 (2) 31.38 74.06 0.01 117 25 | 91.45
nwl3 16043 51 | 0.03 10903 50 0.14 | 0.00 (1) 0.08 (2) 380.85 4.30 0.09 10434 50 | 35.93
nwl4 | 123409 73 | 0.24 95172 70 1.92 | 0.01 (1) 1.38(2) | 2681.50 0.00 0.00 95172 70 | 23.12
nwlh 467 31 | 0.01 405 29 0.03 | 0.03 (2) 0.00 (2) 28.69 0.00 0.00 405 29 | 14.66
nwl6 | 148633 139 | 0.29 | 138947 135 9.09 | 0.03 (1) 8.23(2) | 1928.45 0.00 0.00 | 138947 135 7.72
nwl7 | 118607 61 | 0.26 78173 54 1.67 | 0.01 (1) 1.14 (2) | 3716.21 0.00 0.00 78173 54 | 35.88
nwl8 10757 124 | 0.03 8439 110 0.33 | 0.00 (2) 0.26 (2) 161.98 4.83 0.83 8031 110 | 31.88
nwl9 2879 40 | 0.00 2134 32 0.02 | 0.00 (1) 0.02(2) 140.07 38.00 0.57 1323 32 | 6341

Table 3.4: Maximal reduction w/o SUMC followed by one SUMC, Set 1, part 2

Original lex Maximal no SUMC Expensive redn fns SUMC reduction Final size Yonzs
name cols rows | time cols rows time CLEXT DOMR av bl % time cols rows | deld
nw20 685 22 0.00 536 22 0.02 0.02 (2) 0.00 (2) 44.36 33.02 0.06 359 22 | 49.11
nw21 577 25 | 0.00 421 25 002 | 0.01(2) 0.01(2) 32.08 49.88 0.02 211 25 | 68.70
nw22 619 23 0.00 521 23 0.02 0.02 (2) 0.00 (2) 43.73 3493 0.02 339 23 | 46.51
nw23 711 19 0.00 423 18 0.02 0.01 (2) 0.00 (2) 47.75 4137 0.14 248 18 | 69.22
nw24 1366 19 0.00 926 19 0.02 0.01 (1) 0.00 (1) 106.38 65.77 0.30 317 19 | 79.17
nw2) 1217 20 0.00 844 20 0.03 0.03 (1) 0.00 (1) 87.11 61.26 0.15 327 20 | 76.50
nw26 771 23 0.00 468 21 0.02 0.02 (2) 0.00 (2) 53.00 36.54 0.10 297 21 | 63.87
nw27 1355 22 0.00 817 22 0.05 0.04 (2) 0.00 (2) 73.80 48.84 0.13 418 22 | 73.76
nw28 1210 18 0.00 582 18 0.05 0.04 (2) 0.00 (2) 75.29 27.66 0.33 421 18 | 68.53
nw29 2540 18 0.01 2034 18 0.02 0.02 (1) 0.00 (1) 242.38 16.81 1.56 1692 18 | 32.88
nw30 2653 26 0.01 1877 26 0.10 0.08 (2) 0.01 (2) 172.80 50.19 1.08 935 26 | 66.11
nw3l 2662 26 0.00 1728 26 0.15 0.14 (2) 0.00 (2) 173.00 36.34 0.60 1100 26 | 59.49
nw32 294 19 0.00 251 18 0.00 0.00 (1) 0.00 (1) 25.56 43.82 0.02 141 18 | 54.24
nw33 3068 23 0.01 2308 23 0.26 0.25 (2) 0.00 (2) 239.00 2.64 0.06 2247 23 | 27.00
nw34 899 20 0.00 718 20 0.02 0.02 (2) 0.00 (2) 72.11 4276 0.38 411 20 | 58.00
nw3b 1709 23 0.00 1191 23 0.15 0.14 (2) 0.00 (2) 99.73 47.69 2.05 623 23 | 63.52
nw36 1783 20 0.00 1244 20 0.16 0.16 (2) 0.00 (2) 146.25 1.37 0.04 1227 20 | 33.62
nw37 770 19 0.00 639 19 0.00 0.00 (1) 0.00 (1) 59.70 50.55 0.46 316 19 | 62.07
nw38 1220 23| 0.00 723 21 022 | 022(3) 0.00(2) 82.25 12.59 0.60 632 21 | 50.18
nw39 677 25 0.00 565 25 0.02 0.02 (2) 0.00 (2) 42.50 49.20 0.06 287 25 | 60.75
nw40 404 19 0.00 336 19 0.01 0.01 (1) 0.00 (1) 31.30 28.87 0.03 239 19 | 42.87
nw4l 197 17 | 0.00 177 17 0.00 0.00 (1) 0.00 (1) 15.09 51.41 0.00 86 17 | 61.08
nw42 1079 23 0.00 795 23 0.07 0.07 (2) 0.00 (2) 72.00 20.38 0.17 633 23 | 40.39
nw43 1072 18 0.01 982 17 0.01 0.00 (1) 0.00 (1) 99.11 44.30 0.51 547 17 | 51.39
us01 | 1053137 145 | 22.09 | 339441 86 246.56 | 235.94 (2) 6.67 (3) | 14739.43 0.00 0.00 | 339441 86 | 77.64
us02 13635 100 0.13 5766 45 2.39 2.26 (3) 0.06 (3) 472.45 0.88 4.60 5715 45 | 79.37
us03 85552 77 1.00 20632 50 28.66 2791 (2) 0.37 (b) 2083.89 0.00 0.00 20632 50 | 82.82
us04 28016 163 0.27 4207 99 2.33 1.93 (4) 0.27 (7) 223.35 1.59 0.08 4140 99 | 89.07

18

82

Table 3.5: Fast reduction w/o SUMC followed by one SUMC, Set 1, part 1

Original lex Fast no SUMC Expensive redn fns SUMC reduction Final size %nzs

name cols rows | time cols rows time | CLEXT DOMR av bl % time cols rows deld
aall 8904 823 | 0.07 7580 610 1.71 | 0.64 (1) 0.89 (2) 27.19 0.04 0.04 7577 610 | 34.21
aa02 5198 531 | 0.03 3899 361 0.44 | 0.13 (1) 0.23 (3) 24.40 0.03 0.01 3898 361 | 40.25
aa03 8627 825 | 0.07 6839 548 1.58 | 0.45 (1) 0.94 (2) 28.12 0.09 0.04 6833 548 | 40.41
aa04 7195 426 | 0.05 6143 342 0.48 | 0.23 (1) 0.18 (2) 41.01 0.02 0.02 6142 342 | 27.59
aa0b 8308 801 | 0.06 6416 538 1.35 | 0.49 (1) 0.68 (2) 26.14 0.19 0.02 6404 538 | 42.07
2a06 7292 646 | 0.06 5966 497 0.97 | 0.52 (1) 0.32 (2) 28.41 0.17 0.03 5956 497 | 30.83
klo1 7479 55 | 0.06 5957 47 0.09 | 0.04 (1) 0.02 (2) 302.33 0.00 0.04 5957 47 | 32.95

kl02 36699 71 | 0.33 16542 69 0.20 | 0.11 (1) 0.02 (1) 683.77 0.00 0.00 16542 69 | 55.21

nw01 51975 135 | 0.09 49903 135 1.58 | 0.58 (1) 0.85 (1) 619.27 0.00 0.00 49903 135 3.82
nw02 87879 145 | 0.18 85256 145 2.69 | 0.78 (1) 1.66 (1) 963.40 0.00 0.00 85256 145 2.74
nw03 43749 59 | 0.09 38956 53 0.44 | 0.01 (1) 0.21 (1) | 1617.05 0.00 0.00 38956 53 | 12.35
nw04 87482 36 | 0.20 46189 35 0.66 | 0.33 (1) 0.09 (1) | 2666.06 0.00 0.00 46189 35 | 47.98
nw05 | 288507 71 | 0.69 | 202593 62 233 | 0.03 (1) 1.21(1) | 7014.27 0.00 0.00 | 202593 62 | 30.93
nw06 6774 50 | 0.01 5956 38 0.06 | 0.00 (1) 0.02 (1) 321.47 6.28 1.54 5582 38 | 30.56
nw07 5172 36 | 0.02 3105 34 0.02 | 0.00 (1) 0.01(1) 189.60 45.70 1.04 1686 34 | 69.52
nw08 434 24 | 0.00 352 21 0.00 | 0.00 (1) 0.00 (1) 29.27 72.73 0.00 96 21 | 83.36
nw09 3103 40 | 0.01 2301 38 0.02 | 0.00 (1) 0.00 (1) 138.07 58.02 0.99 966 38 | 71.12
nwl0 853 24 | 0.00 655 21 0.00 | 0.00 (1) 0.00 (1) 54.36 85.50 0.02 95 21 | 92.92
nwll 8820 39 | 0.02 6482 34 0.05 | 0.00 (1) 0.02 (1) 395.13 74.58 12.64 1648 34 | 82.72
nwl2 626 27 | 0.00 451 25 0.00 | 0.00 (1) 0.00 (1) 31.38 74.06 0.00 117 25 | 91.45
nwl3 16043 51 | 0.03 10903 50 0.09 | 0.00 (1) 0.04 (1) 380.85 4.30 0.11 10434 50 | 35.93
nwl4 | 123409 73 | 0.24 95172 70 1.17 | 0.01 (1) 0.64 (1) | 2681.50 0.00 0.00 95172 70 | 23.12
nwlh 467 31 | 0.01 451 29 0.01 | 0.01 (1) 0.00 (1) 29.79 0.00 0.01 451 29 2.76
nwl6 | 148633 139 | 0.29 | 138947 135 4.89 | 0.02 (1) 4.03 (1) | 1928.45 0.00 0.00 | 138947 135 7.72
nwl7 | 118607 61 | 0.26 78173 54 1.00 | 0.01 (1) 0.49 (1) | 3716.21 0.00 0.00 78173 54 | 35.88
nwl8 10757 124 | 0.03 8439 110 0.17 | 0.00 (1) 0.12 (1) 161.98 4.83 0.83 8031 110 | 31.88
nwl9 2879 40 | 0.00 2134 32 0.02 | 0.00 (1) 0.00 (1) 140.07 38.00 0.57 1323 32 | 6341

Table 3.6: Fast reduction w/o SUMC followed by one SUMC, Set 1, part 2

Original lex Fast no SUMC Expensive redn fns SUMC reduction Final size Yonzs
name cols rows | time cols rows time CLEXT DOMR av bl % time cols rows | deld
nw20 685 22 0.00 536 22 0.00 0.00 (1) 0.00 (1) 44.36 33.02 0.06 359 22 | 49.11
nw2l 577 25 0.00 421 25 0.01 0.01 (1) 0.00 (1) 32.08 49.88 0.02 211 25 | 68.70
nw22 619 23 0.00 521 23 0.00 0.00 (1) 0.00 (1) 43.73 3493 0.02 339 23 | 46.51
nw23 711 19 0.00 462 18 0.00 0.00 (1) 0.00 (1) 52.38 42.64 0.20 265 18 | 66.72
nw24 1366 19 0.00 926 19 0.01 0.01 (1) 0.00 (1) 106.38 65.77 0.31 317 19 | 79.17
nw2) 1217 20 0.00 844 20 0.01 0.01 (1) 0.00 (1) 87.11 61.26 0.17 327 20 | 76.50
nw26 771 23 0.00 514 21 0.00 0.00 (1) 0.00 (1) 57.88 37.74 0.15 320 21 | 60.64
nw27 1355 22 0.00 817 22 0.03 0.03 (1) 0.00 (1) 73.80 48.84 0.13 418 22 | 73.76
nw28 1210 18 0.00 598 18 0.02 0.02 (2) 0.00 (2) 69.75 27.26 0.40 435 18 | 67.27
nw29 2540 18 0.01 2034 18 0.01 0.00 (1) 0.00 (1) 242.38 16.81 1.56 1692 18 | 32.88
nw30 2653 26 0.01 1878 26 0.03 0.02 (1) 0.00 (1) 172.80 50.21 1.09 935 26 | 66.11
nw3l 2662 26 0.00 1728 26 0.06 0.06 (1) 0.00 (1) 173.00 36.34 0.59 1100 26 | 59.49
nw32 294 19 0.00 251 18 0.01 0.00 (1) 0.00 (1) 25.56 43.82 0.01 141 18 | 54.24
nw33 3068 23 0.01 2308 23 0.07 0.06 (1) 0.00 (1) 239.00 2.64 0.06 2247 23 | 27.00
nw34 899 20 0.00 718 20 0.02 0.02 (1) 0.00 (1) 72.11 4276 0.38 411 20 | 58.00
nw3b 1709 23 0.00 1191 23 0.09 0.09 (2) 0.00 (2) 99.73 47.69 2.06 623 23 | 63.52
nw36 1783 20 0.00 1246 20 0.06 0.06 (1) 0.00 (1) 146.50 136 0.04 1229 20 | 33.48
nw37 770 19 0.00 639 19 0.01 0.00 (1) 0.00 (1) 59.70 50.55 0.45 316 19 | 62.07
nw38 1220 23 0.00 762 21 0.06 0.06 (2) 0.00 (2) 86.62 14.30 1.12 653 21 | 48.23
nw39 677 25 0.00 565 25 0.01 0.01 (1) 0.00 (1) 42.50 49.20 0.05 287 25 | 60.75
nw40 404 19 0.00 336 19 0.00 0.00 (1) 0.00 (1) 31.30 28.87 0.03 239 19 | 42.87
nw4l 197 17 | 0.00 177 17 0.00 0.00 (1) 0.00 (1) 15.09 51.41 0.01 86 17 | 61.08
nw42 1079 23 0.00 818 23 0.03 0.02 (1) 0.00 (1) 73.80 23.72 0.20 624 23 | 41.14
nw43 1072 18 0.01 982 17 0.01 0.00 (1) 0.00 (1) 99.11 44.30 0.51 547 17 | 51.39
us01 | 1053137 145 | 22.09 | 339464 86 125.71 | 117.59 (1) 3.89 (2) | 14740.19 0.00 0.00 | 339464 86 | 77.64
us02 13635 100 0.13 5996 45 1.45 1.33 (2) 0.04 (3) 458.08 0.87 4.81 5944 45 | 78.38
us03 85552 77 1.00 20632 50 9.65 8.96 (1) 0.23 (3) 2083.89 0.00 0.00 20632 50 | 82.82
us04 28016 163 0.27 4207 99 1.02 0.65 (2) 0.25 (5) 223.35 1.59 0.08 4140 99 | 89.07

€8

84

Table 3.7: Maximal reduction w/o SUMC followed by one SUMC, Set 3

Original lex Maximal no SUMC | Expensive redn fns SUMC reduction Final size Yonzs
name cols rows | time cols rows time | CLEXT DOMR av bl % time cols rows deld
v0415 7684 1518 | 0.05 4337 763 0.43 | 0.00 (2) 0.28 (2) 8.93 0.99 0.01 4294 763 | 45.05
v0416 19020 1771 | 0.13 | 11099 1001 0.91 | 0.00 (2) 0.66 (2) 27.01 67.29 31.19 3631 1001 | 87.92
v0417 | 143317 1765 | 1.60 | 55584 894 2.93 | 0.01 (2) 2.38(2) | 1089.24 0.00 0.00 | 55584 894 | 61.14
v0418 8306 1765 | 0.05 4827 953 0.62 | 0.00 (2) 0.41 (2) 7.56 1.33 0.02 4763 953 | 43.96
v0419 15709 1626 | 0.11 7744 845 1.27 | 0.01 (3) 0.97 (3) 19.21 62.62 19.72 2895 845 | 89.33
v0420 4099 958 | 0.02 2679 591 0.27 | 0.00 (2) 0.18 (2) 6.59 1.57 0.01 2637 591 | 36.49
v0421 1814 952 | 0.01 1176 464 0.14 | 0.00 (2) 0.08 (2) 3.05 0.43 0.00 1171 464 | 37.29
v1616 67441 1439 | 0.52 | 53073 1285 2.07 | 0.02 (2) 1.47 (2) 93.85 49.11 102.07 | 27011 1285 | 65.84
v1617 | 1136556 1619 | 0.94 | 85759 1458 3.46 | 0.02 (2) 2.60 (2) 136.40 48.68 161.91 | 44009 1458 | 65.69
v1618 | 146715 1603 | 1.30 | 90998 1434 3.18 | 0.02 (2) 2.24 (2) 170.28 2.36 19.61 | 88852 1434 | 37.44
v1619 | 105822 1612 | 0.86 | 86032 1479 3.66 | 0.04 (2) 2.83 (2) 145.29 48.54 152.05 | 44274 1479 | 63.30
v1620 | 115729 1560 | 0.95 | 89624 1412 3.47 | 0.03 (2) 2.67 (2) 160.09 2.33 6.32 | 87536 1412 | 22.32
v1621 24772 938 | 0.17 | 16730 859 0.53 | 0.00 (2) 0.32(2) 38.62 41.63 4.24 9765 859 | 66.02
v1622 13773 859 | 0.08 | 11123 787 0.41 | 0.00 (2) 0.25 (2) 25.88 31.49 1.85 7620 787 | 50.84
t0415 7254 1518 | 0.05 3198 894 4.35 | 3.80 (2) 0.37(2) 10.00 0.06 0.02 3196 894 | 57.69
t0416 9345 1771 | 0.06 3171 992 4.37 | 3.81 (2) 0.41(2) 8.18 0.09 0.01 3168 992 | 68.43
t0417 7894 1765 | 0.06 3572 926 5.31 | 4.74 (2) 0.38 (2) 11.13 0.14 0.02 3567 926 | 56.80
t0418 8676 1765 | 0.06 3931 1015 7.27 | 6.45 (2) 0.67 (3) 13.30 0.05 0.01 3929 1015 | 55.99
t0419 9362 1626 | 0.06 3176 912 232 | 1.86 (1) 0.34 (2) 9.60 0.22 0.01 3169 912 | 69.10
£0420 4583 958 | 0.03 1862 574 0.93 | 0.68 (1) 0.20 (3) 8.38 0.00 0.01 1862 574 | 62.76
t0421 4016 952 | 0.03 1669 570 141 | 1.22 (2) 0.13 (2) 7.09 0.06 0.00 1668 570 | 62.62
t1716 56865 467 | 0.69 | 11952 467 0.62 | 0.47 (1) 0.08 (1) 42.86 0.00 0.03 | 11952 467 | 75.47
t1717 73885 551 | 0.95 | 16428 551 0.72 | 0.49 (1) 0.14 (1) 54.38 0.00 0.05 | 16428 551 | 73.87
t1718 67796 523 | 0.89 | 16310 523 0.76 | 0.54 (1) 0.13 (1) 53.78 0.00 0.04 | 16310 523 | 72.47
t1719 72520 556 | 0.95 | 15846 556 0.79 | 0.53 (1) 0.16 (1) 51.15 0.00 0.05 | 15846 556 | 73.57
t1720 69134 538 | 0.86 | 16195 538 0.72 | 0.48 (1) 0.15 (1) 50.81 0.00 0.05 | 16195 538 | 72.89
t1721 36039 357 | 0.37 9043 357 0.22 | 0.12 (1) 0.05 (1) 41.74 0.00 0.02 9043 357 | 70.37

Table 3.8: Fast reduction w/o SUMC followed by one SUMC, Set 3

Original lex Fast no SUMC Expensive redn fns SUMC reduction Final size Yonzs
name cols rows | time cols rows time | CLEXT DOMR av bl % time cols rows deld
v0415 7684 1518 | 0.05 4337 763 0.34 | 0.01 (1) 0.15 (1) 8.93 0.99 0.01 4294 763 | 45.05
v0416 19020 1771 | 0.13 | 11099 1001 0.66 | 0.00 (1) 0.35 (1) 27.01 67.29 31.17 | 3631 1001 | 87.92
v0417 | 143317 1765 | 1.60 | 55584 894 1.85 | 0.01 (1) 1.23 (1) | 1089.24 0.00 0.00 | 55584 894 | 61.14
v0418 8306 1765 | 0.05 4827 953 0.50 | 0.00 (1) 0.22 (1) 7.56 1.33 0.01 4763 953 | 43.96
v0419 15709 1626 | 0.11 ey 847 0.60 | 0.01 (1) 0.35 (1) 19.16 62.60 19.83 2897 847 | 89.32
v0420 4099 958 | 0.02 2679 591 0.20 | 0.00 (1) 0.10 (1) 6.59 1.57 0.01 2637 591 | 36.49
v0421 1814 952 | 0.01 1176 464 0.12 | 0.00 (1) 0.05 (1) 3.05 0.43 0.00 1171 464 | 37.29
v1616 67441 1439 | 0.52 | 53073 1285 1.33 | 0.01 (1) 0.74 (1) 93.85 49.11 102.05 | 27011 1285 | 65.84
v1617 | 113655 1619 | 0.94 | 85759 1458 2.19 | 0.01 (1) 1.30 (1) 136.40 48.68 161.99 | 44009 1458 | 65.69
v1618 | 146715 1603 | 1.30 | 90998 1434 2.06 | 0.02 (1) 1.13 (1) 170.28 2.36 19.57 | 88852 1434 | 37.44
v1619 | 105822 1612 | 0.86 | 86032 1479 2.28 | 0.01 (1) 1.42 (1) 145.29 48.54 152.08 | 44274 1479 | 63.30
v1620 | 115729 1560 | 0.95 | 89624 1412 2.18 | 0.01 (1) 1.32 (1) 160.09 2.33 6.32 | 87536 1412 | 22.32
v1621 24772 938 | 0.17 | 16730 859 0.38 | 0.00 (1) 0.16 (1) 38.62 41.63 4.25 9765 859 | 66.02
v1622 13773 859 | 0.08 | 11123 787 0.30 | 0.00 (1) 0.12 (1) 25.88 31.49 1.86 7620 787 | 50.84
t0415 7254 1518 | 0.05 3199 894 1.26 | 0.87 (1) 0.19 (1) 10.00 0.06 0.01 3197 894 | 57.68
t0416 9345 1771 | 0.06 3186 993 1.29 | 090 (1) 0.22 (1) 8.24 0.09 0.01 3183 993 | 68.24
t0417 7894 1765 | 0.06 3653 926 1.52 | 1.06 (1) 0.21 (1) 11.54 0.14 0.02 3648 926 | 55.77
t0418 8676 1765 | 0.06 3937 1015 1.92 | 1.50 (1) 0.24 (1) 13.33 0.05 0.02 3935 1015 | 55.91
t0419 9362 1626 | 0.06 3176 912 1.30 | 0.90 (1) 0.18 (1) 9.60 0.22 0.01 3169 912 | 69.10
t0420 4583 958 | 0.03 1862 574 0.41 | 0.25 (1) 0.07 (1) 8.38 0.00 0.01 1862 574 | 62.76
t0421 4016 952 | 0.03 1669 570 0.34 | 0.19 (1) 0.07 (1) 7.09 0.06 0.00 1668 570 | 62.62
t1716 56865 467 | 0.69 | 11952 467 0.23 | 0.07 (1) 0.08 (1) 42.86 0.00 0.03 | 11952 467 | 75.47
t1717 | 73885 551 | 0.95 | 16428 551 0.32 | 0.07 (1) 0.14 (1) 54.38 0.00 0.05 | 16428 551 | 73.87
t1718 67796 523 | 0.89 | 16310 523 0.30 | 0.06 (1) 0.12 (1) 53.78 0.00 0.05 | 16310 523 | 72.47
t1719 72520 556 | 0.95 | 15846 556 0.32 | 0.04 (1) 0.16 (1) 51.15 0.00 0.05 | 15846 556 | 73.57
t1720 69134 538 | 0.86 | 16195 538 0.29 | 0.05 (1) 0.14 (1) 50.81 0.00 0.05 | 16195 538 | 72.89
t1721 36039 357 | 0.37 | 9043 357 0.13 | 0.03 (1) 0.05 (1) 41.74 0.00 0.02 9043 357 | 70.37

g8

86

Table 3.9: Maximal reduction w/o SUMC followed by one SUMC, Sets 2, 4

Original lex Maximal no SUMC Expensive redn fns SUMC reduction Final size Yonzs

name cols rows | time cols rows time CLEXT DOMR av bl % time cols rows deld
0321.4 71201 1202 | 0.77 | 36181 1201 148.27 | 144.91 (4) 2.48 (2) | 187.16 0.01 1.27 | 36179 1201 | 35.89
0331.3 45637 664 | 0.44 | 22125 664 12.96 12.39 (1) 0.43 (1) | 189.87 0.03 0.72 | 22118 664 | 37.07
0331.4 46915 664 | 0.47 | 21626 664 9.02 8.58 (1) 0.31 (1) | 162.32 0.10 0.70 | 21605 664 | 41.28
0341.3 45800 658 | 0.43 | 21163 656 14.37 13.25 (1) 0.82 (2) | 156.22 0.01 0.57 | 21161 656 | 38.62
0341.4 46508 658 | 0.48 | 20315 655 8.45 7.58 (1) 0.62 (2) | 139.61 0.01 0.49 | 20312 655 | 41.82
0351.3 64953 1156 | 0.72 | 34446 1156 42.55 40.86 (1) 1.40 (1) | 196.38 0.01 1.68 | 34442 1156 | 33.50
0351.4 69922 1156 | 0.75 | 33779 1147 34.65 31.40 (1) 2.39 (2) | 183.16 0.02 2.57 | 33771 1147 | 38.77
nf260 | 276752 2198 | 4.02 | 23751 1349 26.37 1.81 (2) 23.62 1(8) 34.32 0.00 0.24 | 23751 1349 | 94.00
spl 6954 204 | 0.05 6807 198 6.66 6.54 (2) 0.07 (3) | 219.39 0.00 0.04 6807 198 4.61
sp2 3686 173 | 0.02 3529 150 2.07 2.00 (2) 0.03 (3) | 139.13 0.00 0.02 3529 150 | 16.38
sp3 1668 111 | 0.01 969 73 1.06 1.03 (4) 0.00 (4) 79.55 0.00 0.00 969 73 | 61.41
sp4 9144 368 | 0.08 8976 308 12.54 12.11 (2) 0.34 (4) | 172.21 0.00 0.04 8976 308 | 16.74
spd 13718 684 | 0.11 | 13045 628 30.53 28.81 (2) 1.46 (4) | 10491 049 0.24 | 12981 628 | 12.24
sp6 50722 2504 | 0.50 | 41061 2200 483.07 | 453.15 (4) 27.34 (7) 90.61 0.00 0.61 | 41061 2200 | 25.18
sp7 43459 2991 | 0.44 | 36507 2466 454.89 | 375.05 (3) 76.57 1(8) 71.90 0.00 0.27 | 36507 2466 | 26.93
sp8 91123 4810 | 0.91 | 72361 3810 783.98 | 670.68 (3) 104.38 (9) 85.24 0.00 0.68 | 72359 3810 | 30.85
sp9 50013 2917 | 0.45 | 28992 1832 211.91 | 192.57 (4) 17.68 (9) 77.44 0.00 0.18 | 28992 1832 | 61.97
spl0 13128 781 | 0.09 4452 369 9.86 8.88 (6) 0.81 (8) 53.56 0.00 0.06 4452 369 | 81.24
spll 2775 104 | 0.01 528 64 1.47 1.45 (6) 0.00 (6) 60.12 0.00 0.00 528 64 | 88.14
spl2 84746 3218 | 0.94 | 74467 2811 627.61 | 547.73 (2) 76.07 (9) | 112.10 0.00 2.31 | 74467 2811 | 20.43
spl4 47214 3217 | 0.64 | 42828 2743 370.06 | 321.93 (2) 45.21 (9) 64.59 0.00 0.29 | 42828 2743 | 20.20

Table 3.10: Fast reduction w/o SUMC followed by one SUMC, Sets 2, 4

Original lex Fast no SUMC Expensive redn fns SUMC reduction Final size Y%onzs

name cols rows | time cols rows time CLEXT DOMR av bl % time cols rows deld
0321.4 71201 1202 | 0.77 | 36184 1201 17.69 15.69 (1) 1.24 (1) | 187.17 0.01 1.25 | 36182 1201 | 35.89
0331.3 45637 664 | 0.44 | 22125 664 4.92 4.34 (1) 0.42 (1) | 189.87 0.03 0.71 | 22118 664 | 37.07
0331.4 46915 664 | 0.47 | 21626 664 3.27 2.83 (1) 0.30 (1) | 162.32 0.10 0.69 | 21605 664 | 41.28
0341.3 45800 658 | 0.43 | 21163 656 5.80 5.10 (1) 041 (1) | 156.22 0.01 0.56 | 21161 656 | 38.62
0341.4 46508 658 | 0.48 | 20315 655 3.15 2.58 (1) 0.31 (1) | 139.61 0.01 0.48 | 20312 655 | 41.82
0351.3 64953 1156 | 0.72 | 34446 1156 18.22 16.45 (1) 1.40 (1) | 196.38 0.01 1.67 | 34442 1156 | 33.50
0351.4 69922 1156 | 0.75 | 33779 1147 14.31 12.29 (1) 1.18 (1) | 183.16 0.02 2.60 | 33771 1147 | 38.77
nf260 | 276752 2198 | 4.02 | 42652 1984 12.41 8.74 (1) 2.64 (1) 49.10 0.00 0.39 | 42652 1984 | 85.32
spl 6954 204 | 0.05 6867 198 1.02 0.93 (1) 0.02 (1) | 221.39 0.00 0.05 6867 198 3.89
sp2 3686 173 | 0.02 3576 151 0.36 0.31 (1) 0.01 (1) | 141.13 0.00 0.02 3576 151 | 14.37
sp3 1668 111 | 0.01 1159 78 0.12 0.10 (2) 0.01 (3) 81.08 0.00 0.00 1159 78 | 51.80
sp4 9144 368 | 0.08 9020 309 1.73 1.50 (1) 0.08 (1) | 173.06 0.00 0.04 9020 309 | 15.98
spd 13718 684 | 0.11 | 13211 629 5.88 5.27 (1) 0.39 (1) | 106.20 0.48 0.29 | 13148 629 | 10.46
sp6 50722 2504 | 0.50 | 41514 2212 57.92 46.48 (1) 8.82 (2) 91.81 0.00 1.02 | 41512 2212 | 24.10
sp7 43459 2991 | 0.44 | 37700 2535 64.48 52.25 (1) 9.89 (2) 73.61 0.00 0.28 | 37700 2535 | 22.40
sp8 91123 4810 | 0.91 | 72683 3846 134.26 98.90 (1) 25.80 (2) 85.31 0.00 0.67 | 72681 3846 | 29.93
sp9 50013 2917 | 0.45 | 29845 1864 33.00 23.06 (1) 7.59 (3) 79.01 0.00 0.20 | 29845 1864 | 60.01
spl0 13128 781 | 0.09 4644 382 1.21 0.53 (1) 0.48 (3) 53.08 0.00 0.06 4644 382 | 80.24
spll 2775 104 | 0.01 760 72 0.38 0.35 (3) 0.00 (3) 78.00 0.00 0.01 760 72 | 80.58
spl2 84746 3218 | 0.94 | 74745 2831 155.25 | 132.98 (1) 18.82 (2) | 112.51 0.00 2.09 | 74745 2831 | 19.46
spl4 47214 3217 | 0.64 | 43056 2764 73.23 59.14 (1) 10.92 (2) 64.92 0.00 0.29 | 43056 2764 | 19.19

L8

Chapter 4

Feasible solution heuristics

A high quality (integral) feasible solution is essential to keep the size of the search
tree manageable in a branch-and-bound framework. A method for finding such a
feasible solution can be used both before branch-and-bound is started and later on
at a search tree node. Thus it is desirable to find a very efficient procedure that
can be applied many times without slowing down the exact solution method.

Finding good feasible solutions for Set Partitioning Problems is notoriously diffi-
cult since the problem is usually very tightly constrained, although much depends on
the generators used to formulate the problems. In practice very expensive dummy
columns are often included in the matrix to provide a starting feasible solution, but
this solution is usually not sufficient for bounding.

In what follows we will discuss LP relaxation based feasible solution heuristics,
first in general, then our application in detail. We will also show how to iterate

these heuristics and reduced cost fixing to improve the quality of the feasible solution.

88

89

Finally, we indicate the difficulties associated with efficiently (re)solving LPs during
the algorithm and conclude with computational results. A detailed description of the

parameters used during our feasible solution heuristic can be found in Appendix C.

4.1 LP relaxation based heuristics

LP relaxation based feasible solution heuristics refers to methods where variables are
heuristically set to their upper or lower bounds based on the most recent solution
to the LP relaxation, the LP is re-solved and the process is repeated until either a
feasible solution is found or the problem becomes infeasible. These methods can be
thought of as a quick way to get to a leaf of the complete enumeration tree. Only
one thread from the root to a leaf is investigated (no backtracking) and several
levels are “skipped over” when multiple variables are set to their bounds.

Both the quality of the feasible solution delivered at the end (if any) and the
running time depend on the heuristic setting of variables. The running time is
usually dominated by the LP solver. Having fewer iterations means fewer LPs to
solve, but it usually also means setting more variables to their bounds at a time,
possibly compromising quality. On the other hand, setting fewer variables to their
bounds usually implies more iterations but does not necessarily increase the running
time since consecutive LP formulations might be “close enough” to use the optimal
solution of the first one to warmstart the second. Section 4.3 describes warmstarting
LPs in detail.

The popularity of these methods for the Set Partitioning Problem lies in the

90

fact that because of the highly constrained nature of the problem many rows and
columns can be eliminated from the formulation as a result of setting variables to
their bounds, especially to one. However, fixing variables to one might be “dan-
gerous” since essential columns could be eliminated causing the problem to become
infeasible. Problem size reduction methods, like those described in Chapter 3 are
utilized to propagate the effects of setting variables.

After a feasible solution has been obtained for the Set Partitioning Problem
(or in general, for any 0 — 1 integer programming problem), variables currently at
value 0 in the LP solution whose reduced cost is larger than the gap (the difference
between the objective value of the feasible solution and the lower bound provided
by the LP optimum) can be removed from the problem. A procedure that scans
through all the nonbasic variables and removes those with reduced costs larger
than the gap is called reduced cost firing. A subsequent application of problem
size reduction methods can further decrease the size of the matrix. Note that the
reduced problem has the same optimal value as the original one, thus it can replace
the original problem in the subtree rooted at the search tree node where the feasible
solution heuristic is invoked.

The quality of the feasible solution can be improved by combining the feasible
solution heuristic with the reduced cost fixing procedure in a loop that repeats
until there is nothing left in the matrix (the best feasible solution found so far
is optimal) or either the heuristic is not able to find a better feasible solution or
the reduced cost fixing cannot eliminate more variables. Since we are looking for

feasible solutions that strictly improve the best found so far, the gap in the reduced

91

cost fixing procedure could be decreased by the granularity (the minimal difference
between non-identical feasible solution values) of the problem. Note that computing
the granularity is a nontrivial task. However, a lower bound on the granularity can
just as well be used to decrease the gap (for instance, 1 is such a lower bound for
an SPP if all the objective function coefficients are integral).

The first detailed description of an LP based feasible solution heuristic (to our
knowledge) is due to Hoffman and Padberg ([HP93|). Their approach is based on
the assertion that small set partitioning problems are easy to solve. After applying
their problem size reduction routines an outer loop is entered where solving the LP
relaxation, fixing variables at level one in the LP optimal solution to one and setting
some further variables in an inner loop are repeated until either a feasible solution
is found or the problem becomes infeasible due to an “incorrect guess”. In the
inner loop the problem is first decomposed into smaller blocks by setting some more
variables to their bounds, then in each block variables with values closest to one
are set to one (and the effects of these settings are propagated by the problem size
reduction routines) until “enough” variables are fixed in the block. After a feasible
solution is found, variables are eliminated based on their reduced costs. Hoffman
and Padberg’s approach failed (did not deliver a feasible solution) on five of the 40
Set 1 problems that do not solve to integrality with the first LP relaxation. They
report only cumulative running times in a Branch-and-Cut setting (feasible solution
heuristic is run at several nodes of the search tree).

Borndorfer et al. ([BGKK97] and[Bor97]) implemented a similar “plunging

method” (as they refer to it) that repeats solving the LP relaxation, rounding frac-

92

tional values to the nearest integer and applying problem size reduction methods.
Their approach includes a pivoting technique that allows for an efficient LP warm-
start. Although applied both to the Set 1 and Set 3 problems, the quality of the
feasible solutions produced by this approach is not reported and only cumulative
running times are provided as for the previous approach.

An approach that explores more than just one thread of the complete enumer-
ation tree was developed by Laddnyi and Ralphs ([LR]). After the initial problem
size reduction a search tree is built where at each node the LP relaxation is solved,
variables at level one in the LP optimal solution are fixed to one, and then sub-
problems are created by selecting a few variables (usually those at nonzero levels
in a row’s support) asserting that exactly one of them is at level one in a feasible
solution and setting each of these variables in turn to one. The search tree is inves-
tigated in a depth first search manner. This approach produced a feasible solution
to all the Set 1 problems and found (but not proved) optimal solution for many.
The running times were comparable to the overall branch-and-cut running times
reported by Hoffman and Padberg.

Our approach is novel in the sense that it prefers fixing variables to zero instead
of to one and that it repeats the feasible solution heuristic and reduced cost fixing
modules in a loop. We not only found high quality feasible solutions to the Set 1
problems but also proved the optimality of the feasible solutions obtained for 30 of
the 40 problems and found the optimal solution but did not prove their optimality

for five more problems. Section 4.4 contains our computational results.

93
4.2 QOur algorithm

In this section we will discuss our feasible solution heuristic implementation, includ-

ing its integration into a loop with reduced cost fixing.

4.2.1 Heuristic variable fixing

The heart of our algorithm is the heuristic fixing phase; that is, a collection of
heuristics that fix variables to zero or one based on the results of the most recent LP
relaxation. The heuristic fixing phase has three major components. First, variables
currently at level one are addressed. Then pairs of rows that are likely to be covered
by the same column in an optimal solution are identified (this is called follow-on
fizing). Third, some “unattractive” variables are eliminated from the problem. All
the subroutines used here only mark variables to be fixed to one or zero, the actual

eliminations (and propagation of their effect) are carried out by Reduce().

Variables at level one

Probably the most difficult question for an LP based feasible solution heuristic is
what to do with variables at level one in the LP relaxation. Depending on how
the problem was generated, the number of variables at level one compared to all
those at nonzero levels might be high or small (see Section A.2). Certainly the
most popular approach is to fix these variables to one (and even to round up values
that are near to one). Although this would be justified for a special case of (SP),

the node packing problem (Section 1.3), since in that case there exists an optimal

94

solution in which these variables take value one ([NT75]), this is not valid for the
set packing or set partitioning problems in general. However, fixing variables to one
might cause infeasibility, as we can see in our computational results (Section 4.4).
We have implemented this approach along with three others; the particular one
used is controlled by a parameter.

The second approach is slightly less aggressive than fixing these variables to one.
When a variable is fixed to one we remove all columns that intersect any row in
the variable’s support. On the other hand in the less aggressive approach we retain
those columns that are common in all rows in the variable’s support; that is, we
delete the symmetric difference of row supports, for rows intersecting the variable’s
column. This is really an adaptation of the follow-on fixing idea that we will discuss
below.

The third approach is to treat variables at level one the same way as other
variables at nonzero level, that is, do nothing with them at this point. The fourth
approach is an adaptive strategy, a mix of the three that decides which one is used
based on the proportion of variables at level one compared to all the variables at

nonzero levels.

Follow-on fixing

The original idea of follow-on fixing is folklore in crew scheduling, an early reference
to it in a branch-and-bound setting can be found in [RF87]. We are given the
schedule, say, of an airline for a given time interval. The schedule contains the

departure/arrival times and stations for each flight segment, along with the specific

95

type of aircraft to fly that segment. Our goal is to assign crews to the flight segments
as cheaply as possible, complying with all rules and regulations. Modeled as a set
partitioning problem, the rows of the matrix correspond to flight segments while
the columns describe possible crew trips (Section 1.1). After the LP relaxation
is solved, primal values of the columns in a row’s support can be interpreted as
likelihoods with which the corresponding crew trips cover the flight segment. Since
it is preferable to keep a crew with the same aircraft during a workday, connecting
flight segments (same aircraft) are considered follow-ons if they are likely to be
covered by the same crew trips. Follow-on flight segments are locked (considered as
one segment from now on) and all crew trips covering only one of them are removed
from the problem.

Although in a general set partitioning problem usually no ordering can be im-
posed on the rows of the matrix, the follow-on idea can still be exploited. For any
pair of rows we can determine the likelihood that they are covered by the same col-
umn by accumulating the primal solution values for all columns intersecting both
rows. If this likelihood is large enough (larger than a certain threshold), all the
columns that cover only one of the rows are removed from the matrix, causing the
two rows to become identical. Notice that if a variable is at level one, the rows in
its support are follow-ons.

In our implementation the follow-on fixing procedure is optional, it can be en-
abled /disabled by a parameter. Comparing all row pairs in a matrix might be too
costly, so we select a subset of the rows (the selection is either random or it is based

on dual values), and compare all row pairs in this subset. The fraction of rows cho-

96

sen for this subset and upper and lower bounds for the threshold are also controlled
through parameters. To keep the implementation fast and simple, follow-on fixing
is carried out in several passes of comparing rows and applying Reduce(). Rows
determined to be follow-ons in one pass are not compared with other rows before
the matrix is reduced. The threshold is set to the upper bound when the follow-on
fixing procedure is entered, then it is gradually decreased down to the lower bound

if the number of columns eliminated is not sufficient.

Removing unattractive variables

A cautious approach of fixing those variables to zero that are insignificant based on
the most recent LP relaxation is much less likely to eliminate optimal solutions than
fixing variables to one. In our implementation the significance of the variables is
determined by their reduced costs (the lower the reduced cost the more significant
the variable), but other measures, like the ratio of the original objective function
coefficient to the number of nonzeros in the column, could be used.

To make sure that the problem does not become infeasible due to an empty
row, we control the deletion process as follows. The rows of the matrix are enu-
merated one by one, (the order is either random, or it is based on dual values, as
determined by a parameter), and some of the least attractive variables are marked
for removal. The procedure terminates if a certain fraction of the rows has been
already considered, or enough variables are marked for removal.

There are many ways to decide which variables to delete from a certain row. We

have experimented with several ideas; two of these proved to be acceptable. The first

97

approach simply marks for removal a given fraction of the least significant variables
that are at level zero in the current LP relaxation. Note that basic variables at zero
level may be marked with this procedure, although they can be optionally unmarked
later on.

In the second approach the variables in a row’s support are considered from most
significant to least significant, until their sum in the current LP solution surpasses
some predetermined value (threshold). When this happens, a given fraction of the
rest of the variables (starting with the least significant) are marked for removal.
If the threshold is less than one then variables at nonzero levels may be marked
for deletion, making the heuristic more aggressive. However, deletion of nonzero
variables can be disabled through a parameter. On the other hand, if the threshold

is one this approach will yield very similar results as the previous approach.

4.2.2 Unmarking variables

As we have seen in the previous section, variables to be deleted are marked only
during the heuristic fixing phase; their actual elimination is carried out by Reduce()
afterwards. We provide an opportunity to unmark some “important” columns before
Reduce() is invoked. Note that this will not prohibit their removal by Reduce() if
implied by some reductions.

Columns with only a few nonzeros are very often essential for integral feasibility.
If the corresponding variable is of high cost then this variable will be unattractive in
at least the first few LP relaxations and it is likely to be marked during the heuristic

fixing phase. (Including expensive short columns to ensure integral feasibility is

98

typical for a number of problem instance generators.) A parameter determines up to
how many nonzeros a column can contain in order to be spared during the heuristic
fixing phase. If the parameter is set to zero then no column will be unmarked.
Protecting columns with one or two nonzeros is profitable, while values four and
above are impractical since very often in this case no columns are left marked for
deletion when the matrix is already small. To avoid a situation where all marked
variables are unmarked by this procedure the parameter is temporarily decreased
(but not below one) until some variables are left marked.

We may also unmark variables which are basic in the current LP optimal solu-
tion. A parameter enables this option. A different parameter can enable/disable
the deletion of variables at nonzero level (which are always basic). This option
can be used when we wish to remove all nonbasic variables from a row’s support.

Protecting basic variables also provides a smoother and faster LP warmstart.

4.2.3 Overview of our algorithm

In this section we summarize the general flow of our algorithm, see Figure 4.1 for
an outline.

First our problem size reduction algorithm Reduce(), is invoked. If Reduce() re-
turns with a feasible (hence optimal) solution or it has determined that the problem
is infeasible, we are done. The initial problem size reduction is followed by solving
the LP relaxation (variables are nonnegative instead of binary) of the reduced prob-
lem. If the LP relaxation has an integral optimal solution or it is infeasible then we

are also done.

Feasible Solution Heuristic
Input: A, c, parameters
OQutput: feasibility status, A’, c¢’, ONES, MERGES

invoke Reduce(); if integral opt soln found or infeas, return
solve LP relaxation; if integral opt soln found or infeas, return

while (iteration limit not reached) {
copy current problem into tmp problem
while (feasibility of tmp problem is not known) {
invoke heuristics to fix variables in tmp problem
if no vars fixed: heur failed (weak par setting), return
use Reduce() to propagate effects of fixing
if integral feas soln found or infeas, break
solve LP relaxation of reduced tmp problem
if integral feas soln found or infeas, break
if original problem is feas invoke reduced cost fixing
on tmp problem

if integral feas soln found above, compare w/ best found so far
if better, update; if worse, return.

if infeas detected above, heur failed (aggressive par setting),
return

otherwise we have a (better) feasible solution

do {
invoke reduced cost fixing on current problem
if no vars fixed
if first time since (better) feas soln found, return
ow break out from this loop
use Reduce() to propagate effects of fixing
if integral feas soln found or infeas, optimal, return
solve LP relaxation of reduced current problem
if integral feas soln found or infeas, optimal, return
} while (enough variables have been eliminated)

}

end

Figure 4.1: Outline of Feasible Solution Heuristic

99

100

Next a major loop is entered where first we attempt to find a feasible solution
to the current problem (the most recent reduced formulation that has the same
optimal solution as the original problem) using a variety of heuristics, then, if we
succeed, eliminate variables based on their reduced costs in the current LP relaxation
(reduced cost fixing). This major loop is repeated until: (i) the heuristics in the first
part of the major loop fails to provide a (better) feasible solution, or (i7) an integral
solution to the current problem (thus optimal) is found as a result of the most recent
reduced cost fixing, or (iii) a pre-set iteration limit is reached. Before the algorithm
terminates, the best feasible solution found (if any) is displayed and the remainder
of the problem is saved. Note that it is possible that the best feasible solution found
is in fact optimal but the remainder problem is nonempty (and it might even be
infeasible); this simply means that not all variables could be eliminated based on
their reduced costs.

Note that at the top of the major loop we have a formulation that has the same
optimal value as the original problem. The search for a feasible solution to the
current problem starts with creating a temporary copy to which the heuristic will
be applied. The temporary problem is used since the heuristic fixing phase might
eliminate some columns and/or rows leading to the loss of all optimal solutions.
Then a loop that repeats heuristic fixing of variables (see details below), propagating
the effects of fixing using Reduce(), and re-solving the LP relaxation (if necessary),
is entered. If a feasible solution to the original problem is known, variables are also
eliminated based on their reduced costs after the LP relaxation is re-solved. This

loop repeats until the heuristic is not able to fix any variables, a feasible solution

101

to the temporary problem is found, or the temporary problem becomes infeasible.

The execution of the heuristic is determined by a set of parameters. If the
heuristic was not able to fix any variables then the parameter settings were too weak.
On the other hand, if the temporary problem became infeasible, the heuristic was
invoked with the parameters set too aggressively. Our algorithm terminates in both
cases, although the inner loop could be restarted after adjusting the parameters.

If the algorithm did not terminate until this point, a (better) feasible solution has
been found. In the second part of the major loop variables in the current problem are
eliminated repeatedly based on their reduced costs, until no more such reduction is
possible (in practice, until no more than a certain percentage of variables is deleted).
Reduce() is invoked to propagate the effects of this fixing and then the LP relaxation
of the reduced (current) problem is re-solved. If either Reduce() or the LP solver
finds the problem (integral) feasible then the best feasible solution found so far is
optimal since all the reductions to the current problem preserve the optimal value.
Also, if the current problem is found to be infeasible by Reduce() or by the LP
solver, the best feasible solution found so far is again optimal. This is because we
aim for a strictly better feasible solution during reduced cost fixing, as described
earlier. If no reduction was possible the first time reduced cost fixing is invoked
after a (better) feasible solution has been found then the algorithm terminates.

If only the first feasible solution is desired then the iteration limit can be set to 1.
In our experience the major loop repeats only a few times for an average instance,
and every subsequent pass is considerably faster than the previous one since reduced

cost fixing usually eliminates many columns. Most of the additional time after the

102

the first feasible solution is found is spent in resolving the LP relaxations after

reduced cost fixing.

4.3 Solving the LP relaxations (warmstart)

Our experiments were carried out using CPLEX v4.0.9 ([CPX95]). When inter-
preting observations related to solving LPs (especially to warmstarting) we have
to keep in mind that using other LP solvers might result in significantly different
conclusions.

In our implementation we have experimented with the primal simplex, dual
simplex and barrier (with and without crossover) methods. Since set partitioning
problems are highly degenerate in general, the primal simplex method performs
very poorly on them. While the barrier method was slightly slower on the smaller
problems than the dual simplex method, it is superior to dual simplex on medium
and large problems. We have used the barrier method with dual crossover in our final
experiments. (Reportedly, the dual simplex method has been improved significantly
in CPLEX v6.0 and its performance is comparable to that of the barrier method on
not only the smaller problems, [Bix98].)

As we have mentioned earlier, information from the previous LP can be used
to warmstart the next LP (instead of solving it from scratch) if the formulation
changed only a little. It might also be possible to construct an optimal solution
without re-solving the LP if certain important columns and rows were not removed

from the matrix. In CPLEX v4.0.9, the simplex methods can be warmstarted only

103

using basis information, while barrier methods can use basis information and/or a
primal-dual solution pair (primal-dual worked the best). In our implementation a
parameter determines what warmstart information to use; there is no warmstart if
this parameter is set to zero.

The effectiveness of the warmstart depends heavily on the implementation of the
specific warmstart algorithm in the LP solver. Since we have no access to this infor-
mation we made an effort to provide a high quality (near optimal) starting basis and
primal-dual solution pair to the LP solver. We keep a copy of the basis information
and primal-dual solution pair for both the current and temporary problems. Every
time the corresponding LP relaxation is re-solved the optimal basis information and
primal-dual solution pair are copied; and whenever Reduce() is invoked we tailor
these copies to the new formulation. In what follows we discuss these updates in
detail.

In CPLEX the basis information consists of the basis status of all the structural
and artificial variables (these latter are added by CPLEX). To provide basis infor-
mation for the warmstart we have to designate which variables are basic and which
are nonbasic (and at which bound). Ideally, the columns corresponding to the vari-
ables designated to be basic should be linearly independent and the number of these
variables should be exactly the number of rows. However, CPLEX is able to start
from any basis information, it will eliminate dependencies from among the columns
designated to be basic and extends the remaining set of independent columns into a
valid basis. In our implementation we have included an option that lets us re-solve

the LP from scratch instead of warmstarting if we think the basis information we

104

can provide is far from a valid basis.

We update the basis information from the previous LP by keeping the basis sta-
tus of all variables (structural and artificial) that were not deleted or merged and
setting the basis status of merged columns to be basic if the column was merged
from formerly basic columns, and nonbasic at lower bound otherwise. Note that if
none of the following three events occur then this new basis information provides
a valid basis (which also turns out to be optimal as we will see below). First, a
basic structural variable is deleted, leaving too few independent columns (variables
marked as basic) in the basis. Second, a basic structural variable is merged with
some nonbasic variables; in this case the resulting column might not be indepen-
dent from the rest of the columns in the former basis so we designate this merged
variable nonbasic in the new basis information which again leaves too few indepen-
dent columns. The last but probably most important case is when a row with a
nonbasic artificial variable is deleted from the formulation since this might leave us
with linearly dependent columns in the basis. Others (e.g., [BGKK97]) solve these
problems by not removing basic structural variables, disallowing merging and also
deleting only those rows whose artificial variables can be pivoted into the basis with
a degenerate pivot.

The primal and dual solutions consist of values for both the structural and ar-
tificial variables. Primal solution values for structural variables are updated by
averaging the values of variables that make up a column (columns could be merged
columns); while dual solution values are approximated by adding the corresponding

values. Primal solution values for artificial variables are computed explicitly, while

105

dual values remain unchanged. If none of the three cases above occurs then the
primal-dual pair created with these rules will be primal/dual feasible and the re-
duced costs of variables remain nonnegative if that was the case before the update;
that is, optimality is retained. In this case it is not even necessary to re-solve the

LP.

4.4 Computational results

After a considerable amount of experimenting we decided on the following parameter
settings (we refer to them as default settings) for our final runs. We used the barrier
method with dual crossover to solve the LP relaxations, with a primal-dual pair for
warmstarting. A lower bound on the granularity was set to .99 for the Set 1, 3
and 4 problems and .0099 for the Set 2 problems. We did not limit the number of
major iterations. In the heuristic fixing phase LP reoptimization is forced after 5%
of the columns are eliminated. The adaptive strategy was used for variables at level
one in the current LP relaxation (such variables were set to one if the ratio of the
variables at level one to all the variables at nonzero level was at least .75, and they
were skipped otherwise). Follow-on fixing was enabled, with the threshold starting
at .99 but not going below .59. At least 50% of the row pairs (and all for the smaller
problems) were examined during follow-on fixing, comparing those with the largest
absolute dual values first. Unattractive variables were removed only if the follow-on
fixing did not mark any variables for deletion. Up to 25% of the rows were selected

randomly for this procedure, marking 10% of the least attractive variables currently

106

at zero level for deletion. Columns with up to two nonzeros as well as basic variables
were protected. The whole algorithm was given a time limit of 7200 seconds.
Tables 4.1, 4.2, 4.3 and 4.4 summarize the results of this run for all four problem
sets. These tables contain the name, the optimal value of the first LP relaxation, the
optimal value for problems in Setl or the best feasible solution known for problems
in Set 3 (with a “*” if the solution is known to be optimal); the upper bound

“*7 if optimality was proved and “F”

obtained by our feasible solution heuristic (a
if our heuristic failed), the optimality gap ((z—2z*)/z*) for problems in Set 1 and the
integrality gap ((z — z)/z) for the rest of the problems (in [BGKK97] this latter is
computed as (Z— z)/Z for the Set 3 problems); the number of columns and rows left
in the matrix; the number of times the major loop and the heuristic fixing phase (we
refer to it as the minor loop) are repeated; the total time spent in the heuristic (less
the time needed to read in the problem instance and carry out the initial Reduce());
the time spent in solving LPs and in Reduce() (with their multiplicity); and finally
the first feasible solution found by the heuristic and the time spent until then.
The LP and Reduce() times make up almost all the time spent in the entire
procedure, so the heuristic and reduced cost fixing algorithms themselves are very
inexpensive. Usually the quality of the first feasible solution found is acceptable,
however, the strength of our algorithm is that with the repeated use of reduced cost
fixing the optimal solution is not only found but also proved for most of the “easy”
problems. The time spent in further major iterations is not more than 10% of the

total time, it is mostly used for (re)solving LP relaxations after reduced cost fixing.

A feasible solution has been found to all the Set 1 problems, optimality has been

107

proved for 30 of the 40 problems, the optimal solution was found but not proved
for 5 more problems (the remaining matrix is quite small for these problems), and
the optimality gap is below 2% for the other 5 problems. The remaining matrices
are very small for all but the 3 difficult problems (a01, aa04 and nw04). The small
problems are very often solved to optimality in one major iteration.

We have found a feasible solution within 2% of the first LP optimum for all
the vx problems. The t* problems seem to be more difficult; a feasible solution
(within 56 — 62% of the LP optimum) was found for half of the t17 problems, and
no parameter setting resulted in a feasible solution for any of the t04 problems.
The ratio of variables at level one to all variables at nonzero levels is very high for
the v* problems. The adaptive strategy takes advantage of this: feasible solutions
are found very quickly for the v04 problems (unfortunately all but one of the v16
problems are missed because of their slightly smaller ratio). It is interesting to
observe that reduced cost fixing was not able to eliminate any columns after a
feasible solution was found. This is an indication that these problems are well-
constructed.

The problems in Set 2 are very hard, our feasible solution heuristic always failed
on these problems. The LPs are moderately difficult to solve, the global time limit
was never reached. Our results for the Set 4 problems are mixed, for some of them
the LPs are just very hard to solve (we ran out of time while solving LPs in sp6,
sp7, sp8, sp9, spl12 and sp14). For the rest of the problems the heuristic delivered
an optimal solution in three cases, found a feasible solution for two more problems

and failed for three. The problems for which the optimal solution was found seem

108

to be easy since only one major iteration was needed.

We also include the results of some comparison runs for the Set 1 and 3 problems.
Looking at the results of these runs confirms our choice of parameters. Although
not reported here, similar experiments were also performed on the problems in the
other two sets as well during preliminary testing (the results were the same as for
the default, consistently failing for all problems that the default did).

Tables 4.5, 4.6, 4.7, and 4.8 contain results of these experiments for the Set 1
and Tables 4.9 and 4.10 for the Set 3 problems. The tables give the upper bound
obtained by our feasible solution heuristic, the total time spent in the heuristic;
the time spent in solving LPs (with multiplicity) for the first experiment and the
number of major and minor iterations for the other experiments. The following

describes these experiments and gives a few words of explanation for each.

e Dual simplex (with basis warmstart) instead of barrier. The barrier method
is clearly much faster for all but the smallest problems. Note that neither of
the LP solvers results in consistently better feasible solutions since the only
difference between the two experiments is that the LP solvers may end up in
different extreme points for the same LP relaxation, pushing the heuristic into

different directions.

e Follow-on firing turned off. This is clearly much worse than the default; it fails
more often and takes more time and minor iterations. This shows that the

follow-on approach is more robust than the removal of unattractive variables.

o Follow-on threshold starts at .79 instead of .99. This is a more aggressive

109

setting, since more row pairs will be found to be follow-ons at first. This
setting fails more often and the quality of feasible solutions found is slightly
worse than the default setting. There is a slight speed-up for some of the

problems that is due to having fewer major/minor iterations.

Rows with smallest (instead of largest) dual absolute values are compared first
during follow-on fixing. This approach fails for a few v* problems and delivers
worse feasible solutions for some Set 1 problems (even if all row pairs are
considered for the smaller problems the results can be different since the row

pairs are enumerated in a different order).

Variables at level 1 in the LP relaxation are fized to 1. This is clearly a
more aggressive approach than our default. As we expected, it fails more
often or gives lower quality feasible solutions but it can be much faster. It is

particularly good for the v16 problems that the default approach missed.

Symmetric difference is applied to variables at level 1. Slightly less aggressive
than fixing the same variables to one, we can observe that the feasible solutions
are slightly better but the running time is worse. Since we use follow-on fixing
that achieves the same effect (but in several iterations), we decided to go with

a combination of aggressive fixing and “doing nothing” in our default.

LP re-optimization is forced only if 20% of the columns are marked for dele-
tion. This approach is more aggressive than our default. While faster than the

default, it fails or delivers worse feasible solutions very often. This shows that

110

frequent re-optimization of the LP is important; our updates become weak if

the matrix changes significantly.

e Short columns are not protected. This approach delivers slightly worse feasible
solutions for the Set 1 problems and fails for the v* problems too often. This
shows how important short columns can be for certain classes of problems.

The running times are mixed.

We can conclude that our feasible solution heuristic with the default settings is
a robust algorithm that delivers high quality feasible (often optimal) solutions for
all the Set 1 and many of the Set 3 problems. The two main factors contributing
to the running time are the LP solver and the problem size reduction. We see
some possibility for improvement for both. More information on the LP solver’s
warmstart algorithm could lead to a better strategy for when and how to resolve
LPs. The problem size reduction could be improved by implementing additional
reduction methods. This might slow down the individual Reduce() calls but would
most likely decrease the number of times Reduce() (and the LP solver) is invoked,
so possibly reducing the overall running time. Saving time by omitting CLEXT,
the most expensive part of Reduce() is a double-edged sword; the execution time
usually decreased, but the solution quality significantly declined as well (it even
failed on all but two of the v* problems, as well as on four of the Set 1 problems).

The quality of our feasible solution heuristic compares very favorably with Hoff-
man and Padberg’s algorithm ([HP93]), see Appendix A.3 for earlier results. Even

our first feasible solutions frequently dominate their result. We cannot directly com-

111

pare the running times since they do not report separate execution times for their
initial heuristic runs. Borndorfer ([Bor97]) does not report the value of the feasible
solution found by his heuristic, only the integrality gap and the size of the matrix
remaining after an additional application of his problem size reduction routine (if
a feasible solution has been found). The quality of our results is better (the gap
and the matrices remaining after our heuristic are smaller), but our execution times
are longer. Borndorfer et al. ([BGKK97]|) do not report the results of their initial

feasible solution heuristic for the Set 3 problems.

112

Table 4.1: Feasible solution heuristic (default setting), Set 1, part 1

Feasible solution heuristic LP Reduce First feas sol

name Ip opt int opt ub ogap cols rows M m time | time freq | time freq ub time
aall 55535.44 56137 | 56172 0.06% | 4764 549 2 57 | 39.88 | 18.52 71 | 20.59 121 56172 23.23
aal3 49616.36 49649 | 49649 0.00% 178 108 3 55 | 20.58 | 10.79 65 9.32 116 49713 19.66
aal4 25877.61 26374 | 26680 1.16% | 5703 340 2 82 | 23.45 | 12.04 91 | 10.63 179 26680 13.89
aalb 53735.93 53839 | 53904 0.12% 956 298 4 151 | 22.64 | 10.11 190 | 11.47 323 53943 15.63
aal6 26977.19 27040 | 27040 0.00% 581 255 2 50 | 14.85 8.01 58 6.34 103 27040 13.82
kl01 1084.00 1086 * 1 6 1.72 1.43 9 0.23 16 1086 1.70
kl02 215.25 219 219 0.00% | 1562 50 3 90 7.29 5.38 95 1.56 158 220 6.44
nw03 24447.00 24492 * 2 25 | 11.74 | 10.35 31 1.19 70 25125 11.54
nw04 16310.67 16862 | 17158 1.76% | 5782 35 2 19 | 19.11 | 15.48 24 3.36 35 17158 16.59
nw06 7640.00 7810 * 3 16 1.52 1.24 22 0.23 47 9430 1.23
nwll | 116254.50 | 116256 * 1 4 0.30 0.27 5 0.01 9 | 116259 0.29
nwl3 50132.00 50146 * 1 10 2.02 1.94 11 0.01 27 50146 2.02
nwl7 10875.75 11115 | 11115 0.00% 101 44 5 60 | 30.77 | 26.64 7 3.58 141 11865 29.74
nwl8 | 338864.25 | 340160 * 1 33 5.13 3.62 35 1.32 77 | 363576 4.63
nw20 16626.00 16812 * 1 12 0.12 0.09 13 0.01 20 16965 0.12
nw2l 7380.00 7408 * 1 16 0.09 0.05 17 0.00 22 7408 0.09
nw22 6942.00 6984 * 1 8 0.08 0.06 9 0.02 12 6984 0.08
nw23 12317.00 12534 * 1 8 0.08 0.04 9 0.01 14 12534 0.08
nw24 5843.00 6314 * 2 11 0.09 0.06 15 0.02 26 6514 0.09
nw2) 5852.00 5960 * 1 16 0.12 0.07 17 0.02 29 5960 0.12

Table 4.2: Feasible solution heuristic (default setting), Set 1, part 2

Feasible solution heuristic LP Reduce First feas sol
name Ip opt int opt ub ogap cols rows M m time time freq time freq ub time
nw26 6743.00 6796 * 1 10 0.08 0.06 11 0.01 21 6796 0.08
nw27 9877.50 9933 * 1 13 0.11 0.06 13 0.02 27 9933 0.11
nw28 8169.00 8298 * 2 11 0.11 0.08 15 0.03 24 9630 0.09
nw29 4185.33 4274 * 4 23 0.44 0.34 28 0.06 50 4378 0.38
nw30 3726.80 3942 * 1 13 0.23 0.15 14 0.06 21 3942 0.23
nw3l 7980.00 8038 * 1 11 0.28 0.20 12 0.06 18 8046 0.28
nw32 | 14570.00 14877 * 2 14 0.07 0.05 16 0.02 26 | 15120 0.06
nw33 6484.00 6678 * 1 11 0.48 0.35 11 0.08 24 6682 0.48
nw34 | 10453.50 10488 * 1 10 0.10 0.06 11 0.03 21 | 10701 0.09
nw3b 7206.00 7216 * 1 3 0.13 0.08 4 0.04 6 7216 0.13
nw36 7260.00 7314 7314 0.00% 29 9 3 17 0.35 0.25 19 0.07 28 7378 0.31
nw37 9961.50 10068 * 1 9 0.10 0.04 9 0.01 24 | 10068 0.10
nw38 5552.00 5558 * 2 15 0.20 0.13 16 0.05 23 5630 0.19
nw39 9868.50 10080 * 2 17 0.08 0.07 20 0.01 26 | 10758 0.06
nw40 | 10658.25 10809 * 2 24 0.13 0.06 25 0.01 45 | 11838 0.10
nw4l | 10972.50 11307 * 1 10 0.04 0.03 11 0.00 20 | 11838 0.04
nw42 7485.00 7656 * 1 14 0.18 0.13 15 0.01 23 7656 0.18
nw43 8897.00 8904 * 1 16 0.13 0.09 17 0.02 29 8904 0.13

us01 9963.07 10022 | 10101 0.79% | 616 73 3 74 | 717.90 | 367.97 84 | 347.83 131 | 10199 715.82
us04 | 17731.67 17854 * 1 16 2.72 1.24 18 1.43 28 | 17862 2.71

€1l

114

Table 4.3: Feasible solution heuristic (default setting), Set 3

best Feasible solution heuristic LP Reduce First feas sol
name Ip opt feas sol ub igap cols rows M m time time freq | time freq ub time
v0415 | 2423977.00 | * 2429415 | 2435833 0.49% 4294 763 1 16 0.97 0.79 16 0.07 26 | 2435833 0.94
v0416 | 2715490.67 | * 2725602 | 2736885 0.79% 3609 982 1 27 1.15 0.74 27 0.21 40 | 2736885 1.12
v0417 | 2603308.50 | * 2611518 | 2622525 0.74% | 55584 894 1 22 11.68 9.62 22 0.49 28 | 2622525 11.21
v0418 | 2836836.67 | * 2845425 | 2855469 0.66% 4761 951 1 35 1.25 0.81 35 0.17 45 | 2855469 1.21
v0419 | 2582994.00 | * 2590326 | 2598124 0.59% 2870 822 1 14 0.71 0.54 14 0.05 14 | 2598124 0.69
v0420 | 1688793.33 | * 1696889 | 1703734 0.88% 2636 590 1 22 0.58 0.38 22 0.07 27 | 1703734 0.57
v0421 | 1848949.00 | * 1853951 | 1858977 0.54% 1171 464 1 11 0.24 0.17 11 0.01 13 | 1858977 0.24
v1616 | 1002954.62 | * 1006460 | 1018536 1.55% | 27011 1285 1 516 | 147.09 37.62 516 81.36 729 | 1018536 146.90
v1617 | 1098263.23 1102586 | 1115503 1.57% | 44009 1458 1 642 | 239.34 68.43 642 | 126.95 893 | 1115503 238.96
v1618 | 1147777.67 1154458 | 1166107 1.60% | 88852 1434 1 585 | 271.00 81.85 585 | 140.09 873 | 1166107 270.23
v1619 | 1150943.29 1156338 | 1168481 1.52% | 44271 1476 1 507 | 215.62 50.16 508 | 128.08 783 | 1168481 215.20
v1620 | 1136666.52 | * 1140604 | 1152624 1.40% | 87536 1412 1 623 | 346.84 94.64 624 | 191.57 897 | 1152624 345.99
v1621 822339.42 * 825563 834602 1.49% 9758 854 1 328 54.20 11.64 328 29.95 495 834602 54.14
v1622 790076.50 * 793445 800572 1.33% 7620 787 1 47 2.60 1.96 47 0.26 76 800572 2.56
t0415 | 5125429.50 5590096 F 1 10 72.70 46.40 11 23.62 29
t0416 | 5829948.77 6130217 F 1 9 | 120.29 90.81 10 26.73 28
t0417 | 5610564.20 6043157 F 1 9 83.62 59.70 10 21.90 20
t0418 | 6142664.90 6550898 F 1 10 | 229.27 | 179.83 11 4591 31
t0419 | 5644051.00 5916956 F 1 5 63.35 43.31 6 18.58 18
t0420 | 3983951.22 4276444 F 1 10 21.74 12.84 11 8.00 30
t0421 | 4057701.31 4354411 F 1 8 17.45 11.67 9 4.94 20
t1716 121648.87 161636 F 1 69 89.30 66.44 69 20.23 235
t1717 134531.02 184692 210489 56.46% | 16428 551 1 87 | 113.80 83.97 88 26.36 263 210489 113.77
t1718 126334.47 162992 204086 61.54% | 16310 523 1 95 | 132.71 | 103.45 96 25.87 298 204086 132.69
t1719 138708.87 187677 F 1 85 | 133.18 98.67 85 30.39 302
t1720 126333.20 172752 200679 58.85% | 16195 538 1 76 | 124.79 92.96 7 28.43 265 200679 124.77
t1721 103748.46 127424 F 1 98 37.38 26.32 98 9.37 265

Table 4.4: Feasible solution heuristic (default setting), Sets 2 and 4

Feasible solution heuristic LP Reduce First feas sol
name Ip opt ub igap cols rows M m time time freq | time freq ub time
0321.4 35742.46 F 1 11 | 1634.92 | 1253.53 12 | 376.09 34
0331.3 28402.76 F 1 18 290.63 157.68 19 | 129.84 58
0331.4 29730.03 F 1 21 483.03 360.83 21 | 118.10 63
0341.3 31004.06 F 1 30 893.40 742.66 31 | 147.37 85
0341.4 34276.06 F 1 20 215.27 135.13 21 77.49 62
0351.3 35032.59 F 1 16 | 1645.49 | 1189.50 17 | 449.47 51
0351.4 34434.36 F 1 13 | 1835.28 | 1494.46 14 | 334.99 41
nf260 47405.00 | * 47420 1 1 40.38 37.86 2 1.47 2 | 47420 38.90

spl 9987.80 11482 14.96% | 5148 198 2 58 78.38 54.00 64 23.92 94 | 11482 55.22
sp2 13522.93 | * 13914 1 16 6.56 3.22 18 3.19 25 | 13914 6.19
sp3 12766.12 | * 12943 1 10 1.18 0.84 12 0.27 14 | 12943 1.10
sp4 11389.42 F 1 39 58.07 30.11 40 27.39 60

Spd 27403.20 27637 0.85% | 3764 587 | 2 23 | 1181.31 | 1088.97 31 90.55 50 | 27637 789.92
sp6 | 157414.80 F 1 5 | 7144.31 | 6943.81 6 | 199.89

sp7 | 162349.98 F 1 1 | 7289.45 | 7234.99 2 54.28 1

sp8 | 368714.87 F 1 1 | 7170.27 | 6957.01 2 | 212,75 2

sp9 | 166705.53 F 1 18 | 7173.32 | 6595.98 19 | 571.17 46

spl0 43045.72 F 1 24 24.22 13.49 25 10.23 47

spll 3093.13 F 1 14 0.88 0.66 15 0.18 14

spl2 | 248004.45 F 1 1 | 7068.51 | 6662.20 2 | 405.60 3

spl4 | 250210.43 F 1 1 | 7153.19 | 7027.61 2 | 125.18 2

1T

116

Table 4.5: Feasible solution heuristic (comparison runs), Set 1, part 1

dual simpl w/ basis warmst

no follow-on

follow-on threshold .79

follow-on w/ small dual abs

name opt ub time time freq ub time M m ub time M m ub time M m
aall 56137 | 56153 454.52 415.83 146 F 32.57 1 73 | 56172 37.43 2 58 57117 88.43 3 193
aa03 49649 | 49649 87.11 79.37 88 49649 23.12 3 210 | 49649 19.02 2 31 49649 21.44 2 40
aal04 26374 | 265655 151.63 131.34 185 F 1344 1 61 | 27959 14.04 1 88 27009 37.10 3 194
aa05 53839 | 54250 96.75 82.17 138 F 1981 1 106 | 53941 15.80 2 66 53904 21.61 3 104
aa06 27040 | 27040 47.37 40.92 47 27040 22.76 3 150 | 27040 19.44 3 79 27040 13.84 2 43
kl01 1086 * 1.59 1.22 37 1091 3.31 2 89 * 1.95 2 45 * 2.25 2 28
k102 219 219 10.28 8.25 65 219 1145 3 147 220 6.70 2 43 219 7.61 2 70

nw03 24492 * 12.11 10.60 51 *20.97 2 118 *11.86 2 25 ¥ 11.76 2 21

nw(4 16862 | 16942 24.14 19.67 39 22494 73.37 2 61 | 17158 19.12 2 19 17004 17.42 2 16

nw06 7810 9344 1.50 1.27 26 * 2.39 1 73 * 1.60 3 16 * 1.67 2 29

nwll | 116256 * 0.24 0.22 5 * 0.27 1 7 * 0.28 1 4 * 0.24 1 4

nwl3 50146 * 1.99 1.93 10 * 2.08 1 36 * 1.97 1 10 * 1.99 1 9

nwl7 11115 | 11115 30.21 26.83 17 67719 48.02 1 124 | 11196 30.73 4 58 11115 33.54 5 99

nwl8 | 340160 * 8.79 7.21 26 | 408414 7.23 1 97 * 5.01 1 22 | 408724 5.09 1 52

nw20 16812 * 0.10 0.04 10 * 0.20 1 29 * 0.07 1 12 * 0.11 1 9

nw2l 7408 * 0.08 0.04 16 * 0.13 1 23 * 0.12 1 16 * 0.08 1 16

nw22 6984 * 0.10 0.05 10 * 0.29 2 50 * 0.09 1 8 * 0.07 1 7

nw23 12534 * 0.07 0.04 9 * 0.20 1 34 * 0.08 1 8 * 0.06 1 4

nw24 6314 * 0.11 0.04 15 * 0.15 1 12 * 0.09 2 11 * 0.09 2 14

nw25 5960 * 0.07 0.06 12 * 0.14 1 16 * 0.13 1 16 * 0.08 1 10

Table 4.6: Feasible solution heuristic

(comparison runs), Set 1, part 2

fix vars at one to 1

symm diff on vars at one

force LP resolve at 20%

short cols not protected

name opt ub time M m ub time M m ub time M m ub time M m
aall 56137 F 19.77 1 41 F 40.63 1 47 F 24.50 1 19 56506 47.66 2 70
aal3 49649 | 49664 7.25 3 39 | 47971 7.04 2 18 49649 10.90 2 9 49649 21.42 2 49
aa04 26374 | 27376 20.64 2 109 | 26740 32.19 3 181 F 14.60 1 24 26541 26.84 3 120
aa05 53839 | 54144 13.32 3 91 | 52992 1727 4 122 F 9.84 1 37 53935 19.79 3 117
aa06 27040 | 27045 8.56 3 47 | 27040 11.71 4 81 27040 1241 4 24 27040 14.71 2 55
kl01 1086 * 1.37 2 25 * 1.56 2 38 * 1.57 2 35 1089 1.76 2 28
k102 219 220 5.27 2 62 219 6.12 3 92 220 6.32 2 64 219 9.41 3 66

nw(3 24492 | 25125 10.66 3 21 | 25086 10.66 3 22 * 11.55 2 30 * 1333 2 26

nw(4 16862 | 18016 16.64 2 23 | 17004 16.14 2 9 16964 19.33 3 26 16942 20.23 2 17

nw06 7810 * 1.33 1 15 * 1.60 2 12 * 1.26 1 19 * 1.37 1 13

nwll | 116256 * 0.28 1 4 * 0.38 1 35 * 0.29 1 7 * 0.27 1 4

nwl3 50146 * 1.99 1 10 * 2.07 1 33 * 2.00 1 16 * 1.99 1 6

nwl7 11115 | 11673 30.19 3 46 | 11382 31.63 3 51 11115 3242 5 33 11115 36.67 4 49

nwl8 | 340160 * 5.20 3 68 * 6.57 2 47 | 419616 3.77 1 33| 367156 747 2 58

nw20 16812 * 0.08 1 8 * 0.13 2 14 * 0.09 1 9 * 0.10 1 9

nw21 7408 * 0.10 2 18 * 0.08 1 13 * 0.09 1 18 * 0.08 1 9

nw22 6984 * 0.08 1 5 * 0.06 1 5 * 0.09 1 8 * 0.10 1 8

nw23 12534 * 0.06 1 4 * 0.07 1 7 * 0.06 1 5 * 0.05 1 5

nw24 6314 * 0.08 2 10 * 0.10 2 8 * 0.13 2 20 * 0.09 2 11

nw25 5960 * 0.11 1 11 * 0.11 1 16 * 0.11 1 15 * 0.09 1 8

LT1

118

Table 4.7: Feasible solution heuristic (comparison runs), Set 1, part 1, cont.

dual simpl w/ basis warmst

no follow-on

follow-on threshold .79

follow-on w/ small dual abs

name opt ub time time freq ub time M m ub time M m ub time M m
nw26 6796 * 0.06 0.03 11 * 0.14 1 19 * 0.10 1 10 * 0.07 1 12
nw27 9933 * 0.10 0.06 11 * 0.24 1 46 * 0.12 1 13 * 0.10 1 13
nw28 8298 * 0.07 0.05 11 * 0.18 1 6 * 0.12 2 11 8688 0.11 2 11
nw29 4274 4338 0.39 0.27 26 4324 1.56 4 197 4274 0.35 3 15 4324 0.40 3 26
nw30 3942 * 0.20 0.13 12 * 0.44 1 28 * 0.21 1 14 * 0.21 1 11
nw3l 8038 * 0.30 0.20 11 8038 0.66 2 23 * 0.28 1 11 * 0.27 1 10
nw32 | 14877 * 0.08 0.04 15 * 0.14 1 25 * 0.10 2 14 * 0.06 1 11
nw33 6678 * 0.45 0.33 13 * 1.17 1 28 * 0.50 1 11 * 0.46 1 13
nw34 | 10488 * 0.08 0.05 11 * 0.19 1 25 * 0.10 1 10 * 0.09 1 11
nw35 7216 * 0.10 0.08 5 * 0.29 1 20 * 0.13 1 3 * 0.13 1 13
nw36 7314 7314 0.37 0.26 26 7314 0.71 4 36 7314 0.38 4 21 7322 0.33 2 13
nw37 | 10068 * 0.09 0.05 10 * 0.21 1 30 * 0.07 1 9 * 0.07 1 9
nw38 5558 * 0.19 0.14 15 5558 0.30 2 32 * 0.19 2 15 5592 0.19 3 16
nw39 | 10080 * 0.06 0.04 13 * 0.16 1 28 * 0.12 2 17 * 0.07 2 7
nw40 | 10809 * 0.06 0.05 13 * 0.17 1 33 * 0.12 2 24 * 0.07 1 12
nw4l | 11307 * 0.04 0.01 11 * 0.09 1 17 * 0.03 1 10 * 0.04 1 11
nw42 7656 * 0.14 0.10 13 * 0.34 1 46 * 0.17 1 14 * 0.18 2 15
nw43 8904 * 0.13 0.07 18 * 0.27 1 48 * 0.14 1 16 * 0.13 1 12
us01l | 10022 | 10036 1255.46 841.04 31 | 10222 1326.31 2 98 | 10052 738.07 2 27 | 10036 360.96 4 94
us04 | 17854 * 3.18 1.71 31 * 5.05 1 59 * 2.75 1 16 * 2.64 1 33

Table 4.8: Feasible solution heuristic (comparison runs), Set 1, part 2, cont.

fix vars at one to 1 symm diff on vars at one force LP resolve at 20% short cols not protected
name opt ub time M m ub time M m ub time M m ub time M m
nw26 6796 * 0.07 1 8 * 0.08 1 9 * 0.06 1 9 * 0.08 1 8
nw27 9933 * 0.09 1 9 * 0.08 1 11 * 0.11 1 9 * 0.10 1 10
nw28 8298 8688 0.11 2 11 * 0.09 2 10 * 0.13 2 11 * 0.09 2 8
nw29 4274 4338 040 3 21 * 042 4 24 * 0.41 4 17 4338 0.41 3 18
nw30 3942 * 0.26 1 11 * 0.24 1 12 * 0.21 1 9 * 0.24 1 14
nw3l 8038 8046 024 3 9 8046 024 3 11 * 0.28 1 9 * 0.29 1 12
nw32 | 14877 * 0.05 2 7 * 0.06 2 11 * 0.08 2 13 * 0.08 2 10
nw33 6678 * 0.37 1 1 * 0.41 1 9 * 0.50 1 13 * 0.51 1 11
nw34 | 10488 * 0.07 1 5 * 0.06 1 7 * 0.10 1 9 * 0.07 1 9
nw35 7216 * 0.09 1 1 * 0.10 1 2 * 0.11 1 3 * 0.12 1 5
nw36 7314 7314 039 3 20 7314 0.41 3 19 7314 034 4 16 7314 0.32 3 15
nw37 | 10068 * 0.05 1 5 * 0.07 1 9 * 0.09 1 9 * 0.09 2 11
nw38 5558 * 0.20 2 10 * 0.20 2 12 * 017 2 12 * 0.16 2 12
nw39 | 10080 * 0.06 2 7 * 0.07 2 8 * 0.09 2 8 * 007 2 10
nw40 | 10809 * 0.08 1 15 * 0.11 2 24 * 0.07 1 16 * 0.06 1 11
nw4l | 11307 * 0.03 1 4 * 0.03 1 7 * 0.06 1 7 * 0.03 1 8
nw42 7656 * 0.17 1 13 * 0.18 1 13 * 0.16 1 12 * 0.14 1 11
nw43 8904 * 0.13 1 19 * 0.12 1 15 * 0.10 1 17 * 0.12 1 10
us01 | 10022 | 10051 71759 3 61 | 10051 716.54 3 61 | 10051 554.50 4 45 | 10036 595.95 2 27
us04 | 17854 * 1.25 1 9 * 1.61 1 11 * 1.84 1 11 * 2.35 1 17

61T

Table 4.9: Feasible solution heuristic (comparison runs), Set 3, part 1

dual simpl w/ basis warmst no follow-on follow-on threshold .79 follow-on w/ small dual abs
name opt ub time time freq ub time M m ub time M m ub time M m
v0415 | * 2429415 | 2437371 0.93 0.72 15 | 2436517 1.06 1 50 | 2435833 093 1 16 | 2436386 092 1 16
v0416 | * 2725602 F 1.18 0.72 38 | 2738976 1.29 1 54 F 0.99 1 11 | 2739043 1.21 1 29
v0417 | * 2611518 | 2622525 11.61 9.51 22 | 2619937 11.68 1 22 | 2622525 11.82 1 22 | 2622525 11.79 1 22
v0418 | * 2845425 | 2854403 1.25 0.76 35 | 2855466 124 1 46 | 2858585 132 1 34 | 2856221 130 1 37
v0419 | * 2590326 | 2598124 0.69 0.51 14 | 2601032 069 1 17 | 2598124 072 1 14 | 2598124 073 1 14
v0420 | * 1696889 | 1703734 0.56 0.38 22 | 1706883 054 1 26 | 1703734 056 1 22 | 1704283 061 1 21
v0421 | * 1853951 | 1858977 0.25 0.17 11 | 1859428 021 1 9 | 1858977 024 1 11 | 1858977 022 1 11
v1616 | * 1006460 F 144.62 19.57 532 | 1024509 710.38 1 1378 F 143.67 1 433 | 1012015 65.26 1 94
v1617 1102586 | 1112822 215.39 34.05 641 | 1115627 1094.06 1 1523 | 1114867 243.71 1 660 | 1111830 241.50 1 450
v1618 1154458 | 1173014 259.83 51.10 684 | 1176239 1204.09 1 1693 | 1167792 276.45 1 603 | 1164444 286.54 1 492
v1619 1156338 F 195.58 28.41 381 | 1182351 1157.68 1 1711 | 1164669 222.13 1 530 | 1169130 268.49 1 526
v1620 | * 1140604 | 1151571 341.81 106.93 581 | 1151869 1019.66 1 1585 | 1147928 348.13 1 655 | 11515756 290.80 1 411
v1621 * 825563 | 835181 47.06 5.60 299 | 831691 148.05 1 668 | 839018 49.74 1 296 F 5353 1 272
v1622 * 793445 801323 2.54 1.89 46 F 2.95 1 94 F 2.38 1 25 F 2.46 1 27
t0415 5590096 F 129.35 103.88 12 F 45.91 1 24 F 101.72 1 11 F 72.68 1 11
t0416 6130217 F 165.69 137.41 9 F 52.03 1 18 F 6950 1 8 F 8360 1 11
t0417 6043157 F 218.08 186.10 12 F 75.21 1 19 F 40.04 1 4 F 96.45 1 11
t0418 6550898 F 366.26 318.32 10 F 10089 1 19 F 11478 1 8 F 18081 1 7
t0419 5916956 F 159.24 132.95 7 F 4756 1 16 F 7798 1 9 F 11177 1 8
t0420 4276444 F 43.29 35.35 12 F 13.76 1 17 F 19.49 1 12 F 18.51 1 8
t0421 4354411 F 32.82 26.39 10 F 14.37 1 18 F 27.72 1 11 F 19.43 1 11
t1716 161636 188291 422.27 401.48 7 F 128.45 1 279 F 80.55 1 83 F 120.72 1 62
t1717 184692 219528 993.33 963.88 123 F 21883 1 376 F 13410 1 69 F 12655 1 78
t1718 162992 194455 852.58 823.70 105 F 236.18 1 441 F 131.34 1 102 224998 110.11 1 88
t1719 187677 | 240557 1042.84 1009.56 74 F 20434 1 341 221419 136.63 1 103 | 246664 258.37 1 105
t1720 172752 208707 937.57 905.45 79 F 20744 1 353 F 13982 1 69| 254175 130.12 1 101
t1721 127424 163035 207.34 197.34 83 F 79.45 1 372 176002 51.18 1 61 152250 33.22 1 91

120

Table 4.10: Feasible solution heuristic (comparison runs), Set 3, part 2

fix vars at one to 1

symm diff on vars at one

force LP resolve at 20%

short cols not protected

name opt ub time M m ub time M m ub time M m ub time M m
v0415 | * 2429415 | 2435833 0.92 1 14 | 1133371 3.54 1 49 | 2436974 0.96 1 10 | 2436168 0.89 1 14
v0416 | * 2725602 | 2742706 1.04 1 26 | 1444320 6.30 1 48 F 1.01 1 11 | 2737659 1.04 1 20
v0417 | * 2611518 | 2622525 11.89 1 21 | 1237709 18.36 1 70 F 10.50 1 11 | 2619237 11.52 1 17
v0418 | * 2845425 | 2855469 1.24 1 34 F 4.39 1 53 | 2857629 1.20 1 26 | 2855279 0.98 1 17
v0419 | * 2590326 | 2598124 0.76 1 13 | 1319864 4.61 1 26 F 0.62 1 6 | 2601974 0.71 1 12
v0420 | * 1696889 | 1707732 0.52 1 14 | 1055119 2.44 1 51 | 1704067 0.52 1 15 F 0.42 1 5
v0421 | * 1853951 | 1858977 0.23 1 10 901564 0.44 1 20 F 0.20 1 4 | 1858994 0.23 1 10
v1616 | * 1006460 | 1021108 18.67 1 228 835990 46.09 1 285 F 11045 1 368 F 47.14 1 81
v1617 1102586 | 1115769 29.15 1 219 907417 76.80 1 208 | 1114655 191.40 1 532 F 72.90 1 69
v1618 1154458 | 1176261 43.11 1 172 954214 76.01 1 203 | 1171281 219.26 1 513 F 110.95 1 7
v1619 1156338 | 1171019 31.79 1 205 | 1002471 76.15 1 305 F 14471 1 305 F 76.55 1 71
v1620 | * 1140604 F 52.76 1 220 962187 87.65 1 295 | 1149607 246.42 1 476 F 138.75 1 108
v1621 * 825563 836837 3.32 1 47 733645 6.96 1 82 835862 35.70 1 221 831757 15.02 1 58
v1622 * 793445 800250 2.48 1 35 709091 6.69 1 71 800247 2.46 1 30 800799 2.27 1 27
t0415 5590096 F 67.02 1 13 F 69.04 1 11 F 59.27 1 2 F 80.40 1 15
t0416 6130217 F 79.15 1 10 F 11789 1 11 F 64.88 1 3 F 109.36 1 5
t0417 6043157 F 75.48 1 7 F 82.88 1 9 F 37.03 1 2 F 89.02 1 10
t0418 6550898 F 121.53 1 10 F 229.28 1 10 F 72.53 1 2 F 213.42 1 8
t0419 5916956 F 58.12 1 8 F 72.90 1 7 F 61.15 1 3 F 65.09 1 8
10420 4276444 F 18.38 1 13 F 21.61 1 10 F 14.82 1 2 F 26.43 1 13
10421 4354411 F 26.89 1 9 F 17.37 1 8 F 14.80 1 3 F 17.72 1 8
t1716 161636 189583 104.08 1 68 F 78.19 1 66 F 139.39 1 22 F 68.01 1 46
t1717 184692 231206 115.88 1 85 212770 124.10 1 73 207419 109.22 1 31 F 101.43 1 45
t1718 162992 193250 140.22 1 78 191408 135.31 1 93 F 67.33 1 30 F 94.14 1 48
t1719 187677 198186 122.88 1 91 F 12715 1 102 F 71.56 1 37 F 149.29 1 28
t1720 172752 199804 123.38 1 87 200026 127.43 1 85 F 83.03 1 31 F 21944 1 50
t1721 127424 F 36.12 1 81 158624 36.99 1 93 F 22.82 1 58 160467 29.70 1 54

1¢1

Chapter 5

Interfacing with the

Branch-and-Cut framework

Our Branch-and-Cut procedure, implemented using the COMPSys framework (Sec-
tion 2.2), was applied to those problems that the Feasible Solution Heuristic did
not solve to optimality (Section 4.4).

In the first section we describe the framework in further detail, emphasizing those
points whose implementation was nontrivial for our application. The later sections
will discuss these points in detail. Appendix D lists those COMPSys parameters
that were important in our case, as well as those parameters that we added in our
user-written functions. A detailed description of the user-written functions can be

found in [ELI7].

122

123

5.1 The COMPSys framework

As described earlier (Section 2.2), the COMPSys framework employs a master-
slaves model. The functions of the master are split between two processes: the
Master handles the input/output, maintains and distributes on request the (user-
supplied) problem-specific information, and stores the best feasible solution found
so far; while the Tree Manager keeps track of the search tree and distributes work
to the slaves. The tasks were split this way to keep the Tree Manager generic,
thus completely internal to the framework. All the problem-specific information is
handled through the user functions of the Master process. Of course, the Master
and the Tree Manager can run simultaneously on the same processor.

There are four classes of slave processes. Search tree nodes are sent to the LP
processes. Each LP process has an associated Cut Generator where separation is
attempted. Cut Pool processes corresponding to subtrees of the search tree maintain
a collection of inequalities valid in the subtrees. If decomposition methods are used
during separation, Solution Pool processes (also corresponding to subtrees) store
extreme points of the enclosing polytope ([Ral95]). Since our implementation does
not use decomposition, we will not discuss this feature here in more detail.

Besides the master and slaves processes there is a process reserved for the Graph-
ical User Interface through which other processes can graphically display informa-
tion. The GUI was implemented as a separate process mainly for technical reasons.
The GUI is discussed in detail in Chapter 6.

Now we describe the general execution flow of COMPSys. Figure 5.1 (borrowed

124

from [ELRT97]) illustrates the main tasks of and the information flow between the
various processes. The user starts only the Master process which will spawn the
Tree Manager. All the slave processes are spawned by the Tree Manager.

The Master (M) process starts by reading in the parameters from a file and
requests the user to read in all the problem-specific input. Then the user is given
control to run preprocessing and/or upper bounding procedures before the actual
Branch-and-Cut starts. Now the Tree Manager is spawned, the user formulates the
problem and constructs the root node of the search tree. Then the Master enters
a loop of waiting for messages (like requests for problem-specific data, or arrival of
new feasible solutions) and processing them.

The Tree Manager (TM) spawns the slave processes and sends the root node to
an LP process, then it awaits new search tree nodes created by branching in the
LP processes and in turn sends them out to idle LP processes. Parameters govern
which search tree node is selected next for processing.

When an LP process (LP) is spawned, initial information is obtained from the
Master; then the LP waits for a search tree node. Upon receiving a search tree
node a loop is entered where first the user creates the corresponding LP relaxation
and the relaxation is solved. If the LP relaxation is infeasible or the LP optimal
value is higher than the current upper bound then the search tree node is fathomed.
Otherwise, if the LP optimal solution is feasible for the original problem, then it is
sent to the master process, the current best upper bound is updated and the node
is fathomed. If column generation is desired then columns that would improve the

objective value are added instead of fathoming (we so not use this feature in our

M aster
. root node
store problem data Tree Manager
=<——1 computeinitial UB feassoln UB maintain search tree
store best solution
uB AMA
propagation 11+ active/candidate
111 nodes
B v
Cut Gen. |n | LP i
cuts | Process subproblem ¥
generate CUts | == ey feasibility soln || Cut Pool
R R B ek I R
perfformbranching [~ ---[-7~ ~ Tauts T maintain list of
o effective cuts
‘} return violated
e3>
IS I hoir outs
Vo
Cut Gen. | | LP y
cuts | Process subproblem P
! |
generatecuts | ~ —| check feasibility soln l |
. el iy M T |
perform branching |< cuts |
feas soln Cut Poal
uB i maintain list of
} effective cuts
I R return violated
Cut Gen. | 2N | LP s
cuts | Process subproblem I
generatecuts [~ ~>| check feasibility soln |
P |
perform branching cuts

Figure 5.1: Processes of the COMPSys framework

125

126

implementation). Now the LP optimal solution is sent to the corresponding Cut
Generator (and possibly to the Cut Pool) to obtain violated inequalities. While
the Cut Generator and Cut Pool are working, the LP process identifies and possi-
bly removes ineffective inequalities and variables that can be fixed to their bounds.
Variable fixing consists of reduced cost fixing (done by the framework) and logical
firing done by the user. At this point the user can generate violated inequalities
within the LP process as well (some cut types, like Gomory cuts, require the LP
optimal tableau, which would be difficult to reproduce in the Cut Generator, and
costly to send over). Next, inequalities obtained internally or from the Cut Gener-
ator and the Cut Pool are processed (may be lifted by the user), selectively added
to the problem formulation and sent to the Cut Pool. If sufficiently strong violated
inequalities have been generated, then the execution continues with re-solving the
LP relaxation at the top of the loop. Otherwise, candidate branching objects (vari-
ables and constraints) are selected by the user and strong branching is performed.
The new search tree nodes are sent back to the Tree Manager and the LP process
waits for the next search tree node (possibly one of the newly generated nodes; this
is called diving).

The Cut Generator (CG) process also obtains initial information from the Mas-
ter. Afterwards it repeatedly receives LP optimal solutions from the corresponding
LP process and returns valid inequalities violated by the solution. Note that the
LP process may decide to re-solve the LP relaxation without waiting for all the cuts
the Cut Generator could generate. In this case the Cut Generator will continue

working with the old LP optimal solution until it receives a new one or it is not

127

able to find more inequalities. This may cause the Cut Generator to lag behind the
LP process.

The Cut Pool (CP) process, just like the other slaves, obtains initial information
from the Master. Valid inequalities arriving from the LP process are stored away.
When an LP optimal solution arrives, it is tested against the stored inequalities and
those found to be violated are sent back to the LP process.

Before we describe in detail how we implemented the user-written functions of
the Master, LP and Cut Generator processes for the SPP, we summarize the most

important points in the light of the paragraphs above.
e Master process

— Preprocessing and upper bounding before Branch-and-Cut starts
— Formulating the problem and constructing the root node of the search
tree

e LP process

— Constructing the LP relaxation

— Logical fixing of variables

— Generating violated inequalities

— Lifting violated inequalities obtained here or in CG or CP
— Deciding whether to branch or continue with solving LPs

— Choosing branching objects for strong branching and comparing the pre-

solved results

128

e Cut Generator process

— Generating and lifting violated inequalities

— Generating violated inequalities “by hand” using the GUI

5.2 User-written functions of the Master process

The input/output functions that need to be supplied by the user (like reading in the
parameter file and the problem instance and displaying a solution), and the function
that interprets a feasible solution received from another process were straightforward

to implement. The following two issues needed special consideration.

5.2.1 Preprocessing and upper bounding

This is where our initial Reduce() (Chapter 3) and Feasible Solution Heuristic
(Chapter 4) could be invoked. Since we implemented these as separate programs,
here we simply reproduce the matrix that was obtained at the end of our heuristic
(Section 4.4).

The framework uses the dual simplex method for (re)optimizing the LP relax-
ations. For large Set Partitioning Problems this is very expensive (Section 4.3), so
we solve the initial LP relaxation here using the barrier method with dual crossover

and pass on the optimal basis to be used as warmstart information.

129

5.2.2 Formulating the problem and constructing the root

Our implementation reads in the (column ordered) problem matrix along with an
upper bound and a feasible solution (if they exist). All this information, which may
be modified during preprocessing, is passed on to both the LP and Cut Generator
processes.

COMPSys distinguishes between two classes of variables and constraints (cuts,
rows): base and extra. Base variables and constraints are always in the formulation
for any search tree node, while extra variables and constraints may be removed. The
user has to designate which initial variables and constraints belong to which class.
New extra variables are obtained by column generation, and new extra constraints
by separation. Information about base variables and constraints is sent to the LP
process only once, while extra objects have to be communicated back and forth
between the LP and the Tree Manager, increasing message size. On the other hand,
having too many base objects is not only memory consuming, but it also slows down
LP solving. This trade-off has to be balanced for each problem class.

Since SPPs usually have a large number of columns many of which can be
eliminated by logical implications (i.e.; Reduce) as we go down in the search tree,
we have decided to designate all variables as extra variables and to include all
of them in the root description (so no column generation is necessary). On the
other hand, to simplify our implementation we characterized all constraints as base
constraints.

Also, the starting LP basis was taken as the optimal basis obtained from solving

the initial LP relaxation during preprocessing.

130

5.3 User-written functions of the LP process

5.3.1 Constructing the LP relaxation

Here we simply put together the set partitioning problem matrix consisting of
columns currently in the formulation (since all variables are extra variables, some
are eliminated because of branching and logical implications as we go down in the
search tree), the objective function, and the right hand side vectors. The frame-
work will append the constraints corresponding to cuts that were added to the

formulation during the solution process.

5.3.2 Logical fixing of variables

When a variable is permanently set to one of its bounds at a search tree node,
logical implications, like those employed in Reduce() (Section 3.1), might further
decrease the size of the problem. Also, if the reduction is significant, it might be
worthwhile to look for an (improving) feasible solution.

Although the current problem formulation most likely will contain cuts that were
not among the constraints of the original set partitioning problem, the reduction
rules implemented in Reduce() apply to SPPs only. Originally we carried out the
reductions based on the original set partitioning rows only, but it proved to be
beneficial to include all equality cuts that have unit coefficients and right hand side
values (the formulation remains a set partitioning formulation) and to incorporate
similar constraints with a zero on the right hand side by marking the corresponding

variables to zero. Such constraints are frequent when we allow branching on cuts

131

(cliques) or threshold and follow-on branching (Section 5.3.6).

Our implementation of the logical fixing of variables always invokes Reduce() if
at least one variable is newly fixed to one (setting variables to one usually implies
other reductions) or the number of variables not yet fixed to their bounds decreased
significantly since the last time logical fixing was applied at this search tree node.

The heuristic fixing phase of our Feasible Solution Heuristic is invoked only if
some variables were fixed to one or the reduction was significant during logical fixing.
How large a percentage of the variables must be eliminated before the heuristic is
attempted depends on whether an upper bound is already known and on the size of
the gap (the smaller the gap the less likely the heuristic is invoked). The Feasible
Solution Heuristic is always warmstarted with the optimal basis and primal-dual
information of the most recent LP relaxation solved by the framework.

If a (better) feasible solution is found by the heuristic, it is sent back to the
Master (and the value to the Tree Manager) which will in turn propagate it to the
other slave processes.

We will discuss the effectiveness of our logical fixing and feasible solution heuris-

tic later in Section 5.5.

5.3.3 Generating violated inequalities

Currently we generate all our cuts in the Cut Generator process.

132

5.3.4 Lifting violated inequalities

Our goal here is to adjust and strengthen a given violated inequality (that may have
been generated for an earlier solution) to the current problem formulation as much
as possible. The framework can accommodate more than one lifted inequality for
a cut, but we generate only one here. Lifting for cliques and (lifted) odd holes and
antiholes is done sequentially; packing and cover odd holes are lifted simultaneously.
See Section 2.3 for the definition of these cuts.

In sequential lifting first the variables not in the current formulation are removed
(with the exception of variables on the odd hole or antihole) since these do not
contribute to violation of the cut but could inhibit the addition of other variables
which may contribute. Then some new variables are included into the inequality.
Two lists of lifting candidates are formed; the first list will contain those variables
at fractional levels in the current formulation, the second contains those at level
zero. We will try to lift in the variables from the fractional list first, taking the
variables in decreasing order of their value in the solution. Then the framework
chooses the most violated inequalities to be included into the formulation. These
cuts go through a second round of lifting; if the number of variables that were lifted
in earlier for a cut does not exceed a given bound, those variables with the lowest
reduced costs on the second list are considered (variables with zero reduced costs
are always lifted in).

Clique inequalities are simply lifted by extending the cliques with new nodes that
are adjacent to all nodes in the clique in the intersection graph. Thus a lifted clique

is also a clique; we do not distinguish between cliques that are “fresh” from the cut

133

generator and those that were already lifted before. Computing lifting coefficients
for (lifted) odd holes and antiholes is done here exactly as in the Cut Generator
(Section 5.4).

Packing and cover odd holes are lifted simultaneously by applying the Chvatal-
Gomory procedure for the rows corresponding to the odd hole (Section 2.3); that
is, these rows of the current formulation are added up, the sum is divided by two
and the coefficients and the right hand side are rounded down for packing and up

for cover odd holes.

5.3.5 Deciding whether to branch or continue solving LPs

After the current LP relaxation at the search tree node is solved and possibly some
cuts are generated and/or received the user needs to decide whether to branch or
continue with re-solving the LP relaxation. In general, we prefer cut generation
to branching, since one overall goal is to keep the search tree small. On the other
hand, a significant amount of time could be wasted in re-solving the LP relaxations
if the added cuts fail to improve the relaxation sufficiently.

The framework provides two built-in options that we have experimented with:
branching only if no violated inequalities could be generated, and branching if tailing
off of the objective value is detected. The built-in function that checks tailing off
was originally part of our set partitioning implementation but was later incorporated
into the framework since it is a general procedure.

Two different tailing off interpretations are used in this function, the combined

method determines tailing off when either interpretation determines so. The first

134

1) A/B 2) C/D
Figure 5.2: Tailing off

declares tailing off if the consecutive objective value differences decrease at a rate
faster than geometric (that is, the average ratio of these differences is smaller than
a given threshold). The second interpretation assumes the existence of an upper
bound and declares tailing off if the distances of consecutive objective values from
the upper bound decrease at a rate slower than geometric (that is, the average
ratio of these distances is greater than a given threshold). Figure 5.2 illustrates
which segments form the ratios in the two cases (the objective value increases in
the direction of the arrow).

The values of the two thresholds mentioned above can be set through parameters.
Another parameter pair determines the length of the “history” (how many ratios)
included in the average. Tailing off is not checked if the history is not sufficiently

long.

5.3.6 Choosing branching objects for strong branching and
comparing the presolved results

Here we consider three decision points for branching (Section 5.1). First of all, a set

of branching candidates needs to be selected for strong branching. Then, after the

135

LP relaxations at the would-be children of the current search tree node have been
presolved by the framework for each branching candidate, one of the candidates
must be chosen for branching. And third, based on the presolve information we
need to decide what to do with each child node, in particular to decide which child
should be selected to be kept at the current LP solver if diving is desired.

The COMPSys framework can handle both variable branching and branching on
cuts. The framework provides cuts that were added previously because they were
violated, but have since become slack (the constraint is no longer binding, the right-
hand-side is not met with equality), and we can choose to branch on any of these. In
addition to this, the framework accepts any branching object that can be described
as a cut; that is, we provide coefficients for the variables currently in the formulation,
a sense and a right-hand-side. Several standard default strategies are included for
choosing branching variables. Our implementation is capable of picking a mix of
four different branching objects: two kinds of cuts that we generate here (follow-on
and threshold branching), formerly existing slack cuts, and finally, variables. The
number of desired branching objects of each of these four types is determined by a
parameter. The branching objects are generated in the above order; the standard
default is to select at least a few branching variables if no branching cut of the
previous three types is found.

Follow-on and threshold branching cuts are Type 3 Special Ordered Sets (as
defined in [CPX95], Chapter 3), but while SOSs need to be specified before opti-
mization for CPLEX, we create these sets based on the current LP optimal solution.

In both cases we divide a row’s support into two parts and in the two branches we

136

require the variable covering the row to be chosen in one branch from the first part,
and in the other from the second. Or, described as a cut (N* denotes the support

of some row i),

ijzlor(), F C N
jEF
This is an extension of variable branching (where |F| is one).

The advantage of these cuts is that they can be incorporated into the set parti-
tioning formulation used by logical fixing and heuristics (Section 5.3.2).

Follow-on branching cuts are generated by determining row pairs for which the
likelihood to be covered by the same variable (measured as the sum of primal so-
lution values for the variables the two rows share) is between some given limits
(parameters). We do not want this likelihood to be too large since this would be
an overly conservative approach, and it is likely that the O-branch is infeasible and
the problem at the 1-branch is almost the same as at the parent. Therefore in our
experiments we set the parameters so that the likelihood is higher than .5 but it is
well below 1 (around .75). The follow-on row pairs are enumerated similarly as in
the heuristic (Section 4.2.1) but we stop as soon as we have the required number of
row pairs. We start by comparing the 5 rows with the largest absolute dual values
to the remaining rows.

Threshold cuts are generated by selecting those rows that have the largest num-
ber of variables at fractional level in their supports, ordering the variables into
decreasing order of their solution values for each row and considering the variables
one by one until their combined solution values surpass a threshold (parameter). If

all variables at fractional values in a row’s support are selected then we drop the

137

last variable from the chosen set since in this case the optimal solution to the LP
relaxation in the 1-branch wouldn’t be different from that at the parent.

The framework provides us with a list of all cuts that were added to the for-
mulation previously (because they were violated) but since became slack. Since all
cuts generated by the Cut Generator have integral coefficients and lifting maintains
this property, the left hand side will be integral for any integral feasible solution.
Therefore we measure the slack of a cut as the smaller of the distances of its left
hand side from the nearest two integers. We examine all the slack cuts provided by
the framework and choose the required number of cuts with the largest slacks (that
is, those with slack values closest to .5, midway between the closest integer right
hand side values). This is analogous to the “close to half” branching variable selec-
tion strategy (see below). Branching on a constraint like this, we expect to cut the
feasible region deep in the middle, which is desirable during branching. Then two
children are created as described in Section 2.1.2. At this time we allow branching
only on clique inequalities. Branching on a slack clique inequality will result in two
equality constraints, one with a zero and one with a 1 right hand side, so these cuts
can be included into the logical fixing and heuristic as well.

We use three strategies for variable branching; the first one chooses variables
with large fractional values and low cost to branch on (“close to one and cheap”
rule). The logic here is that the zero branch will likely be short-lived since the
variable must be replaced by many (most likely more expensive) other variables,
resulting in a faster fathoming of the branch (due to high cost or infeasibility); in

the one-branch the variable is fixed to one, which is likely to cause the elimination

138

of additional variables during logical fixing.

The second option is to choose a variable “close to one-half and expensive”. The
effectiveness of this strategy is folklore; both of the branches are expected to “shake
up” the solution, and the optimal value in the 1-branch is pushed up.

The third is a mixture of the other two; if there are variables at fractional level
near one then the “close to one and cheap” rule is used, otherwise the “close to
one-half and expensive” rule is applied.

Our second job here is to choose between the presolved branching candidates.
There are several built-in options. The quality of a branching candidate can be
evaluated based on either the presolved objective function values or the number of
fractional values in the presolved LP solutions at the would-be children. Once the
decision is made which evaluation method to use, either the lower or the higher of
these values is selected from the values at the would-be children of each candidate,
these values are compared across all the candidates and the candidate with either
the lowest or the highest such value is chosen. Thus there are four cases for each
evaluation method: choose the candidate with the lowest of the lower values at the
children, highest of the lower values, lowest of the higher values or highest of the
higher values. For example the “highest low objective value” rule means that the
branching candidate whose child with the lower presolved objective value has the
highest of these values is selected. Note that branching candidates with would-be
children that can be fathomed based on the presolve information are preferred over
the other candidates.

The built-in options can be intuitively explained as follows. The lowest low and

139

lowest high objective value rules try to control the way the near-optimal solutions
feasible at the current search tree node are inherited by the children (some feasible
solutions might be shared). In the lowest low rule the child with the lower objec-
tive value is likely to keep most of these near-optimal feasible solutions; while in
the lowest high case the children are more likely to retain roughly the same num-
ber of near-optimal solutions. The lowest low rule combined with diving into the
lower child is traditionally used for finding near-optimal feasible solutions when the
integrality gap is too large or no upper bound exists.

The highest low and highest high objective value rules aim to shape the search
tree. The highest high rule tries to choose a candidate so that the child with the
higher objective value can be quickly fathomed (thus producing a skewed search
tree). On the other hand, the highest low rule tries to keep a uniformly high lower
bound across the search tree (thus producing a balanced search tree). These rules
are used when the current feasible solution is near-optimal and proving optimality
is desired.

From the other four options the lowest low and lowest high fractionals rules
also aim for finding integral solutions quickly. Unfortunately, while objective values
are monotone, the number of fractional variables in a solution is not, so we cannot
guarantee that this latter number will not increase after branching. For this reason
the highest low /high fractionals rules are not effective for proving optimality; these
two options were implemented for the sake of completeness.

From these options we have used the “highest low objective” rule in our final

experiments.

140

Our third task is to choose one of the children if diving is desired. If no good
upper bound is known then we forced diving into the “one-child”, i.e., into the child
with right hand side value of one. Otherwise we used a standard default in which

the child with the lower objective value is chosen.

5.4 User-written functions of the Cut Generator

Pprocess

Our only job in the Cut Generator process is to find valid inequalities that are
not satisfied by the solution to the current LP relaxation. Currently we are able
to generate clique, (lifted) odd hole and antihole, and packing and cover odd hole
inequalities in the Cut Generator. These are standard types of cuts that can be
heuristically separated in a reasonable amount of time. We have also experimented
with generating cuts “by hand,” that is, we graphically display the current solution
and the cuts as they are generated, and try to identify inequalities of types different
from those above that are violated by the current solution. If we choose this option,
the cut generator process will wait for us until we signal that we can generate no
more cuts. We call this option the “human cut generator.” The human cut generator
is implemented through the graphical user interface (described in Chapter 6) that
runs on a separate processor.

A discussion of known valid inequalities for the Set Partitioning Problem can be
found in Section 2.3; in this section we give details only of those inequalities that

we have implemented.

141

All the cuts that we generate here can be described in terms of the intersection
graph. When generating cuts in the cut generator process we restrict ourselves to
the intersection graph corresponding to those variables that have fractional solution
values, we call this the fractional graph. Although probably more violated inequali-
ties could be found if we extended our search to the intersection graph of the entire
problem, that graph would be too large for efficient cut generation.

We decided to parallelize cut generation so all our cut generation routines could
be started at the same time (parameters determine which ones are started) and could
produce cuts independently of each other. The reason for this is that different kinds
of inequalities are effective for different kind of problems; a considerable amount of
time could be wasted in the “wrong” cut generator if the cut generation routines
are not ordered well (we might not even get to the interesting cut generator before
the LP sends the next solution). We spawn these “slave” cut generator processes
as soon as the cut generator “master” is started by the tree manager. We have four
slaves: two generate cliques with the two different methods described below, one
generates (lifted) odd holes, packing and cover odd holes, and the last generates
(lifted) odd antiholes. We run the slaves on the same processor as the master cut
generator so that we get the advantage of faster message passing and do not take
up additional processors.

The cut generator slaves receive some initial information from their master as
soon as they are started. Every time a new solution arrives from the LP to the
master cut generator, a signal is sent to the slaves to abort work and wait for the

new fractional graph. New violated cuts are sent back from the slaves to the master

142

cut generator, which forwards them to the LP process. The slaves keep track of
which cuts have been sent back to their master for a given fractional graph, so that
the same cut is not sent back twice.

Now we discuss implementational details of the various cut generation routines.

5.4.1 Cliques

Recall from Section 2.3 that the clique inequality is

Zazusl,

veK

where K is a clique (a complete subgraph) in the intersection graph; that is, the
columns corresponding to the variables in the sum are pairwise nonorthogonal. As
we have mentioned before, we are looking for violated inequalities of the above form
where K is a maximal clique. No polynomial time separation algorithm is known
for separating these inequalities, therefore we employ heuristics.

We have implemented two heuristic methods that are frequently described in the
literature ([HP93], [Bor97]). The first method (star clique method) is enumerative
and guarantees to find a violated (maximal) clique inequality (if there exists one)
if the enumeration is carried out fully. The second method (row clique method),
originally due to Hoffman and Padberg ([HP93]), enumerates only those maximal
cliques that can be obtained as extensions of row cliques (cliques corresponding to
supports of rows in the fractional matrix). A greedy heuristic is substituted for
the enumeration in practice if the enumeration would need to be carried out at too

many nodes. Note that not all maximal cliques can be obtained as extensions of

143

row cliques. (It is very easy to construct an example using the fact that if a row has
an intersecting column with only one 1 in it, its row clique cannot be extended.)

The star clique method is based on the fact that any maximal (and also nonmax-
imal) clique containing a specific node v is a subgraph of the star of v (subgraph
spanned by v and its neighbors). The algorithm runs until there are no nodes left
in the graph. At every step of the algorithm a node is chosen, all maximal cliques
are enumerated in its star and then the node is removed from the graph. A clique
which is maximal for the remaining graph after some nodes are already eliminated
might not be maximal for the original graph. But these maximal cliques (that can
be extended on the already deleted nodes) can be disregarded since all maximal
cliques containing the previously deleted nodes have been found earlier.

An important question is which node to choose next. A minimum degree node
is a logical choice since its star is the smallest possible, thus enumeration on the
nodes in the star is the fastest. Moreover, degree 0 or 1 nodes can be deleted at
once. Other plausible strategies are choosing a maximum degree node (to discover
largest maximal cliques early), or choosing a node with a large value in the current
fractional solution (hoping to lead to a violated clique).

The row clique method is very similar but not the same as the reduction CLEXT
(Section 3.1), where columns extending row cliques in the original formulation are
removed from the problem. Here we consider only the fractional problem matrix,
whose rows are shorter than those of the original matrix, so a column extending the
row clique in the fractional matrix might not extend the row clique in the original

matrix. To enumerate all the maximal cliques that are extensions of row cliques,

144

the rows of the problem matrix are taken one by one. A candidate list of nodes
that are adjacent to all nodes in the row clique is formed. Then all the maximal
cliques are enumerated on the candidate list and are added to the nodes of the row.
Any extended maximal clique found this way will be violated (the sum of values in
a row is already 1).

The two methods were implemented as two different slave processes. The imple-
mentations were straightforward; in both methods we use parameters to determine
the size of a subset of nodes above which a greedy maximal clique detection routine
is substituted for complete enumeration. The row clique method is definitely faster
for larger graphs; its advantage is that the enumerative or greedy clique detection
needs to be carried out on a smaller subset of the graphs, and that a violated clique
inequality is found as soon as any of the row cliques can be extended by at least
one node.

We also screen the generated violated inequalities for minimum violation (reg-
ulated through a parameter) which allows us to send back inequalities to the CG

master selectively.

5.4.2 Lifted odd holes, packing and cover odd holes

The odd hole inequality is of the form

ZJJUSWT_I,

veH

where H is a chordless odd cycle (odd hole) in the intersection graph; that is,

columns corresponding to consecutive variables in H (considering the last and first

145

variable in H consecutive) are nonorthogonal, while all the rest of the variable pairs
have orthogonal columns.

Instead of weighting the nodes of the graph, we can assign costs to the edges
and give an alternative formulation of the odd hole inequality. Let the cost of edge
vw be ¢y =1 — 2, — Ty, then the sum of the costs on edges along the odd hole is

Z Cow = Z (1—xu—ajw):|H|—22xv,

vw edge in H vw edge in H veH

thus the odd hole inequality can be written as

Z Cow = 1.

vw edge in H

Note that 0 < ¢, < 1.

A polynomial time algorithm for separating violated odd hole inequalities (GLS-
algorithm) was originally developed by Grotschel, Lovasz and Schrijver [GLS88]. A
bipartite graph is generated where the nodes of the intersection graph are repeated
on both sides of the partition and two nodes on different sides of the partition are
adjacent if and only if the corresponding nodes in the original graph were adjacent.
Assign the costs defined above to the edges of the bipartite graph. A path between
a node on one side of the partition and its duplicate on the other side corresponds
to an odd cycle in the original graph (node repetition is possible). Since the weights
are nonnegative, a path of weight less than 1 will correspond to an odd cycle that
contains a violated odd hole. Also, a violated odd hole provides a path of weight
less than 1 between any of its nodes and their duplicates.

Thus computing the shortest path between all nodes and their duplicates and

taking the cheapest of these will either provide an odd cycle of weight less than 1

146

or prove that no violated odd hole exists. Computing the shortest path between
two nodes of a graph can be done in polynomial time (Dijkstra’s algorithm can be
used since the edge weights are nonnegative), so separating for violated odd hole
inequalities is polynomial.

Although the algorithm outlined above is very appealing, Hoffman and Padberg
([HP93]) consider it impractical since according to their experiments after a few
iterations of cut generation and resolving the LP the algorithm usually comes up
only with length 3 violated odd holes (triangles) that are also found by the violated
clique detection heuristics. Longer but not necessarily violated odd holes are also
very useful since they can be lifted to try to produce lifted violated odd hole inequal-
ities (we show how to do this later in this section). On the other hand, Borndorfer
([Bor97]) and Nemhauser and Sigismondi ([NS92]) apply the GLS algorithm and do
not report any shortcomings. When we implemented our odd hole separation proce-
dure we were not aware of any earlier efficient implementation of the GLS algorithm
in this context and Hoffman and Padberg’s arguments were very convincing, so we
decided to follow their advice and implemented a heuristic separation algorithm
similar to theirs.

Our algorithm for finding (lifted) odd holes is best described in terms of the
fractional intersection graph. A [evel graph is a breadth first arrangement of the
nodes of the graph, rooted at a specific node. The root node is on level zero, its
neighbors are on level one, its neighbors’ neighbors are on level two, etc. Because
of the breadth first enumeration of the nodes, adjacent nodes cannot be more than

one level apart. Notice that if two adjacent nodes on the same level both have a

147

path up to the root so that nodes on one path are not neighbors of nodes on the
other path, the two paths and the edge between the two nodes form an odd hole.
The costs defined earlier are assigned to the edges of the level graph.

The algorithm enumerates the levels one by one (starting with level two since
triangles are not desired), and for every adjacent node pair on level [looks for
the cheapest (with respect to the edge weights) possible length [path from the
nodes up to the root. First a cheapest path that “steps up” one level at a time
is searched for from one of the nodes to the root, and if such path is found, the
neighbors of the nodes along the path are “blocked out” and a similar path is sought
starting from the second node. If the second path exists as well then the costs of
the paths are combined with the cost of the edge between the two nodes. If the
cost of this odd hole is less than 1, its violated inequality is sent back to the CG
master. Otherwise, we try to strengthen the inequality by lifting in some more
variables from the fractional graph, as we will describe below. Then this procedure
is repeated searching for a path from the second node first.

Usually we build more than one level graph, choosing the roots randomly with
a probability inversely proportional to the degree of the nodes. About 5% but
no more than 50 of the nodes are chosen. As in the violated clique identification
algorithms, a parameter determines the minimum amount by which an odd hole
must be violated in order that it be returned to the CG master.

As discussed earlier (Section 2.3), to compute the coefficient of a variable cur-
rently not in the inequality we subtract from the right hand side of the inequality

the size of the largest weighted independent set in the subgraph that corresponds

148

to the variables already in the inequality and the one to be added.

When lifting odd holes we call the variables that are added to the inequality hubs.
Nodes whose coefficients are yet to be computed are the hub candidates. The order
in which the coefficients of the hub candidates are computed (lifting order) affects
the outcome. Our goal is to produce an inequality which is maximally violated,
therefore at each step we try to choose the best hub candidate. To accomplish
this, we iteratively compute the would-be coefficients for all the hub candidates and
select the one with maximal increase in the left hand side (that is, the coefficient
times the value of the variable in the current solution) until there are no more hub
candidates.

Computing the lifting coefficient is the heart of this lifting algorithm. Note that
there might already be some hubs that were lifted in earlier, so here we give a general
algorithm for computing the coefficient of a hub candidate for a lifted odd hole. We
consider the submatrix of the lifted odd hole and the hub candidate. We assume
that the hub candidate has been chosen, so its neighbors in the subgraph can be
deleted right away. Now assume that a maximal set of independent hubs already in
the inequality is chosen; removing their neighbors from the odd hole leaves us with a
collection of path segments. The size of an independent set for a path is simply half
of the length of the path, rounded up (choose every other node). Then the value
of a maximum weighted independent set given a maximal set of independent hubs
is the sum of the maximum independent set sizes for the paths and the weighted
value of the hubs. We recursively enumerate all weighted maximal independent sets

on the hubs and compute the largest of the above values. The coefficient of the hub

149

candidate is the difference of the right hand side of the inequality and the computed
(largest) value. Note that the coefficient is zero if the computed value matches the
right hand side, which is the case, for instance, if the hub candidate is not adjacent
to any of the nodes in the odd hole.

Enumerating all subsets of the hubs for each hub candidate at each iteration
may seem computationally expensive, but according to our experience the time is

reasonable when we utilize the following observations.

e Nodes with at most two neighbors in the odd hole will have a coefficient zero,

so these nodes need not be included into the list of hub candidates.

e As soon as the value of the weighted independent set reaches the value of the
right hand side for a given set of hubs, the enumeration can be aborted since

the coefficient of the hub candidate will be zero.

e Since the would-be coefficients of hub candidates cannot increase during se-
quential lifting, hub candidates with zero would-be coefficients can be removed

from the candidate list.

Thus our violated odd hole detection algorithm can produce odd holes as well as
lifted odd holes; these inequalities will be further lifted in the LP process using the
same method to compute the lifting coefficients as described here. Our algorithm
usually finds many more violated lifted odd holes than plain odd holes.

To find packing odd holes we start by locating odd holes with the help of the level
graph exactly as above. Once an odd hole (violated or not) is found, a set of rows

is chosen, one for each edge in the odd hole (Section 2.3). If more than one row’s

150

support contains both endpoints of an edge then the longest such row is selected
(the goal is to include as many coefficients as possible into the final packing odd hole
inequality). The generated packing odd hole inequalities are tested for violation and
for those sufficiently violated the cut (the corresponding set of rows) is sent back
to the Cut Generator master for forwarding to the LP. The LP process derives the
packing odd hole inequality again on every variable in the current formulation (not
only on those at fractional level). This is not necessary, but it is computationally
inexpensive and usually results in a cut with much larger support.

The cover odd holes are generated very similarly. Now we look for odd holes
with the sum of the fractional values on the nodes as small as possible (i.e., with
large total edge costs). So we aim for the most expensive path to the root of the
level graph instead of finding the cheapest one. Also, we choose the shortest rows
for the edges in the odd hole trying to keep the left hand side of the inequality
small. Observe that the cover odd hole inequality must be derived from the rows of
the entire current matrix to be valid. However, its validity can be tested using the
fractional matrix only, since all variables not in the fractional matrix are at level
zero in the current solution. If a cover odd hole inequality proves to be violated
here, the cut (corresponding rows) is sent back to the CG master and from there to
the LP where the cut will be reconstructed for the entire formulation (this time it

is necessary to do so).

151

5.4.3 0Odd antiholes and lifted odd antiholes

We define the odd antihole inequality as

Z%SQ,

vEH

where H is an odd antihole in the intersection graph (the edge-complement of an
odd hole).

Separating heuristically for violated odd antiholes is straightforward as we can
take the complement of the intersection graph and use any violated odd hole detec-
tion routine (with the right hand side fixed to 2). In our algorithm we used the same
level-graph approach as for odd holes. Again, if the algorithm detects a violated
odd antihole it is returned to the cut generator master at once, while non-violated
odd antiholes are first lifted. The lifting procedure is also similar to the traditional
sequential lifting of odd holes; first we create the set of hub candidates and then
repeatedly compute the would-be coefficients for the candidates and choose the one
that increases the left hand side the most.

Computing the lifting coefficients for the hub candidates is considerably easier for
(lifted) odd antiholes than for (lifted) odd holes since here the coefficients cannot be
larger than 2. The coefficient of a hub candidate is 2 if the hub candidate is adjacent
to all nodes already in the (lifted) odd antihole, zero if the hub candidate has a non-
neighbor with coefficient 2 or two nonadjacent non-neighbors, and 1 otherwise.

The lifting procedure for odd antiholes can be made more efficient by observing

that

e Nodes with at most (JH| — 1)/2 neighbors on the odd antihole will have a

152
coefficient zero, thus they need not be included in the hub candidate list.

e As for odd holes, hub candidates with zero would-be coefficients need not be

considered further.

5.5 Computational Results

In our final runs we used the default settings of the framework except for the fol-
lowing. We set the time limit to two hours (7200 seconds) for the Branch-and-Cut
procedure (note that this is a limit for the Tree Manager; reading in the problem in-
stance and preprocessing and heuristics in the Master is not counted into this time).
We used the upper bound obtained by our Feasible Solution Heuristic (Section 4.4)
whenever available. The GUI was disabled for the runs on the SP. The number of
LP — Cut Generator pairs was set to 1, 2, 4, 8 and 16. We used only one Cut Pool
process, and experimented with both pure Branch-and-Bound and Branch-and-Cut
with generating only clique inequalities or turning on all the cut generators we had
(except for the sequential lifting of odd holes because this was much more time
consuming than simultaneous lifting). The Tree Manager chose the node with the
lowest presolved LP value from the candidate list to be processed next.

Threshold values were set to .33 and .99 for tailing off based on objective values
and integrality gaps, respectively; the length of the history was limited to between
5 and 10 steps. 10 to 30 violated inequalities were added to the formulation in each
iteration. The LP relaxations at the would-be children of branching candidates were

presolved up to 500 dual simplex iterations (which meant that they were solved to

153

optimality for most of the problems). The “highest-low objective” rule was used for
branching object selection.

The number of cuts in the cut pool is limited to a few thousand. For a given LP
solution only those cuts were checked which were originally generated at a higher
level of the search tree than the solution and were recently found violated.

The parameters on the user side were set the following way. All the LPs (the
initial LP relaxation or those during the feasible solution heuristic) were solved using
CPLEX’s barrier method with dual crossover. In the LP process logical fixing was
always attempted after solution of the first LP in a node which is the “one-child”
of its parent (that is, the node was obtained by setting a variable or the right hand
side of a branching cut to 1), or if 2% of the variables were recently fixed to zero.
The feasible solution heuristic was not invoked at all for problems with a very low
integrality gap (less than 2%). Otherwise it was invoked with a probability of .5 at
the top of the one-children and it was also invoked if 20% of the variables had been
fixed since the most recent application of the heuristic.

The number of branching objects of each type (follow-on, threshold, slack cut
and variable) varied depending on the difficulty of solving LP relaxations for the
given problem. The lower and upper thresholds for selecting follow-on candidates
were set to .60 and .80, respectively. The threshold for threshold branching was set
to .65. We experimented with branching variables chosen both with the “close to
half and expensive” and “close to one and cheap” rules.

As indicated above, all but sequentially lifted odd hole inequalities were gener-

ated. The minimum violation was set to 0.01 for all cut types.

154

Greedy clique detection was substituted for enumeration in the star clique and
row clique methods when the number of nodes in the set on which the clique was
to be enumerated exceeded 16. The node with the minimum degree was chosen to
be the next in the star clique method. The number of hub candidates for sequential
lifting of odd antiholes was limited to 100. Up to 10 levels (depending on the size
and density of the fractional graph) of the level graph were investigated (which
means odd holes of length up to 21 could be found); the algorithm continues with
the next level or even next level graph when a violated inequality is obtained from
the current level graph.

There is no “perfect” setting for the parameters that would work well with all
problem types. We have spent considerable computational effort in fine-tuning some
of the parameters for each set of test problems. In the next sections we will discuss
our experiments for all four sets in detail.

Our parallel runs were carried out on the thin nodes of the SP (the computing
environment is described in Section A.1). We reserved one processor for the Master,
Tree Manager and Cut Pool processes. LP-CG pairs were placed on the same
processor; we used 1, 2, 4, 8 or 16 of these. Thus the total number of processors
used was 2, 3, 5, 9 or 17. The number of search tree nodes processed and the total
execution time are the two main indicators of a B&C algorithm’s performance. Pure
B&B runs were carried out with one LP-CG pair only since communication time is
not negligible compared to one LP solution time for the problems in our test bed.
Parallel runs (more than one LP-CG pair) were carried out for problems requiring

at least 100 nodes during B&C.

155

Intuitively, an algorithm is parallel efficient if doubling the number of processors
used cuts the execution time in half. To quantify this concept, the parallel speedup

(with p processors) is defined as

running time with 1 processor

s(p) =

p - parallel running time

If this ratio is below 1 then the algorithm on p processors uses more resources than
on one processor. Linear speedup is defined as a speedup with ratio 1; superlinear
speedup as a speedup with ratio greater than 1. Note that it is not impossible to
achieve superlinear speedup in an asynchronous parallel application when the order
of certain events influences the flow of the algorithm. For instance, in a parallel
B&C algorithm communication delay can cause search tree nodes to arrive at the
Tree Manager in different order, resulting in completely different search trees.

We follow [Ral95] and [Lad96] and consider the number of LP-CG pairs only
when measuring speedup (the time spent in the Tree Manager and in the Cut Pool
is considered a constant overhead). Moreover, we define two speedup ratios, one

based on the execution time and another based on the number of processed search

tree nodes:
) running time with 1 LP — CG pair
S _=
1P p - running time with p LP — CG pairs’
and
) number of search tree nodes processed with 1 LP — CG pair
S52\P) =

number of search tree nodes processed with p LP — CG pairs’

Note that the speedup based on the number of processed search tree nodes is linear

(superlinear) if this number stays the same (decreases).

156

Runs with more than one LP-CG pairs were repeated three times and the average
of the results is reported. This was done to compensate for the difference in the

results due to communication delay.

5.5.1 Set 1 problems

Branch-and-Cut optimization was carried out for the 10 problems not solved to
optimality by our Feasible Solution Heuristic (Section 4.4). As we observed earlier,
the optimal solution was found but not proved for 5 of these problems, and the
optimality gap was below 2% for the other 5. As it turns out 7 of the 10 problems
are trivial for Branch-and-Cut, one problem (nw04) requires a little more computa-
tional effort, and only two problems (aa01 and aa04) can be considered moderately
difficult.

In our final experiments we used the default settings described above. The
framework added at most 10 cuts in each iteration, the tailing off history was set
to b iterations. The deepest level investigated in the level graph was limited only
in the two hard problems (to level 2, thus length 5 odd holes) since the level-graph
approach for odd hole detection is not efficient for dense fractional graphs such as
those corresponding to these problems.

We present here 10 basic experiments with one LP-CG pair for each of the 10
problems. Each problem was run with pure B&B, B&C with separating clique in-
equalities only (both star and row cliques), and B&C with separating clique, packing
and cover odd hole, and sequentially lifted odd antihole inequalities. In each of these

three cases either only branching variables were selected or all types of branching

157

objects (this second does not apply for B&B). Finally, candidate branching vari-
ables were selected with either the mixed or the “close to one-half and expensive”
rule. The number of branching candidates totaled 6.

Tables 5.1 through 5.10 (one table for each problem) summarize the results of
these experiments. The first three columns indicate the settings for the experiment
(as explained above). This is followed by the number of processed / created search
tree nodes (nodes that were created but not processed are those fathomed during
branching) and the depth of the search tree; the worst lower bound on the nodes not
yet processed and the best feasible solution value found (if optimality is not proved);
the time when the best solution was first found (in case the upper bound is the
optimal value, this space is left empty) and the overall execution time (as reported by
the Tree Manger). For example, in Table 5.1 the third line summarizes the results of
a Branch-and-Cut experiment when only clique inequalities were generated and only
variables (chosen with the “close to one-half and expensive” rule) were considered
as branching candidates. 97 search tree nodes were created, out of which 53 were
processed (the rest were fathomed during branching), the depth of the search tree
was 13. The problem was solved to optimality in 601.09 seconds; the optimal
solution was found after 378.03 seconds. On the other hand, using the same settings
but selecting the branching variables with the mixed rule, the algorithm timed out.
3069 search tree nodes were created, 1566 of them were processed (the rest were
fathomed or waiting to be processed), the depth of the search tree was 41. The
value of the best feasible solution is 56167 (found after 6300.19 seconds), the lower

bound (the lowest presolved LP value at the unprocessed nodes) is 55809.21.

158

Table 5.1: Basic B&C experiments for aa01

Ib: 55535.43 OPT: 56137 ub: 56172
aa0l search tree worst best time

nodes depth Ib soln to best total

1/2 181/345 17 1102.24 1102.56

B&B | var mix | 3607/7199 43 55743.21 56162 6583.18 7208.01
1/2 53/97 13 378.03 601.09

B&C | V™ | mix 1566/3069 41 55809.21 56167 6300.19 7205.80
clique | var | 1/2 82/147 14 629.24 794.59
cut | mix | 884/1699 27 55988.75 56137 6782.16 7205.96

1/2 59/107 12 508.68 877.06

B&C | "™ | mix 1416/2753 37 55827.43 56138 1719.94 7205.28
all var | 1/2 79/135 11 628.04 1053.71
cut | mix | 664/1181 22 3698.75 5824.87

Table 5.2: Basic B&C experiments for aa04
Ib: 25877.60 OPT: 26374 ub: 26680
aa04 search tree worst best time

nodes depth b soln to best total
1/2 | 574/1143 28 2797.97 2976.77
B&B | var mix | 3834/7649 43 26133.41 26456 7009.96 7201.60
1/2 | 204/365 19 1682.30 1686.31
B&C | Y™ | mix | 2181/4311 35 | 26160.20 26492 | 200.89 7209.74
clique | var | 1/2 | 575/1067 22 3575.54 3908.01
cut | mix | 1460/2875 32 26229.68 26402 1183.34 7207.16
1/2 | 191/343 17 1917.62 2222.81
B&C | "™ | mix 1409/2757 33 26205.38 26451 5842.55 7205.63
all var | 1/2 | 311/569 20 2892.11 2983.92
cut | mix | 827/1567 23 26283.54 26375 2416.45 7208.77

159

We can see that six problems (aa03, aa06, nw17, nw36, k102 and us01) solve in
the root node when all cut generation is enabled, even though tailing off is checked
(which can force early branching). In aa05 the optimal solution is also found during
the first branching, but one of the children cannot be fathomed right away. When
tailing off is disabled for this problem, no cuts are found after 16 iterations in the
root thus branching is forced. Again, the optimal solution is found during strong
branching.

We can observe that for these problems the mixed strategy (which always de-
faults to choosing a variable near one) does not work well. It is especially disastrous
for aa01, aa04 and k102. Another observation is that pure B&B is very often more
effective than B&C. This can be viewed as further evidence that the problems in
this set are relatively easy.

An interesting fact about nw04 is that when solving the problem with pure B&B
one of the children is always fathomed during branching, so the search tree is a
chain (the number of nodes created is twice the number of nodes processed).

In comparing our results (B&C with all cut generation and only variable branch-
ing) with those of Hoffman and Padberg ([HP93]) and Borndérfer ([Bor97]), we note
that we solve all the Set 1 problems in no more search tree nodes than Hoffman and
Padberg require. Also, for the three problems they consider difficult (aa01, aa04
and nw04) our running times represent at least an order of magnitude improve-
ment. Compared to Borndorfer’s results ([Bor97], default strategy), our algorithm
processed slightly more search tree nodes than his for the two hard problems but

not more for the remaining problems. Our running times are comparable to his

160

Table 5.3: Basic B&C experiments for nw04

Ib: 16310.66 OPT: 16862 ub: 17158
nw04 search tree time
nodes depth to opt total
1/2 38 /77 38 0.44 15.04
BEB | var | iy 64 / 127 48 0.44 13.67
1/2 36 /71 25 4.51 40.69
B&C | " | mix 69 / 127 28 3.17 77.92
clique | var | 1/2 35/ 65 27 7.88 54.66
cut | mix 70 / 117 25 6.47 95.59
1/2 35 / 65 26 2.35 52.74
B&C | "™ | mix 42 /77 28 3.53 55.61
all | var | 1/2 38 / 67 26 25.69 101.24
cut | mix 106 / 143 28 3.24 313.73
Table 5.4: Basic B&C experiments for aa05
Ib: 62860.50 OPT: 53839 ub: 53904
aa05 search tree time
nodes depth to opt total
1/2 4/ 7 3 2.26 2.26
BEB | var | iy 46 | 87 14 2.47 13.17
1/2 5/9 3 3.08 3.34
B&C | " | mix 6/ 11 5 3.14 3.22
clique | var | 1/2 5/7 3 2.21 3.16
cut | mix 12 / 21 5 2.49 6.56
1/2 2/3 1 9.96 11.91
B&C | '™ | mix 5/9 4 18.30 18.51
all | var | 1/2 2/5 2 10.23 16.59
cut | mix 2/5 2 10.21 15.12

Table 5.5: Basic B&C experiments for aa03

Ib: 75323.36 OPT: 49649 ub: 49649
aa03 search tree time
nodes depth to opt total
1/2 1/3 1 0.15
BEB | var | i 2/3 1 0.18
1/2 1/3 1 0.31
B&C | " | mix 1/3 1 0.31
clique | var | 1/2 1/3 1 0.30
cut | mix 1/3 1 0.32
1/2 1/1 0 0.51
B&C | "™ | mix 1/1 0 0.40
all | var | 1/2 1/1 0 0.49
cut | mix 1/1 0 0.53
Table 5.6: Basic B&C experiments for aa06
Ib: 30314.18 OPT: 27040 ub: 27040
aa06 search tree time
nodes depth to opt total
1/2 6/9 3 2.25
B&B | var |y 15 / 27 8 4.90
1/2 2/5 2 1.59
B&C | " | mix 1/3 1 1.31
clique | var | 1/2 2/3 1 1.29
cut | mix 2/5 2 1.87
1/2 1/1 0 3.28
B&C | | mix 1/1 0 3.39
all | var | 1/2 1/1 0 3.34
cut | mix 1/1 0 3.45

161

162

Table 5.7: Basic B&C experiments for k102

Ib: 224.25 OPT: 219 ub: 219
k102 search tree time
nodes depth to opt total
1/2 8 /17 8 1.33
B&B | var | iy 198 / 385 21 10.82
1/2 3/7 3 1.02
B&C | " | mix 28 / 57 8 3.47
clique | var | 1/2 315 / 621 26 40.36
cut | mix 1342 / 2635 23 149.34
1/2 1/1 0 0.39
B&C | "™ | mix 1/1 0 0.40
all | var | 1/2 1/1 0 0.40
cut | mix 1/1 0 0.39
Table 5.8: Basic B&C experiments for nw17
Ib: 13764.00 OPT: 11115 ub: 11115
nwl7 search tree time
nodes depth to opt total
1/2 2/3 1 0.22
BEB | var ||y 2/3 1 0.10
1/2 2/ 3 1 0.42
B&C | " | mix 1/3 1 0.35
clique | var | 1/2 2/3 1 0.41
cut | mix 1/3 1 0.36
1/2 1/1 0 0.41
B&C | | mix 1/1 0 0.40
all | var | 1/2 1/1 0 0.45
cut | mix 1/1 0 0.41

Table 5.9: Basic B&C experiments for nw36

Ib: 7762.00 OPT: 7314 ub: 7314
nw36 search tree time
nodes depth to opt total
1/2 4/9 4 0.12
BEB | var ||y 4/9 4 0.15
1/2 2/3 1 0.36
B&C | " | mix 2/ 3 1 0.35
clique | var | 1/2 3/5 2 0.39
cut | mix 2/5 2 0.40
1/2 1/1 0 0.44
B&C | "™ | mix 1/1 0 0.46
all | var | 1/2 1/1 0 0.42
cut | mix 1/1 0 0.44
Table 5.10: Basic B&C experiments for us01
Ib: 9963.06 OPT: 10036 ub: 10101
us01 search tree time
nodes depth to opt total
1/2 3/ 7 3 0.33 0.44
BEB | var |y 7/13 5 0.32 0.59
1/2 2/5 2 3.18 3.23
B&C | " | mix 4/7 3 2.12 2.28
clique | var | 1/2 2/5 2 2.15 2.53
cut | mix 6/ 11 5 1.58 2.83
1/2 1/3 1 6.16 6.17
B&C | | mix 1/1 0 5.95 5.96
all | var | 1/2 1/1 0 421 4.22
cut | mix 1/1 0 3.75 3.76

163

164

Table 5.11: Parallel runs for aa01

lb: 55535.43 OPT: 56137 ub: 56172

aa01 search tree time s1(p) sa2(p)
nodes depth to opt total

1 51.33 / 91.00 11.67 384.69 622.65 | 1.00 1.00

2 68.33 / 115.67 12.67 307.58 402.11 | 0.77 0.75

4 59.33 / 91.67 11.67 155.92 181.06 | 0.86 0.87

8 52.00 / 89.00 11.33 97.03 177.20 | 0.44 0.99

Table 5.12: Parallel runs for aa04

Ib: 25877.60 OPT: 26374 ub: 26680

aa0d search tree time s1(p) s2(p)
nodes depth to opt total

1 282.67 / 537.00 24.67 2293.19 2404.63 | 1.00 1.00

2 267.67 / 506.33 21.67 1057.40 111141 | 1.08 1.06

4 187.67 / 334.33 15.67 318.39 350.18 | 1.72 1.51

8 233.67 / 411.00 17.33 229.90 239.90 | 1.25 1.21

on all but the two hardest problems.
First of all, [Bor97] used an internal CPLEX routine for strong branching which
we strongly suspect is much more efficient computationally than the framework’s
strong branching. Considering that on these problems our algorithm spends more
than two-thirds of its running time in strong branching, the internal CPLEX routine
gives an enormous advantage. Second, they used the GLS algorithm for finding odd

holes which seems to be more efficient for dense fractional graphs than the level

graph approach.

There are two reasons for this difference.

165

We also ran the two hard problems with 2, 4 and 8 LP-CG pairs (using B&C
with all the cuts and variable branching only). Tables 5.11 and 5.12 present the
results (three runs averaged). aa04 shows a superlinear speedup both in terms of
running time and the number of processed search tree nodes. aa01 shows close to
linear speedup in terms of nodes processed, but it exhibits the law of diminishing
returns when using 8 processors: there are so few search tree nodes that adding
more processors didn’t help, since for these processors there was nothing to work

OIl.

5.5.2 Set 2 problems

We have experimented with these problems, but the results were not encourag-
ing. As we have already seen in Table 4.4 the LP relaxations for these problems
are extremely difficult. They were very hard both for reoptimization and strong
branching. For this reason we selected only three variables as candidates for strong
branching. In the first of two sets of runs we have selected these variables with the
“close to one-half and expensive” rule and with the mixed rule in the second. Odd
hole generation was disabled as well.

These problems proved to be so hard that with four LP-CG pairs in a two hour
time frame we were able to process only approximately 35 nodes on the average
and found a feasible solution only once (this solution was found by the feasible
solution heuristic). Tables 5.13 and 5.14 show these results. We are not aware of

any published results for these problems.

166

Table 5.13: Basic B&C experiments for Set 2 (branching on “close to one-half”)

search tree best best / initial time
nodes depth | lower bound wupper bound | to best total
0321.4 8/9 4 35875.86 - / - 7224.34
0331.3 | 108 / 203 40 28994.61 34253.10 / - | 3045.40 7217.91
03314 | 51/95 20 29968.41 - / - 7215.58
0341.3 | 86 / 157 22 31383.66 - / - 7222.75
03414 | 75/ 139 28 34443.64 - / - 7215.07
0351.3 | 11 /15 4 35239.85 - / - 7221.17
0351.4 9 /11 4 34551.91 - / - 7223.03

Table 5.14: Basic B&C experiments for Set 2 (mixed branching variable selection)

search tree best best / initial time
nodes depth | lower bound upper bound | to best total
03214 | 8/9 4 35879.24 -/ - 7223.69
0331.3 | 26 /45 8 28488.68 -/ - 7223.73
03314 | 26 /45 8 29778.25 -/ - 7223.24
0341.3 | 34 /61 10 31058.49 -/ - 7224.87
03414 |39 /71 11 34320.70 -/ - 7219.07
03513 | 9/11 4 35129.98 -/ - 7223.07
03514 | 8/9 4 34539.79 -/ - 7225.61

167

5.5.3 Set 3 problems

These problems can be divided into two groups, the v* and t* problems (they were
generated at different stages of the modeling process).

The v04 and v16 problems are extremely degenerate; there are many feasible so-
lutions around the optimal value. This was already apparent when we were able to
find near-optimal feasible solutions with our heuristic. The LP relaxations are rela-
tively easy to (re-)solve, both after adding constraints and during strong branching.
Hence we were able to consider a wider selection of branching candidates, alto-
gether 18. The fractional graphs are relatively small and sparse, thus we were able
to use our packing and cover odd hole generators. Preliminary testing showed that
branching on variables “close to one-half and expensive” is not effective, the mixed
strategy was used instead. Two experiments were carried out for each problem, one
with branching on variables only, the other with branching on both variables and
cuts.

The v04 problems are very easy except for v0416. Tables 5.15 and 5.16 present
the results of the two experiments for these problems, using only one LP-CG pair.
We were able to solve all problems to optimality in both cases. For these problems
branching on cuts seems to give an advantage. We experimented with multiple LP-
CG pairs for v0416. Tables 5.17 and 5.18 show that this problem scales very well
for multiple LP-CG pairs. Also, the effectiveness of branching on cuts is even more
pronounced.

The v16 problems are much larger than the v04 problems and although the LP

relaxations are still not too difficult, the size of the search tree explodes because

168

Table 5.15: Basic B&C experiments for v04 (branching on vars)

problem search tree OPT initial time
nodes depth ub to opt total
v0415 11 /19 5 2429415 2435833 5.16 7.02

v0416 | 869 / 1387 42 2725602 2736885 | 10.13 506.56
v0417 10 / 15 2611518 2622525 | 41.06 61.41
v0418 8 /15 2845425 2855469 4.66 9.04
v0419 1/1 2590326 2598124 1.08 1.09
v0420 1/1 1696889 1703734 0.61 0.61
v0421 1/1 1853951 1858977 0.89 0.90

o O O o W

Table 5.16: Basic B&C experiments for v04 (branching on vars/cuts)

itial :
problem search tree OPT initia time
nodes depth ub to opt total
v0415 12 /17 4 2429415 2435833 4.70 6.61
v0416 | 582 / 801 23 2725602 2736885 7.22 338.65

v0417 11 /15) 2611518 2622525 | 22.44 53.88
v0418 3/5 2 2845425 2855469 3.43 3.52
v0419 1/1 0 2590326 2598124 0.58 0.59
v0420 1/1 0 1696889 1703734 0.56 0.57
v0421 1/1 0 1853951 1858977 0.45 0.47

169

Table 5.17: Parallel runs for v0416 (branching on vars)

1b: 2715490.66 OPT: 2725602 ub: 2736885
V0416 search tree time s1(p) s2(p)
nodes depth to opt total

1 1268.33 / 2097.00 39.67 11.75 692.89 | 1.00 1.00

2 1277.00 / 2141.00 39.00 9.99 347.76 | 1.00 0.99

4 1572.67 / 2580.33 38.67 9.02 180.91 | 0.96 0.81

8 1258.33 / 2081.67 38.00 8.40 72.27 | 1.20 1.01
16 1569.67 / 2582.33 36.67 6.57 49.55 | 0.87 0.81

Table 5.18: Parallel runs for v0416 (branching on vars/cuts)

Ib: 2715490.66 OPT: 2725602 ub: 2736885
v0416 search tree time s1(p) s2(p)
nodes depth to opt total

1 1129.33 / 1617.00 29.00 3.80 514.35 | 1.00 1.00

2 910.67 / 1279.67 27.33 2.10 150.81 | 1.71 1.24

4 1090.00 / 1541.67 31.00 2.85 106.81 | 1.20 1.04

8 1011.67 / 1427.00 31.33 3.86 58.70 | 1.10 1.12
16 800.00 / 1097.00 26.67 4.12 2790 | 1.15 1.41

170

of the degeneracy. We have experienced that the the lower bound did not increase
through several levels in the search tree. Therefore we used four LP-CG pairs for all
but the last two these problems which are trivial, Tables 5.19 and 5.20 contain the
results of our experiments. Having multiple LP-CG pairs also compensates for the
computational inefficiency of the strong branching interface to CPLEX. (Even with
four pairs we have processed significantly fewer search tree nodes than Borndorfer et
al. [BGKK97].) We have also experimented with 16 LP-CG pairs for the five difficult
problems in this group (branching on variables only). Having more computing power
has generally improved both the upper and lower bounds but the search tree is still
far from being enumerated in four out of the five cases. Surprisingly, v1620 was
solved to optimality in 375.04 seconds (see Table 5.21).

The t* problems are much more difficult than the previous sets. The LP relax-
ations are hard, and feasible solutions are scarce (we were able to find feasible solu-
tions with the heuristic only for three out of the 13 problems). The fractional graphs
are dense, thus generating odd holes was prohibitively expensive. We restricted the
number of branching candidates to 9. In contrast to the v* problems, the “close to
one-half and expensive” rule selected better branching variables. Again, we have
experimented with branching on variables only and branching both on variables
and cuts. Here we again used four LP-CG pairs. Tables 5.22 through 5.25 show the
results of our experiments.

Although we have found feasible solutions for all the problems (always with the
heuristic), the integrality gap is still over 10%.

Our results compare to those of Borndorfer et al. [BGKK97] reasonably well.

Table 5.19: Basic B&C experiments for v16 (branching on vars)

search tree best best / initial time
nodes depth | lower bound upper bound to best total
v1616 | 603 / 1199 101 | 1006156.06 1006460 / 1018536 | 837.37 7208.33
v1617 | 729 / 1445 105 | 1102258.78 1102637 / 1115503 | 966.15 7207.93
v1618 | 411 /819 159 | 1152827.05 1154324 / 1166107 | 4725.44 7206.61
v1619 | 329 / 655 291 | 1155357.21 1157078 / 1168481 | 6265.43 7206.88
v1620 | 280 / 489 82 | 1140381.91 1140604 / 1152624 | 5505.25 7207.63
v1621 3/3 1 - 825563 / 834602 4.22 4.56
v1622 2/3 1 - 793445 / 800572 2.01 2.65

Table 5.20: Basic B&C experiments for v16 (branching on vars/cuts)

search tree best best / initial time
nodes depth | lower bound upper bound to best total
v1616 | 538 / 1051 123 | 1006232.90 1006460 / 1018536 | 315.01 7207.54
v1617 | 709 / 1409 68 | 1102220.26 1102586 / 1115503 | 539.60 7209.55
v1618 | 255 / 505 69 | 1152793.26 1154968 / 1166107 | 6819.14 7208.10
v1619 | 304 / 581 35 | 1155777.33 1156368 / 1168481 | 3412.55 7208.87
v1620 | 264 / 457 31 | 1140425.22 1140604 / 1152624 | 1485.61 7206.95
v1621 2/3 1 - 825563 / 834602 3.85 3.86
v1622 1/3 1 - 793445 / 800572 1.70 1.78

Table 5.21: Basic B&C experiments for vi6 with 16 LP-CG pairs

search tree best best / initial time
nodes depth lower bound upper bound to best total
v1616 | 10470 / 20747 203 | 1006311.49 1006460 / 1018536 | 143.91 7255.96
v1617 | 13451 / 26711 107 | 1102357.00 1102586 / 1115503 | 1244.02 7250.27
v1618 | 6881 / 13653 175 | 1152999.94 1154018 / 1166107 | 3251.42 7240.58
v1619 | 6068 / 12051 251 | 1155866.81 1156557 / 1168481 | 7101.20 7266.00
v1620 684 / 871 43 1140604 / 1152624 | 151.40 375.04

171

172

Table 5.22: Basic B&C experiments for t04 (branching on vars)

search tree best best / initial time
nodes depth | lower bound upper bound | to best total
t0415 | 307 / 589 68 | 5185684.06 5570767 / - | 1209.68 7216.27
t0416 | 276 / 537 52 | 5892208.64 6093843 / - 336.50 7224.44
t0417 | 267 / 463 24 | 5688062.66 5951357 / - | 5252.42 7224.32
t0418 | 199 / 359 29 | 6195440.35 6442906 / - | 3876.42 7217.04
t0419 | 283 / 541 49 | 5714748.81 5910913 / - 716.16 7217.70
t0420 | 865 / 1681 45 | 4055025.59 4153696 / - 587.04 7223.03
t0421 | 875 / 1677 43 | 4126129.27 4290809 / - | 1269.66 7219.05

Table 5.23: Basic B&C experiments for t04 (branching on vars/cuts)

search tree best best / initial time
nodes depth | lower bound upper bound | to best total
t0415 | 382 /637 19 | 5196761.22 - / - - 7213.70
t0416 | 327 /635 32 | 5897503.96 6088264 / - 503.70 7213.75
t0417 | 301 /509 20 | 5690561.30 - / - - 7223.29
t0418 | 220 /383 17 | 6206432.44 - / - - T7212.79
t0419 | 332 /625 50 | 5719985.86 6022626 / - | 2176.37 7221.35
t0420 | 1083 / 1985 28 | 4049232.06 - / - - 721778
t0421 | 1093 / 2143 42 | 4122723.76 4290809 / - 321.88 7222.79

Table 5.24: Basic B&C experiments for t17 (branching on vars)

search tree best best / initial time
nodes depth | lower bound upper bound to best total
t1716 | 297 / 585 63 | 122492.51 168856 / - 4495.32 7225.10
t1717 | 122 / 237 40 | 135288.55 181375 / 210489 | 6738.36 7223.22
t1718 | 182 / 357 66 | 126847.64 172992 / 204086 | 6046.42 7217.09
t1719 | 128 / 249 37 | 139327.63 187717 / - 6991.11 7218.59
t1720 | 127 / 247 37 | 126982.53 179018 / 200679 | 5385.00 7218.83
t1721 | 801 / 1585 83 | 104821.47 128053 / - 4600.99 7224.77

Table 5.25: Basic B&C experiments

for t17 (branching on vars/cuts)

search tree best best / initial time
nodes depth | lower bound upper bound to best total
t1716 | 326 / 643 70 | 122364.28 173692 / - 848.32 7222.57
t1717 | 130 / 2563 45 | 135263.49 203840 / 210489 | 2428.68 7223.57
t1718 | 186 / 365 63 | 126808.38 163860 / 204086 | 6962.04 7217.19
t1719 | 172 / 337 53 | 139314.47 187222 /] - 6620.44 7211.27
t1720 | 173 / 339 56 | 126934.68 171533 / 200679 | 6408.27 7211.04
t1721 | 899 / 1771 67 | 104679.26 126837 / - 4411.52 7212.83

173

174

The feasible solutions we find are of about the same quality (when optimality is
not proved), so is the best lower bound we can achieve. We suspect that even
though we have used four LP-CG pairs for the harder problems, this still just
barely compensates for the tight coupling with CPLEX’s internal strong branching

routine.

5.5.4 Set 4 problems

From this problem set we have experimented with those that were neither solved
to optimality by our Feasible Solution Heuristic nor were found infeasible. We have
also omitted those problems where solving the LP relaxations took an inordinately
long time. Tables 5.26 and 5.27 show the results for the remaining 4 problems. In
these tests we have used a history of length 7 for detecting tailing off and at most
30 cuts were added per iteration. We selected 6 variables for strong branching and
tested both the mixed and the “close to one-half and expensive” candidate selection
rules. We did not attempt to generate violated odd hole constraints. These tests
were carried out using four LP-CG pairs. These problems have not been publicly

available, so there are no other published computational results for them.

5.5.5 Conclusion and future work

With our B&C implementation we have shown that the COMPSys framework is
easy to adapt. It provided enough flexibility to implement methods fine-tuned for

the Set Partitioning Problem and at the same time it made our programming task

175

Table 5.26: Basic B&C experiments for Set 4 (branching on “close to one-half”)

search tree best best / initial time
nodes depth | lower bound upper bound | to best total
spl | 128 /233 70 11482 / 11482 0.00 6862.70
spd | 212 / 405 52 11821.79 12798 / - 1203.89 7222.80
Spo 2/3 1 27637 / 27673 | 484.53 888.24
spl0 | 519 / 903 42 44157.89 49835 / - 216.37 7218.44

Table 5.27: Basic B&C experiments for Set 4 (mixed branching variable selection)

search tree best best / initial time
nodes depth | lower bound upper bound | to best total
spl | 127 /223 75 11482 / 11482 0.00 6951.84
spd | 203 /395 51 11843.05 12798 / - 271.49 7223.71
SpH 5/9 4 27637 / 27673 | 484.95 1423.37
spl0 | 582 / 1007 21 43839.22 49839 / - 899.53 7211.86

176

much easier.

There are areas where improvement could be made. Within COMPSys the
strong branching interface to the LP solver needs to be improved.

On our part, we plan to continue research in several directions. First, we plan to
experiment with the GLS-algorithm for finding odd holes to see whether it performs
well for dense fractional graphs.

Second, new diving strategies should be explored. In the current implementation
we found long “chains” diving to the bottom of the search tree. As a result, only few
nodes close to the top of the tree were processed which resulted in weak lower bound
for the hard problems (the integrality gaps were above 10% for the t* problems).

More careful diving strategies might help to shrink the gap on these problems.

Chapter 6

The Graphical User Interface

The Graphical User Interface (GUI) is implemented as a separate process of the
COMPSys framework. The GUI consists of two parts: an interactive graph draw-
ing application (IGD) implemented purely in Tcl/Tk and an interface (DrawGraph)
implemented in C that links the application to the other processes of the frame-
work. DrawGraph is spawned by the Master process and communicates with the
other processes via PVM. DrawGraph in turn forks a wish shell (a shell that ac-
cepts Tcl/Tk commands) and opens a pair of communication pipes, attaching them
to the standard input and output of the wish shell (the technique was adapted
from [Wel95]). Figure 6.1 illustrates the communication flow between COMPSys,
the interface and the wish shell.

The GUI has been extensively used for debugging, both in the Cut Generator
and in the LP processes. In this case, messages go from a process of the framework

to IGD through the interface. Another, novel use of the GUI in the Set Partitioning

177

178

PVM pipe stdin
Interface wish shell
PVM (DrawGraph) pipe stdout (IGD)

COMPSys

Figure 6.1: Communication flow between COMPSys and the GUI

setting is to send messages, namely cuts, from IGD to the Cut Generator process;
that is, to generate violated cuts “by hand.” This enables us to test the effectiveness
of cuts that are difficult (or not known how) to separate algorithmically. We will
illustrate the “human cut generation” through an example in Section 6.3, after

discussing IGD and DrawGraph.

6.1 Interactive Graph Drawing (IGD)

Tcl, an interpreted scripting language, extended by the Tk toolkit provides an en-
vironment that allows fast and relatively easy implementation of GUI’s that use
windows and menus. IGD is implemented using Tcl version 7.5pl+ and Tk ver-
sion 4.1pl+dash (it has also been tested under Tcl version 8.0p2+ and Tk version
8.0p2+dash and it will most likely work with higher versions as well). Download
information about Tcl/Tk, manuals and related literature can be found at the Tcl
WWW Info Site (http://www.sco.com/Technology/tcl/Tcl.html).

IGD is a library of Tcl/Tk functions for displaying, manipulating, scaling and
printing undirected graphs (note that the package does not contain graph layout

algorithms). Figure 6.2 gives an idea of the look and feel of the application; the

(Cy| Eile Mindow Modes Edges Help Continue | Enter text | Reset | Mzg fram C |

0.750

—| Enter text for window CGO-0-0-16 | -

0.250 |||cut

tupe whesl

rim 8

names 1889 1888 1893 1436 2482 2481 803 80b
coefz 11111111

rhs 3

zense L

A=

[I

Evaluate | Rezet. | Clear | Cancel

SV L

0.500

314 271 s

| e

Display labels #* yes »» no node weights #* yes =+ no edge weights #* yes - no

Regizter 1r = 249 y: 338 label: 1889 node id; 9 clear register 1 |

Register 23 =i 37 y: 176 label: 1436 nhode id; & clear register 2

Mowing node 10 to position 378,301,

Figure 6.2: Screen shot of the GUI: problem v0416 at the root before branching

6LT

180

six graphs on Figure 2.3 were also created and printed using IGD. The library can
be used as a stand-alone application without using the interface. In this case the
library functions are sourced into a wish shell and can be invoked directly. As soon
as one application window is displayed, the user can manipulate the windows and
graphs via menus, buttons and mouse clicks (which are all bound to functions in
the library), hence the adjective “interactive.”

The basic units of the IGD application are windows (Figure 6.2). These windows
contain menus, buttons, scrollbars and a drawing area called canvas where the
graphs are displayed. The graphs displayed can be saved to and loaded from files
in a special format designed for this application; the graph visible on the canvas
can also be saved in a postscript file. New windows can be created, the display
properties of windows (like fonts, node radii, dash patterns for the node and edge
outlines) can be modified. A graph node is represented with a circle (different
nodes can have different radii and different outlines), a label (a short text displayed
within the circle) and an optional weight (a short text displayed North-East from
the circle). The edges connecting the nodes are represented with lines (different
edges can have different outlines) with optional weights (short texts placed East
from the middle of the line). In the Set Partitioning setting the graph displayed
is the fractional intersection graph (Sections 1.3 and 5.4), the node labels are the
indices of the nodes in the application, and the weights are the LP solution values
associated with the corresponding variables; the edges are all solid lines and no edge
weights are used. The nodes of the graph can be moved around (the idea of how

to implement this was borrowed from [Ous94]), edges attached to the moving node

181

will move with the node. Moving nodes makes it easy to rearrange the graph so
that special structures are easier to spot (like the wheel inequality in the graph on
Figure 6.2, see Section 6.3).

The library with a short script to start the stand-alone application is available
for download at http://www.orie.cornell.edu/"eso/IGD/. The package also
contains a detailed description of the features outlined above and documentation of
the library functions.

When IGD is used along with the DrawGraph interface, the library functions
are sourced into the forked wish shell. The interface can invoke a function by simply
placing a function call on the communication pipe attached to the shell’s standard
input, and whatever IGD places on the shell’s output is caught by the interface.
Additional functionalities bound to the buttons in the upper right corner of the
window on Figure 6.2 were included so that the user can send back messages to the
interface as well. The Continue button is used to hold up the interface (which in
turn can hold up the framework) until the user is done with the the current graph;
the Enter text button brings up a window into which the user can enter any text for
interpretation by the interface (this is the smaller window on Figure 6.2); pressing
the Reset button sends a request to the interface to redraw the same graph (this
is useful since nodes of the graph can be moved around or deleted); and finally
pressing the Msg from C button will bring up a window in which messages from the
framework are displayed (we use this option to print out the violated inequalities

found in the fractional graph during cut generation).

182

6.2 The interface (DrawGraph)

DrawGraph is a separate process of the framework spawned by the Master process.
As soon as it is started, it forks the wish shell and sources the IGD library. Then
it enters an infinite loop in which messages from IGD and from processes of the
COMPSys framework are processed alternately. Messages from [GD are processed
at once while messages received via PVM are placed into message buffers according
to the addressee (the window to whom the message is addressed) and processed later.
Each window opened through the interface has a unique “owner,” the process of the
framework that initiated the window. One process can own several windows and
each window will accept messages only from its owner. This buffering of messages
is necessary since the message flow to a window must be held up until the user has
finished examining the graph displayed. Once one message from “each side” (IGD
and the framework) of the interface has been read, one message per window (if any)
is processed and the loop continues.

Similar to other processes of the framework, the user can customize the Draw-
Graph process via user written functions. The only nontrivial user function is the
interpretation of text entered from the application. We used this option only for
entering cuts (violated valid inequalities). A cut is defined by its type (which can
be any of the known cut types described in Section 2.3 or “other” if the inequal-
ity is none of these types), the number of variables on the left hand side with the
names and coefficients, the value of the right hand side, the sense and range of the

inequality (see the cut in the small window on Figure 6.2). Only the format of the

183

cuts is checked here, their violation is computed in the Cut Generator.

6.3 Generating cuts by hand

The fractional intersection graph is displayed from the Cut Generator master either
every time the LP relaxation is (re-)solved and the regular cut generation (described
in Section 5.4) has already finished, or only when the built-in algorithms could not
generate any violated inequalities (and branching would follow unless we can add
some cuts). The first choice is beneficial for debugging as well, since we can see
what kind of violated inequalities were generated internally. On the other hand,
the second choice is very interesting, since here we can look for new types of cuts
that we do not separate for in the Cut Generator. We enter cuts through the Enter
text window as shown on Figure 6.2. The cuts are evaluated in the Cut Generator
master, and those which are violated are sent to the LP process. All cuts entered
this way are sent back to the message window of the GUI so that we can see the
extent of violation for each cut.

Figure 6.2 presents the fractional intersection graph for the problem v0416 before
branching at the root of the search tree (after adding cuts internally and resolving
the LP relaxation 16 times). Observe that there are no violated cliques, odd holes
or antiholes in the graph (for instance, all maximal cliques are size 3 and the sum
of the solution values in each case is exactly 1). However, it is easy to spot two

violated wheel inequalities (one of those is entered in the small window).

184

Recall from Section 2.3 that one of the wheel inequalities (I¢) is
Syt S (b= D < (W] +[€])/2 - 1,
jew je&

where W is all the nodes of the wheel, xy is the hub, and £/O contain the spoke-ends
that are of even/odd distance from the hub (|€|+ |O| = 2k + 1). This inequality is
violated for the following two wheels (entering the first wheel is shown in the small
window):
Wheel 1:

hub: 1889; spoke-ends: £ = (), O = {1888, 1893, 1436};

spokes: 1889-1888, 1889-1893, 1889-2481-2482-1436;

rim-paths between spoke-ends: 1888-1893, 1893-1436, 1436-805-803-1888;

inequality: ZjeW x; < 3, value of left hand side: 3.25.
Wheel 2:

hub: 1598; spoke-ends: £ = (), O = {1888, 1893, 1436};

spokes: 1598-1597-1919-1914-426-424-2444-2445-193-1888, 1598-1893,

1598-1436;

rim-paths between spoke-ends: 1888-1893, 1893-1436, 1436-805-803-1888;

inequality: ZjeW xj < 6, value of left hand side: 6.25.
Note that the two wheels have the same spoke-ends. Also, notice that the chain
between 193 and 1598 could be replaced by 193-2445-1598 or 193-1597-1598
which would correspond to reversing the even subdivision (replacing an edge with a
path that contains an even number of nodes) of the edge 2445-1598 or 193-1597,

respectively.

2193 +T2445+ 22444+ T 424+ T 426+ L1914 L1919 T L1597 T L1598 T L1893 T L1888 < 5
1893 +2 1436+ 1889+ L2481+ L2482 < 2

X193 + 1888 +Z503 < 1
+T1436 +T2482 +rges <1

T2445+T 2444 < 1

T 424426 < 1

1914 +21919 < 1

L1597 21598 < 1

1889 L2481 < 1

rgo3trgos <1

2(2 193+ Toaa5 + L2444+ T a2a+Ta26+ L1914+ L1919+ L1597+ T 1508+ L1893+ L1888+ L1436+ L1889 + L2481 +Toag2+Ts03+2505) < 15
T193+T2445 02444+ T 424+ T 426 +T1914F L1919 T L1597 T L1508 L1893+ T 1888+ 1436+ L1889 +T2481 +T 2482+ Tg03+Tg05s < 7

Figure 6.3: Deriving a cut using the Chvatal-Gomory procedure

68T

186

Figure 6.3 illustrates the Chvétal-Gomory procedure ([Chv73], also see Sec-
tion 2.3.1) for this graph by deriving a cut that contains all the nodes of the graph.
Add up the odd cycle inequalities for the following cycles:

193-2445-2444-424-426-1914-1919-1597-1598-1893-1888 (length 11),

1436-1893-1889-2481-2482 (length 5),

193-803-1888 and 805-1436-2482 (both length 3);
and also add the edge inequalities for the edges 2445-2444 424-426, 1914-1919,
1597-1598, 1889-2481, 803-805. Then all the nodes will be counted exactly twice
on the left hand side while the right hand side adds up to 15. Dividing both sides by
2 we obtain the following valid inequality (which is violated by the current solution
since the sum of the solution values on all the nodes is 7.5):

ij <7

JEV
where V' denotes all the 17 nodes in the graph. A stable set of size 7 is for instance
193, 2444, 426, 1597, 1893, 2481 and 805. Notice that the above inequality is
a rank inequality; thus, if the Chvatal condition (Section 2.3.1) holds, then it is
also facet defining for the stable set polytope of the graph. Indeed, it is easy to
see that all edges of the graph except 1436-1598 and 1888-1889 are a-critical, so
the subgraph of all the a-critical edges on the 17 nodes is connected; that is, the

Chvatal condition is satisfied.

Appendix A

Computation

A.1 Computing environment

e IBM RS/6000 Scalable POWERparallel System (SP)
e SP High Performance Switch 150 MByte/sec peak hardware bandwidth

e Processor type POWER2 Super Chip (P2SC) with 128 KByte data cache,

256 bit memory bus

e Thin nodes 120 MHz clock speed, 256 MByte or 1 GByte memory;

Wide nodes 135 MHz clock speed, 1 or 2 GByte memory
e Operating system AIX 4.2.1

e C compiler xIC 3.1.4.7 with flags

“-03 -gqmaxmem=16384 -qarch=pwr2 -qtune=pwr2s”

187

188

e Message passing protocol PVM 3.3.11 [PVM]

e LP solver CPLEX 4.0.9 [CPX95]

All times reported are wall-clock times. Users of the SP get exclusive use of the
assigned processors while running batch jobs. Therefore, especially for longer jobs,

wall-clock time approximates CPU time closely.

A.2 The test bed

Our methods have been tested on four sets of problems (see details below). Two
sets are Airline Crew Scheduling Problems originating at major airlines, and two are
Vehicle Routing Problems from the ZIB Telebus Project. Problems in Sets 1 and 3
are referenced in the papers listed below but we are not aware of any publications

about the remaining problems. All problems are publicly available.

Set 1 (55 problems)
origin: major airlines
published: originally in [HP93]; [BC96], [Bor97]
source: http://mscmga.ms.ic.ac.uk/jeb/orlib/sppinfo.html
comments: LP relaxation solves 15 of the problems to optimality

Set 2 (7 problems)

origin: Telebus Project at ZIB
published: -
source: http://www.zib.de/Optimization/index.en.html

comments: very hard problems

189

Set 3 (27 problems)

origin: Telebus Project at ZIB
published: [BGKK97]
source: http://www.zib.de/borndoerfer

comments: 14 clustering and 13 chaining problems

Set 4 (14 problems)

origin: major airline ([Anb])
published: —
source: http://www.orie.cornell.edu/~eso

comments: removed side constraints before optimization

Tables A.1, A.2, A.3 and A.4 give some basic properties of these problems. In
the first five columns the name and size (number of columns, rows, nonzeros and
density) are listed. Then the best published feasible solution value follows. For Set
1 problems the optimal solution is known (and the number of ones in an optimal

“*” marks those problems where

solution is also listed). For problems in Set 3 an
the best feasible solution is proved to be optimal.

After the initial problems were reduced using our fast strategy followed by one
SUMC (see Section 3.4.4), the first LP relaxation of the problem was solved by
CPLEX’s barrier method with dual crossover (default parameter setting). The
next five columns contain the optimal value of the LP relaxation (or “IP” if the
solution is integral), the time spent solving the LP, the number of variables at level

1 and of those at other nonzero levels, and finally the ratio of variables at level 1 to

all variables at nonzero levels.

190

The CPLEX MIP solver was also applied to the reduced problems. CPLEX MIP
parameters were set to their default values except for the following (see Appendix C

for description of these parameters):

tilim was set to 7200 seconds;

e varsel was set to strong branching based on our preliminary tests;

epagap and objdif were set to the granularity of the problems (.009999 for

Set 2 problems, .9999 for the rest);

e epgap was set to 1077 (its lowest possible value).

The last three columns contain the value of the best feasible solution found by
the CPLEX MIP optimizer (“*” when it is optimal, “~” if no feasible solution was
found), the number of search tree nodes (if a feasible solution was found) and the
time spent in optimization. The number of search tree nodes is marked with a “+”
if the tree was not completely enumerated. Note that in three cases (t0415, t0417
and t0419) the CPLEX MIP optimizer has found a better feasible solution than

the best published value.

Table A.1: Basic properties of problems in set 1, part 1

Original problem Optimal soln Solve first LP relax after Reduce CPLEX MIP

name cols rows nzs dens value #l1s opt time #1s #frac ratio | soln nodes time
aall 8904 823 72965 1.00 56137 102 55535.44 8.19 17 291 5.52 * 149 713.34
aa02 5198 531 36359 1.32 30494 81 P 1.94 81

aa03 8627 825 70806 0.99 49649 106 49616.36 5.66 69 91 41.67 * 2 69.98
aal4 7195 426 52121 1.70 26374 66 25877.61 3.74 5 224 2.18 * 189 648.44
aalb 8308 801 65953 0.99 53839 105 53735.93 5.42 53 142 26.42 * 11 91.01
aa06 7292 646 51728 1.10 27040 95 26977.19 4.94 51 112 31.29 * 10 81.48
klo1 7479 55 56242 13.67 1086 13 1084.00 1.07 5 16 23.81 * 8 9.52
k102 36699 71 212536 8.16 219 17 215.25 4.03 4 27 12.90 * 125 634.37
nw01 51975 135 410894 5.86 114852 71 P 13.50 71
nw02 87879 145 721736 5.66 105444 72 P 35.96 72
nw03 43749 59 363939 14.10 24492 13 24447.00 10.72 8 7 53.33 * 2 25.45
nw04 87482 36 636666 20.22 16862 9 16310.67 15.53 7 6 53.85 - 7207.59
nw05 | 288507 71 2063641 10.07 132878 36 IP 105.25 36
nw06 6774 50 61555 18.17 7810 8 7640.00 1.15 2 16 11.11 * 8 10.04
nw07 5172 36 41187 22.12 5476 6 P 0.30 6
nw08 434 24 2332 22.39 35894 12 IP 0.03 12
nw09 3103 40 20111 16.20 67760 16 P 0.15 16
nwl(853 24 4336 21.18 68271 13 IP 0.01 13
nwll 8820 39 57250 16.64 116256 19 | 116254.50 0.26 16 4 80.00 * 1 0.20
nwl2 626 27 3380 20.00 14118 15 IP 0.02 15
nwl3 16043 51 104541 12.78 50146 22 50132.00 1.97 19 6 76.00 * 2 2.73
nwld | 123409 73 904910 10.04 61844 26 IP 30.01 26
nwlb 467 31 2830 19.55 67743 7 P 0.06 7
nwl6 | 148633 139 1501820 7.27 | 1181590 125 IP 116.42 125
nwl7 | 118607 61 1010039 13.96 11115 16 10875.75 27.12 7 21 25.00 * 8 171.36
nwl8 10757 124 91028 6.82 340160 41 | 338864.25 3.14 27 36 42.86 * 1 5.05
nwl9 2879 40 25193 21.88 10898 7 P 0.19 7

161

192

Table A.2: Basic properties of problems in set 1, part 2

Original problem Optimal soln Solve first LP relax after Reduce CPLEX MIP
name cols rows nzs dens | value #l1s opt time #1s #frac ratio | soln nodes time
nw20 685 22 3722 24.70 | 16812 5 | 16626.00 0.04 0 15 0.00 * 4 0.21
nw2l 577 25 3591 24.89 7408 7 7380.00 0.03 3 7 30.00 * 1 0.03
nw22 619 23 3399 23.87 6984 7 6942.00 0.04 3 7 30.00 * 1 0.04
nw23 711 19 3350 24.80 | 12534 8 | 12317.00 0.03 4 6 40.00 * 19 0.49
nw24 1366 19 8617 33.20 6314 7 5843.00 0.04 4 6 40.00 * 2 0.06
nw25 1217 20 7341 30.16 5960 5 5852.00 0.04 1 8§ 11.11 * 2 0.10
nw26 771 23 4215 23.77 6796 6 6743.00 0.04 3 5 37.50 * 1 0.04
nw27 1355 22 9395 31.52 9933 5 9877.50 0.05 3 3 50.00 * 1 0.04
nw28 1210 18 8553 39.27 8298 3 8169.00 0.05 2 3 40.00 * 1 0.05
nw29 2540 18 14193 31.04 4274 4 4185.33 0.25 0 11 0.00 * 8 1.27
nw30 2653 26 20436 29.63 3942 4 3726.80 0.12 1 8 11.11 * 2 0.32
nw3l 2662 26 19977 28.86 8038 4 7980.00 0.16 2 5 28.57 * 3 0.40
nw32 294 19 1357 24.29 | 14877 7 | 14570.00 0.03 4 4 50.00 * 9 0.10
nw33 3068 23 21704 30.76 6678 5 6484.00 0.33 2 6 25.00 * 1 0.36
nw34 899 20 5045 28.06 | 10488 4 | 10453.50 0.05 2 4 33.33 * 1 0.03
nw35 1709 23 10494 26.70 7216 6 7206.00 0.06 4 4 50.00 * 1 0.09
nw36 1783 20 13160 36.90 7314 4 7260.00 0.22 1 6 14.29 * 14 2.26
nw37 770 19 3778 25.82 | 10068 4 9961.50 0.03 2 4 33.33 * 1 0.04
nw38 1220 23 9071 32.33 5558 5 5552.00 0.11 1 6 14.29 * 1 0.10
nw39 677 25 4494 26.55 | 10080 5 9868.50 0.03 3 3 50.00 * 2 0.05
nw40 404 19 2069 26.95 | 10809 4 | 10658.25 0.03 0 9 0.00 * 1 0.04
nw4l 197 17 740 22.10 | 11307 5 | 10972.50 0.02 3 3 50.00 * 2 0.02
nw42 1079 23 6533 26.32 7656 4 7485.00 0.11 1 7 12.50 * 4 0.31
nw43 1072 18 4859 25.18 8904 6 8897.00 0.06 1 7 12.50 * 1 0.08

us01 | 1053137 145 13636541 8.93 | 10022 14 9963.07 129.76 0 47 0.00 * 13 2088.99
us02 13635 100 192716 14.13 5965 12 1P 1.02 12
us03 85552 7 1211929 18.40 5338 7 1P 5.04 7
us04 28016 163 297538 6.52 | 17854 24 | 17731.67 0.97 12 24 3333 * 1 1.89

Table A.3: Basic properties of problems in set 3

Original problem Best feas Solve first LP relax after Reduce CPLEX MIP
name cols rows nzs dens value opt time #ls H#frac ratio soln nodes time
v0415 7684 1518 20668 0.18 | * 2429415 | 2423977.00 0.75 414 44 90.39 * 940 184.28
v0416 19020 1771 58453 0.17 | * 2725602 | 2715490.67 0.66 508 121 80.76 | 2725748 + 45051 7200.32
v0417 | 143317 1765 531820 0.21 | * 2611518 | 2603308.50 9.77 467 68 87.29 | 2612393 + 2716 7206.09
v0418 8306 1765 20748 0.14 | * 2845425 | 2836836.67 0.75 504 91 84.71 * 10423 2863.07
v0419 15709 1626 52867 0.21 | * 2590326 | 2582994.00 0.54 454 73 86.15 * 499 93.15
v(0420 4099 958 10240 0.26 | * 1696889 | 1688793.33 0.36 298 66 81.87 * 4301 570.65
v0421 1814 952 3119 0.18 | * 1853951 | 1848949.00 0.16 260 36 87.84 * 145 7.31

v1616 67441 1439 244727 0.25 | * 1006460 | 1002954.62 8.65 490 180 73.13 | 1006503 + 8333 7201.36
v1617 | 113655 1619 432278 0.23 1102586 | 1098263.23 15.22 523 261 66.71 | 1103266 + 4953 7203.97
v1618 | 146715 1603 545337 0.23 1154458 | 1147777.67 30.51 521 244 68.10 - 7207.31
v1619 | 105822 1612 401097 0.24 1156338 | 1150943.29 15.05 490 351 58.26 | 1157479 + 4594 7204.01
v1620 | 115729 1560 444445 0.25 | * 1140604 | 1136666.52 39.04 464 368 55.77 | 1140771 + 1119 7209.87
v1621 24772 938 76971 0.33 * 825563 822339.42 2.00 331 152 68.53 825563 + 16776 7200.66
v1622 13773 859 41656 0.35 * 793445 790076.50 1.78 328 108 75.23 * 6241 2708.27

t0415 7254 1518 48867 0.44 5590096 | 5125429.50 16.30 100 784 11.31 | 5590095 + 913 7204.27
t0416 9345 1771 62703 0.38 6130217 | 5829948.77 20.61 69 917 7.00 - 7205.41
t0417 7894 1765 54885 0.39 6043157 | 5610564.20 20.44 96 821 10.47 | 5951357 + 784 7202.25
t0418 8676 1765 66604 0.43 6550898 | 6142664.90 28.14 68 942 6.73 - 7203.92
t0419 9362 1626 64745 0.43 5916956 | 5644051.00 17.15 42 858 4.67 | 5910913 + 827 7207.36

t0420 4583 958 27781 0.63 4276444 | 3983951.22 4.62 30 537 5.29 - 7202.66
t0421 4016 952 24214 0.63 4354411 | 4057701.31 3.85 23 537 4.11 - 7200.11
t1716 56865 467 249149 0.94 161636 121648.87 8.01 0 436 0.00 224785 + 914 7213.81
t1717 73885 551 325689 0.80 184692 134531.02 16.03 0 511 0.00 - 7216.08
t1718 67796 523 305064 0.86 162992 126334.47 10.79 0 497 0.00 - 7201.98
t1719 72520 556 317391 0.79 187677 138708.87 11.95 0 514 0.00 - 7202.15
t1720 69134 538 310512 0.83 172752 126333.20 13.26 0 513 0.00 - 7209.14
t1721 36039 357 148848 1.16 127424 103748.46 4.20 0 333 0.00 172841 + 1376 7206.84

€61

194

Table A.4: Basic properties of problems in sets 2 and 4

Original problem Solve first LP relax after Reduce CPLEX MIP

name cols rows nzs dens opt time #1s #frac ratio soln nodes time
0321.4 71201 1202 818344 0.96 35742.46 161.390 0 1038 0.00 - 7316.61
0331.3 45637 664 467206 1.54 28402.76 40.300 5 629 0.79 - 7204.67
0331.4 46915 664 431054 1.38 29730.03 39.920 0 572 0.00 - 7204.41
0341.3 45800 658 431675 1.43 31004.06 39.200 13 586 2.17 - 7202.25
0341.4 46508 658 384305 1.26 34276.06 35.870 2 538 0.37 - 7201.98
0351.3 64953 1156 846140 1.13 35032.59 149.980 11 980 1.11 - 7207.96
0351.4 69922 1156 804403 1.00 34434.36 145.890 1 977 0.10 - 7223.44
nf260 | 276752 2198 1382054 0.23 47405.00 45.210 462 16 96.65 * 47420 1 2663.99
spl 6954 204 94688 6.67 9987.80 4.060 1 134 0.74 - 7205.04
sp2 3686 173 45066 7.07 13522.93 1.470 0 101 0.00 | * 13914 3052 1139.42
sp3 1668 111 27178 14.68 12766.12 0.500 1 57 1.72 | *12943 7 7.86
sp4 9144 368 150881 4.48 11389.42 6.720 0 207 0.00 - 7204.32
spb 13718 684 162572 1.73 27403.20 27.770 4 498 0.80 | * 27637 3 448.47
sp6 50722 2504 550644 0.43 | 157414.80 487.780 5 1551 0.32 - 7216.99
sp7 43459 2991 499347 0.38 | 162349.98 675.170 5 1950 0.26 - 7214.43
sp8 91123 4810 1004473 0.23 | 368714.87 1165.500 23 2945 0.77 - 7261.00
sp9 50013 2917 742546 0.51 | 166705.53 122.360 3 1535 0.20 - 7211.43
spl0 13128 781 220703 2.15 43045.72 2.670 3 280 1.06 - 7202.94
spll 2775 104 56686 19.64 3093.13 0.300 0 44 0.00 | INFEAS 113.14
spl2 84746 3218 910022 0.33 | 248004.45 1375.820 2 2308 0.09 - 7227.58
spl4 47214 3217 523992 0.34 | 250210.43 970.020 1 2315 0.04 - 7231.95

195

A.3 Results by others

Here we summarize those results of Hoffman and Padberg ([HP93]), Borndorfer
([Bor97]), and Borndorfer et al. ([BGKK97]) that can be directly compared to our
results.

Hoffman and Padberg’s results for the problems in Set 1 are reported in Ta-
bles A.5 and A.6. These tables contain the name, original size (number of columns
and rows), and the value of the optimal solution for each problem; the size of the
problem after their initial problem size reduction; the upper bound obtained by
their feasible solution heuristic (“F” if their heuristic failed and “IP” if the first LP
relaxation provides an integral solution); the number of search tree nodes created
by their Branch-and-Cut algorithm (not counting the root) and the total time they
spent in the three phases of the solution process. They do not report execution
times for their initial problem size reduction and heuristic procedures separately.
The total time reported for us01 is after the duplicate columns have already been
eliminated from the problem. Their experiments were carried out on a RS/6000
model 550 machine for most of the problems and on a CONVEX model C-220 ma-
chine using one of its two processors for the four largest problems (marked with a
“7). They used the CPLEX Callable Library but they do not report the version
number.

Borndorfer’s results for the problems in Set 1 are collected in Tables A.7 and A.8.
The tables contain the name, original size (number of columns and rows), and the

value of the optimal solution for each problem; the size of the problem after his initial

196

Table A.5: Computational results by Hoffman and Padberg, Set 1, part 1

Original Optimal Reduced Heur | Tree Total

name cols rows value cols rows value size time
aall 8904 823 56137 7532 607 F 90 14441.00
aal2 5198 531 30494 3846 360 1P 10.15
aa03 8627 825 49649 6694 537 49713 0 48.42
aal4 7195 426 26374 6122 342 27080 494 | 139337.00
aalb 8308 801 53839 6235 521 54060 4 215.30
aa06 7292 646 27040 5862 488 27040 0 37.30

kl01 7479 55 1086 5957 50 1096 2 35.40

k102 36699 71 219 16542 69 221 0 134.38
nw(1 51975 135 114852 50069 135 1P 19.25
nw(2 87879 145 105444 85258 145 1P 37.35
nw03 43749 59 24492 38964 59 25086 0 24.00
nw04 87482 36 16862 46190 36 19492 44 2642.00
nw05 | 288507 71 132878 | 202603 71 1P 192.50
nw(6 6774 50 7810 5977 50 9616 0 10.41
nw(7 5172 36 5476 3108 36 1P 0.74
nw(8 434 24 67760 2305 40 1P 0.08
nw09 3103 40 35894 356 24 1P 0.53
nwl0 853 24 68271 659 24 1P 0.13
nwll 8820 39 116256 6488 39 | 116259 0 2.05
nwl2 626 27 14118 454 27 1P 0.09
nwl3 16043 51 50146 10950 51 50240 0 4.29
nwld | 123409 73 61844 95178 73 1P 87.60
nwlb 467 31 67743 463 29 1P 0.10
nwl6 | 148633 139 | 1181590 | 138951 139 1P 174.40
nwl7 | 118607 61 11115 78186 61 11907 4 87.53
nwl8 10757 124 340160 8460 124 | 392090 0 62.49
nwl9 2879 40 10898 2145 40 1P 0.50

Table A.6: Computational results by Hoffman and Padberg, Set 1, part 2

Original Optimal Reduced Heur | Tree | Total
name cols rows value cols rows | value | size time
nw20 685 22 16812 566 22 | 16812 0 0.62
nw2l 577 25 7408 426 25 7676 0 0.30
nw22 619 23 6984 531 23 6984 0 0.34
nw23 711 19 12534 473 18 | 13702 0 0.34
nw24 1366 19 6314 925 19 6568 0 0.56
nw25 1217 20 5960 844 20 6610 0 0.62
nw26 771 23 6796 473 18 7452 0 0.34
nw27 1355 22 9933 926 22 F 0 0.28
nw28 1210 18 8298 825 18 F 0 0.40
nw29 2540 18 4274 2034 18 4378 0 0.99
nw30 2653 26 3942 1884 26 3942 0 0.75
nw3l 2662 26 8038 1823 26 9754 0 1.43
nw32 294 19 14877 251 18 | 15600 0 0.17
nw33 3068 23 6678 2415 23 7536 0 1.45
nw34 899 20 10488 750 20 | 11613 0 0.30
nw35 1709 23 7216 1403 23 7340 0 0.48
nw36 1783 20 7314 1408 20 7634 0 3.68
nw37 770 19 10068 639 19 | 10377 0 0.19
nw38 1220 23 5558 911 23 5712 0 1.35
nw39 677 25 10080 567 25 F 0 0.19
nw40 404 19 10809 336 19 | 11070 0 0.21
nw4l 197 17 11307 177 17 F 0 0.06
nw42 1079 23 7656 895 23 7846 0 0.99
nw43 1072 18 8904 982 17 8904 0 0.38

us01 | 1053137 145 10022 | 370642 90 | 10075 0 | 1410.60
us02 13635 100 5965 9022 45 1P 4.78
us03 85552 7 5338 27084 53 1P 20.27
us04 28016 163 17854 6564 112 | 17854 0 11.19

197

198

problem size reduction; the result of his feasible solution heuristic (the integrality
gap computed as (Z — z)/z, and the size of the problem after applying the problem
size reduction once more) and the total time of the initial reduction, heuristic, and
one more application of the reduction if a feasible solution has been found. After
this, the table lists the number of search tree nodes created (including the root) and
the time spent in his Branch-and-Cut solution process using default strategy (as far
as we understand these times do not contain the time spent in the initial problem
size reduction and heuristic). The problem size reduction and heuristic were carried
out on a Sun Ultra Sparc 1 Model 170E workstation, while the Branch-and-Cut
experiments were run on a Sun Ultra Sparc 2 Model 200E workstation. CPLEX
V5.0 was used as the LP engine.

Table A.9 summarizes the results of Borndorfer et al. for the Set 3 problems.
First the name and original size (number of columns and rows) of the problem
are given, followed by the size after the initial problem size reduction; the lower
and upper bounds obtained by their Branch-and-Cut procedure (the space of the
lower bound is left empty if the optimality of the upper bound has been proved);
the number of search tree nodes created (including the root) and the time spent
in their Branch-and-Cut solution process. Note that they also publish results for
the v16 problems with a 2 minute time limit which we do not present here (with
this experiment they demonstrate the degenerate nature of these problems). These
experiments were carried out on a Sun Ultra Sparc 1 Model 170E, with CPLEX
V4.0.

We tried to compare the architectures using the information provided by The

Table A.7: Computational results by Borndorfer, Set 1, part 1

199

Original Optimal Reduced Heuristic Tree | Total

name cols rows value cols rows | gap cols rows time | size time
aall 8904 823 56137 7625 616 3.46 7586 616 | 1.55 97 | 238.71
aa02 5198 531 30494 3928 361 IP 0.24 1.99
aa03 8627 825 49649 6970 558 0.43 6823 558 | 1.09 1 12.47
aal4 7195 426 26374 6200 343 5.21 6189 343 | 1.62 181 | 319.19
aa0b 8308 801 53839 6371 533 0.37 6354 532 | 1.00 7 13.62
aa06 7292 646 27040 6064 507 0.25 892 419 | 1.18 3 8.76
klo1 7479 55 1086 5957 47 1.00 1151 44 | 0.36 3 1.79
k102 36699 71 219 16542 69 2.16 3415 62 | 141 1 6.05
nw01 51975 135 114852 50069 135 1P 0.77 2.70
nw02 87879 145 105444 85258 145 P 1.39 5.61
nw03 43749 59 24492 38956 53 2.70 421 50 | 1.62 1 7.34
nw04 87482 36 16862 46189 35 9.47 15121 35 | 2.31 85 | 319.19
nw05 | 288507 71 132878 | 202482 58 IP 9.00 30.72
nw06 6774 50 7810 5936 37 | 18.98 883 37 | 0.28 3 1.02
nw(07 5172 36 5476 3104 33 P 0.11 0.20
nw08 434 24 67760 349 19 1P 0.01 0.02
nw09 3103 40 35894 2296 33 IP 0.07 0.14
nwl0 853 24 68271 643 20 P 0.02 0.02
nwll 8820 39 116256 5946 28 0.00 32 25 | 0.04 1 0.56
nwl2 626 27 14118 451 25 IP 0.02 0.02
nwl3 16043 51 50146 10901 48 0.21 100 46 | 0.45 3 1.24
nwl4 | 123409 73 61844 95169 68 IP 3.73 19.23
nwlb 467 31 67743 465 29 IP 0.01 0.02
nwl6 | 148633 139 | 1181590 1 0 PP 7.13 0 7.11
nwl7 | 118607 61 11115 78173 54 | 1448 11332 52 | 4.84 3 29.03
nwl8 10757 124 340160 7934 81 8.44 7598 81 | 0.74 1 2.19
nwl9 2879 40 10898 2134 32 IP 0.07 0.13

200

Table A.8: Computational results by Borndorfer, Set 1, part 2

Original Optimal Reduced Heuristic Tree | Total
name cols rows value cols rows | gap cols rows time | size time
nw20 685 22 16812 566 22 1.11 18 15 0.03 1 0.04
nw2l 577 25 7408 426 25 | 9.91 51 19 | 0.03 1 0.05
nw22 619 23 6984 531 23 | 0.60 18 17 | 0.00 1 0.04
nw23 711 19 12534 430 12 2.65 27 11 0.03 1 0.06
nw24 1366 19 6314 926 19 | 11.04 43 16 0.02 1 0.07
nw2) 1217 20 5960 844 20 | 11.41 101 20 0.02 1 0.09
nw26 771 23 6796 514 21 2.87 30 17 | 0.03 1 0.05
nw27 1355 22 9933 926 22 | 451 19 13 | 0.03 1 0.06
nw28 1210 18 8298 599 18 5.97 20 11 0.03 1 0.03
nw29 2540 18 4274 2034 18 | 13.06 488 17 | 0.08 3 0.37
nw30 2653 26 3942 1884 26 | 69.84 1884 26 | 0.07 3 0.56
nw3l 2662 26 8038 1823 26 2.23 34 20 | 0.06 1 0.14
nw32 294 19 14877 241 17 3.64 42 13 0.01 3 0.03
nw33 3068 23 6678 2415 23 2.96 19 13 | 0.06 1 0.17
nw34 899 20 10488 750 20 | 3.18 20 15 | 0.01 1 0.04
nw35 1709 23 7216 1403 23 | 874 91 19 | 0.03 1 0.10
nw36 1783 20 7314 1408 20 00 1408 20 | 0.05 5 0.49
nw37 770 19 10068 639 19 | 6.17 22 13 | 0.03 1 0.06
nw38 1220 23 5558 881 20 | 0.11 18 15 | 0.03 1 0.09
nw39 677 25 10080 567 25 | 8.27 29 11 0.01 3 0.05
nw40 404 19 10809 336 19 | 4.96 36 13 | 0.03 1 0.03
nw4l 197 17 11307 177 17 4.23 15 12 0.01 1 0.02
nw42 1079 23 7656 820 19 2.23 19 15 | 0.04 1 0.08
nw43 1072 18 8904 983 17 | 8.30 983 17 | 0.04 1 0.08

us01 | 1053137 145 10022 | 351018 86 5.79 36201 86 | 57.95 3 | 228.68
us02 13635 100 5965 8946 44 IpP 0.50 1.31
us03 85552 7 5338 23207 50 IpP 3.32 5.50
us04 28016 163 17854 4285 98 | 0.73 86 69 1.05 1 1.63

Table A.9: Computational results by Borndorfer et al., Set 3

Original Reduced Branch-and-Cut Total
name cols rows cols rows | lower bound wupper bound nodes time
v0415 7684 1518 4536 598 2429415 9 5.68
v(0416 19020 1771 | 11225 812 2725602 643 120.53
v0417 | 143317 1765 | 55769 715 2611518 41 174.07
v0418 8306 1765 4957 742 2845425 7 5.72
v0419 15709 1626 7852 650 2590326 1 3.99
v0420 4099 958 2593 417 1696889 1 1.31
v(0421 1814 952 1134 286 1853951 3 0.72
v1616 67441 1439 | 52926 1230 1006460 1605 | 4219.41
v1617 | 113655 1619 | 85457 1409 1102357 1102586 3571 | 7200.61
v1618 | 146715 1603 | 90973 1396 1152989 1154458 296 | 7222.28
v1619 | 105822 1612 | 85696 1424 1156072 1156338 880 | 7205.74
v1620 | 115729 1560 | 89512 1365 1140604 8161 | 5526.43
v1621 24772 938 | 16683 807 825563 5 13.79
v1622 13773 859 | 11059 736 793445 3 9.69
t0415 7254 1518 3312 870 5163849 5590096 167 | 7218.94
t0416 9345 1771 3298 974 5882041 6130217 144 | 7207.46
t0417 7894 1765 3774 897 5656886 6043157 71 | 7310.58
t0418 8676 1765 4071 999 6185168 6550898 87 | 7239.54
t0419 9362 1626 3287 904 5689134 5916956 100 | 7251.57
t0420 4583 958 1872 562 4036526 4276444 362 | 7208.44
t0421 4016 952 1691 557 4113080 4354411 375 | 7213.44
t1716 56865 467 | 11952 467 122408 161636 69 | 7212.95
t1717 73885 551 | 16428 551 135539 184692 41 | 7331.93
t1718 67796 523 | 16310 523 127040 162992 44 | 7238.72
t1719 72520 556 | 15846 556 139332 187677 37 | 7281.77
t1720 69134 538 | 16195 538 127222 172752 38 | 7349.28
t1721 36039 357 9043 357 104698 127424 174 | 7243.42

201

202

Standard Performance Evaluation Corporation (http://www.specbench.org). The
architectures used by Hoffman and Padberg are not listed there. The integer arith-
metic of a thin node of the SP is slightly slower than that of the Ultra Sparcs. On
the other hand, the floating point arithmetic of a thin node is about 60% and 23%
faster than that of an Ultra Sparc 1 Model 170E and an Ultra Sparc 2 Model 200E,
respectively. Note that our problem size reduction methods rely only on integer

arithmetic.

Appendix B

Implementing Reduce()

In this appendix we describe the main data structure and the parameters used in

Reduce(). See Section 3.4 for a general overview of the function.

B.1 Reduce main data structure

A field can be an input (IN), an output (OUT) or both (IN/0UT) for Reduce().

reduce_params *rpar (IN)

Parameters. Must be filled out before invoking Reduce().

int feasibility (0UT)
Indicates the feasibility status of the problem. Possible values are FEASIBLE,

INFEASIBLE, FEASIBILITY _NOT_KNOWN.

int ones_num (IN/OUT)

As input, the number of variables to be fixed to one; as output, the number

203

204
of variables fixed to one by Reduce() (including those in the input).

int *ones (IN/OUT)
As input, it contains the names of variables to be fixed to one; as output, it
contains the names of variables that have been fixed to one by Reduce(). New
variables fixed to one are appended after those in the input. Space must be

allocated for cmatrix->rownum entries.

int merged_num (IN/0UT)
As input, the number of variable pairs that were merged before invoking Re-

duce(); as output, the total number of merged variable pairs.

colname_pair *merged (IN/OUT)
As input, it contains pairs of names of variables that were merged before
invoking Reduce(). As output, it contains the names of all merged variable
pairs. New merged pairs are appended after those in the input. Space must

be allocated for cmatrix->rownum entries.

The colname pair structure has two integer fields, int namel and name2.

The merged variable will inherit the name namel.

col_ordered *cmatrix (IN/QUT)
Column ordered representation of the problem matrix. The colnum, rownum,

obj, matind and matbeg fields must be filled before invoking Reduce().

row_ordered *rmatrix (IN/OUT)

Row ordered representation of the problem matrix.

205
B.2 Reduce parameters

int verbosity
Determines the amount of information written into the trace-file. Between 0

(nothing) and 5 (all information).

int fix lex order
TRUE/FALSE. Order the columns into lexicographically ascending order at

the beginning of Reduce() or not. (Columns might be already ordered.)

int strategy
Which strategy to use. The following are implemented: maximal reduction
without SUMC (0), maximal reduction with SUMC (1), fast reduction without
SUMC (2), fast reduction with SUMC (3), SUMC only (4), remove duplicate

columns and rows only (5).

int dupc, sumc, clext, domr, singl, dtwo

TRUE/FALSE. Reduction modules are enabled/disabled.

double sumc_frac, clext_frac, domr_frac, singl_frac, dtwo_frac
Between 0 and 1. The corresponding reduction function is repeated if at least
this fraction of the columns in the current matrix are marked for deletion by
the most recent application of the function (repeat_fraction). Note that

DUPC need not be repeated.

double all_frac

Between 0 and 1. The loop in the fast strategy repeats if at least this fraction

206

of the columns have been deleted during the last pass through the loop.

double sumc_cost_avg_tolerance, sumc_tolerance_increment
In the SUMC reduction function a column can be a prospective summand
only if its cost per length ratio is below that of the remainder multiplied
by sumc_cost_avg_tolerance. The smaller this parameter, the more re-
strictive the search. Therefore every time the reduction function is repeated

sumc_cost_avg_tolerance is increased by sumc_tolerance_increment.

int sumc_max_summands_num

Limit on the depth of the recursion in the SUMC reduction function.

double sumc_chunk, double sumc_chunk_frac
Both between 0 and 1. In the SUMC reduction function only part of the
columns are examined at a time, the size of the “chunk” is the number of
columns multiplied by sumc_chunk. Only if at least sumc_chunk _frac fraction
of the columns in the current chunk are marked for deletion will the reduction

continue for the next chunk.

int clext_samplelen_perc, clext_samplelen_min, clext_samplelen max
Together determine the sample length for a row in the CLEXT reduction
function. The sample is the entire row if the size of the row’s support is
not more than clext_samplelen min. Otherwise clext_samplelen_perc (be-
tween 0 and 100) percentage of the row’s support is sampled, but not less than

clext_samplelen min and not more than clext_samplelen max columns.

Appendix C

Implementing the feasible solution

heuristic

First we describe a few internal CPLEX parameters for which non-default values
were considered in our experiments. For some of these parameters non-default values
were necessary for correctness, while for the rest the modified parameter settings
were to improve efficiency. See Chapter 9 of the CPLEX manual ([CPX95]) for
more details. Then we list the parameters that were referred to in the discussion of

the feasible solution heuristic (Section 4.2.3).

C.1 CPLEX parameters

double tilim

Time limit on one optimization call (in seconds).

207

208

int aggind, int coeredind, int depind, int preind
TRUE/FALSE. Preprocessing options within CPLEX are enabled/disabled
(CPLEX Aggregator, coefficient reduction, dependency check, CPLEX Pre-

solve). Used default settings (all but the dependency check are enabled).

int dpriind

Dual simplex pricing algorithm. Used steepest edge pricing instead of default.

int basinterval

Simplex basis-file saving frequency. Set so that basis is never saved.

int baralg

Barrier algorithm. Used the default setting primal-dual log barrier.

int brdir, double bttol, int ndsel, int varsel
Control the way branching is done by the CPLEX MIP solver. Used default
settings for brdir (branching direction), bttol (backtracking tolerance — how
much the LP optimum can degrade before a new search tree node is chosen
instead of one of the children) and ndsel (node selection strategy). Strong
branching proved to be more effective than the default option for varsel

(variable selection strategy).

double epagap, epgap
Absolute and relative MIP gap tolerances. Assuming that an integer feasible
solution already exists, optimization is stopped if the absolute/relative dif-

ference between the feasible solution value and the LP objective value at the

209

best remaining search tree node is less than the tolerance.

The absolute tolerance was set to granularity (see below) instead of 0. The
relative difference (10* by default) was lowered to its smallest possible value
of 107 since some of our problems have very large optimal values and several

near-optimal feasible solutions.

double objdif
Absolute objective difference cutoff. A search tree node can be cut off if its
LP optimum is within objdif of the best feasible value. Set to granularity

(see below) instead of 0.

C.2 Heuristic parameters

int dupc_at_loadtime
TRUE/FALSE. Enable/disable deletion of duplicate columns next to each

other in the input file.

double granularity
A lower bound on the true granularity of the problem (which is the minimum

difference between non-identical integral feasible solution values).

Note that if in a problem all the objective function coefficients have at most

k decimal digits then 107* is a lower bound on the true granularity.

210

int

int

int

int

int

what_to_do
The main function can be used to run only Reduce() (0); solve the input
problem as an IP (with CPLEX MIP) or as an LP (1); invoke Reduce() and

then solve the IP or LP (2); or run the feasible solution heuristic (3).

major_itlim, int minor_itlim

Iteration limit on the major loop and the heuristic variable fixing loop.

ip_or_1p

Solve the input problem as an IP (0) or as an LP (1) (what_to_do is 1 or 2).
lp_method

The LP method to be used is primal simplex (0), dual simplex (1), barrier
with primal crossover (2), barrier with dual crossover (3) or barrier without
crossover (4).

Note that in the feasible solution heuristic the first LP relaxation is always
solved with a barrier method even if simplex is used later on.

lp_warmstart

Setting the last three bits determines what information is used to warmstart
the LP solver: basis status (last or 0 bit), primal feasible solution (1 bit) or
dual feasible solution (2 bit). Basis status can be used for both simplex and
barrier methods; primal and dual solutions are for barrier methods only. LPs

are solved from scratch if none of the bits is set.

int

int

int

int

211

warmstart_advice
TRUE/FALSE. If enabled, an LP is solved from scratch instead of using warm-
start information if too many rows with nonbasic slacks were removed from

the formulation since the LP was re-solved.

what_rel _cost
A measure (“relative cost”) based on which the significance of variables is
compared. The options are original objective function coefficient divided by

the size of the column’s support (0) and current reduced cost (2).

do_crash, double crash_frac
TRUE/FALSE. If crash is enabled, the heuristic starts with eliminating up to

crash_frac fraction of the least significant columns.

vars_at_one_action, double vars_at_one_ratio

How to deal with variables at level 1 in the current LP relaxation. For each
variable at level 1 we can remove all variables from the symmetric difference
of its rows’ supports (1); fix the variable to 1 (2); treat it the same way as any
other variable at nonzero level (3) or apply an adaptive strategy (4) (where
(1) is used if the ratio of variables at level 1 to all variables at nonzero levels

is at least vars_at_one_ratio, and (3) otherwise).

double min_coldel_frac

The LP is re-solved during the heuristic fixing phase if this fraction of the

variables have been eliminated (by variable fixing or a subsequent Reduce()).

212

int do_followon_fixing

TRUE/FALSE. Follow-on fixing is enabled/disabled.

double followon_threshold_ub, double followon_threshold_1b

Between 0 and 1. Follow-on threshold upper and lower bounds.

double followon_row_frac, int followon_roworder, int followon_choose
The rows of the matrix are ordered based on followon roworder (same op-
tions as for roworder) during follow-on fixing. followon_row_frac fraction
of the rows are chosen from the top of the ordering; all pairs of the these rows
are enumerated and compared (followon choose determines if the row pairs

are taken from the bottom (0), top (1) or opposite ends of the ordering (2)).

int do_process_rows
TRUE/FALSE. Enable/disable the procedure that removes unattractive vari-
ables. The procedure is invoked even if it is disabled when follow-on fixing is

not able to remove any variables.

int roworder
Determines the order in which the rows of the matrix are enumerated. The op-
tions are either random (0), or based on the current dual values corresponding
to the rows: from largest dual value to smallest (1), from smallest to largest
(2), from largest absolute value to smallest (3) and from smallest absolute

value to largest (4).

213

int row_action, double threshold, double frac_above_cutoff,

double frac_all_zeros
How to remove unattractive variables from a row. The options are deleting a
given fraction (frac_above_cutoff) of variables above the cutoff determined
by threshold (1) or removing a given fraction frac_all_zeros of variables

at zero level from the row (4).

double min _procrow_frac
The procedure of removing unattractive variables terminates if at least this
fraction of all the rows have been examined (even if not enough variables were

marked for deletion).

int del_zeros_only
TRUE/FALSE. If set, no variables at nonzero levels in the current LP relax-
ation are marked for deletion during the heuristic fixing phase (but could be

marked by a subsequent Reduce()).

int protect_collen
Any nonnegative integer. If positive, columns with supports up to this size
are not marked for deletion during the heuristic fixing phase (but could be

marked by a subsequent Reduce()).

int protect_basic
TRUE/FALSE. If set, basic variables in the current LP relaxation are not
marked for deletion during the heuristic fixing phase (but could be marked by

a subsequent Reduce()).

Appendix D

Implementing our

Branch-and-Cut procedure

In this Appendix first we describe some COMPSys parameters that were essential for
our implementation and experiments. Then the parameters that we introduced in
the user functions are listed. The parameters within the two sections are grouped
by the processes in which they occur. Chapter 5 describes our Branch-and-Cut
implementation using the COMPSys framework. See [EL97] for a complete list of

user-written functions and parameters of COMPSys.

214

215

D.1 COMPSys parameters

Global parameters

int verbosity

Determines the amount of output information (between 0 and 11).

double granularity
A lower bound on the true granularity of the problem (which is the minimum

difference between non-identical integral feasible solution values).

double upper_bound

Upper bound on the optimal value (e.g., the value of a feasible solution).

int time_limit
Time limit on the B&C optimization (excluding reading the input and pre-

processing/upper bounding in the Master process).

Parameters in the Master process

int do_branch_and_cut

TRUE/FALSE. Enable/disable the Tree Manager process.

int do_draw_graph

TRUE/FALSE. Enable/disable the DrawGraph process (the GUI).

216

Parameters in the Tree Manager process

There are parameters that determine the number and names of the processors used
for the different processes (this is interesting for instance if we wish to use the same
processor for more than one process — as we do with the Master and Tree Manager).
Also, there are parameters not listed here that control diving (retaining one of the

children after branching).

int max_active_nodes

Limit on the number of LP — Cut Generator pairs.

int max_cp_num

Limit on the number of Cut Pool processes (no CP is used if 0).

int use_cg
TRUE/FALSE. Enable/disable cut generation. B&C becomes B&B if cut

generation is disabled.

int node_selection_rule
Determines which search tree node is selected for processing next. We always
used the default option of selecting the node with the lowest lower bound (LP
value). Other options include selecting a node with the highest lower bound,

or enumerating the search tree in a breath-first or depth-first fashion.

217

Parameters in the LP process

A set of six parameters that we do not describe here in detail determine when to
carry out reduced cost and logical fixing. Also, parameters control how long the LP

is going to wait for cuts from CG and CP before re-solving the LP relaxation.

double tailoff_obj_frac, tailoff_gap_frac
int tailoff_obj_backsteps, tailoff_gap_backsteps

Threshold values and length of history for checking tailing off (5.3.5).

int branch_on_cuts

TRUE/FALSE. Branching on cuts is enabled/disabled.

int max_cutnum_per_iter
Limit on the number of violated inequalities (cuts) added to the formulation

in one iteration.

int max_presolve_iter
Limit on the number of dual simplex iterations for presolving the LP relax-

ations at the would-be children of the branching candidates.

Parameters in the Cut Pool process

int max_size, max_number_of_cuts
The size of the memory that can be allocated for the cuts stored and a limit on
their number. When the cut pool becomes full (one of these limits is exceeded)

ineffective cuts are deleted from the pool.

218

int check_which
Determines which cuts should be checked for violation for a given LP solution.
The default is to check those that were originally generated at a higher level
in the search tree than the current solution and those that were found violated

recently.

Parameters in the Cut Generator and DrawGraph processes

There are no parameters in CG that need to be mentioned here. Window charac-

teristics can be set through parameters in DG.

D.2 Parameters in the user-written functions

Parameters in the Master Process

All the parameters discussed here are used in the user_start_heurs function.

int first_reduce
TRUE/FALSE. If the parameter is set, an initial Reduce() (Chapter 3) will
be invoked right after the problem is read in. A complete set of Reduce()

parameters (described in Appendix B) can also be specified.

int first_lp_method
The LP method to be used to solve the first LP relaxation. The options are
primal simplex (0), dual simplex (1), barrier with primal crossover (2), barrier

with dual crossover (3) or barrier without crossover (4).

219

int rcfix, rcfix_lp method, rcfix_lp_warmstart
Setting rcfix enables reduced cost fixing. The other two parameters specify
the LP method and what warmstart information to use during reduced cost

fixing.

int first_heur
TRUE/FALSE. Our Feasible Solution Heuristic (Chapter 4) is invoked if the
parameter is set. Note that a complete set of parameters (described in Ap-

pendix C) can also be specified.

Parameters in the LP Process

double logfix_frac, do_heur_frac
Attempt logical fixing (resp. feasible solution heuristic) if at least the above
fraction of variables was set to zero since the most recent application of logical
fixing (resp. feasible solution heuristic). Logical fixing (and feasible solution
heuristic) is always invoked if a variable is fixed to one. A complete set of
Reduce() (Appendix B) and Heuristic (Appendix C) parameters can also be

specified to be used in these functions.

int do_lift_in_1p

TRUE/FALSE. Enable/disable lifting of violated inequalities.

int followon_branch_num, threshold_branch_num, slackcut_branch_num
int variable_branch_num

The number of branching candidates to be chosen from each each type. If

220

variable_branch num is not positive then the branching candidates are sup-

plemented with branching variables until their number reaches 5.

int branch_var_close_to_half
TRUE/FALSE. If the parameter is set, branching variables are chosen with
the “close to half and expensive” rule; otherwise they are chosen with the

“close to one and cheap” rule.

double threshold_branch_threshold,
double followon_branch_lowthreshold, followon_branch highthreshold
Thresholds for threshold and follow-on branching candidate selection, as de-

scribed in Section 5.3.6. Between 0 and 1.

Parameters in the Cut Generator Process

int do_human_cg, handmake_cuts_if_must
TRUE/FALSE. The first parameter enables/disables cut generation through
the GUI. The second parameter determines how frequently the fractional
graph is displayed: only when the built-in cut generators fail to find a vi-

olated inequality or every time the LP is re-solved.

int do_scl, do_rcl, do_oh, do_packing, do_cover, do_oah
TRUE/FALSE. Enable/disable the corresponding cut generators (star clique,
row clique, sequentially lifted odd holes, packing odd holes, cover odd holes

and sequentially lifted odd antiholes.

221

double sclmin_violation, rclmin_violation, oh_min_violation

double packing min_violation, cover_min_violation, oah_min violation

int

int

int

int

int

Inequalities of a given type are not considered violated if their violation is

below the minimum.

scl_degree_threshold, rcl_degree_threshold
Greedy clique detection is substituted for enumeration on a subset of the nodes

if the number of nodes exceeds these thresholds (star and row clique routines).

scl_which_node
Determines how to choose the next node in the star clique method. The
options are choosing a node with minimum degree, with maximum degree, or

with the highest fractional value.

oh_max_hubnum, oah_max_hubnum
Limit on the number of hub candidates in the odd hole and odd antihole

detection routines.

oh_max_checked_level,

oh_next_level_when_found, next_level_graph when_found

The first parameter is the deepest level in the level graph that we investigate
in the odd hole detection routine (the level graph is not built below this level).
The last two parameters are TRUE/FALSE, they indicate whether the next
level /next level graph should be taken when a violated inequality is found

using nodes on the current level. Same for oah.

Bibliography

[AGPTY1]

[Anb]
[BCY6]

[BGKKO7]

[Bix98]

[BM94a)

[BM94Db)

[Bor97]

[BP76]

(BQ64]

R. Anbil, E. Gelman, B. Patty, and R. Tanga. Recent advances in
crew-pairing optimization at American Airlines. Interfaces, 21(1):62—
74, 1991.

R. Anbil. Private communication.

J.E. Beasley and P.C. Chu. A genetic algorithm for the set covering
problem. European Journal of Operational Research, 94:392—-404, 1996.

R. Borndortfer, M. Grotschel, F. Klostermeier, and Ch. Kiittner. Telebus
Berlin: Vehicle Scheduling in a Dial-a-Ride System. Technical Report
SC 97-23, Z1B, 1997.

R. Bixby. Recent developments in CPLEX. Joint DIMACS-CMU-
Georgia Tech. Workshop on Large Scale Discrete Optimization, May
27-29, 1998.

F. Barahona and A.R. Mahjoub. Compositions of graphs and polyhedra
II: Stable sets. SIAM Journal on Discrete Mathematics, 7:359-371, 1994.

F. Barahona and A.R. Mahjoub. Compositions of graphs and polyhedra
III: Graphs with no Wy minor. SIAM Journal on Discrete Mathematics,
7:372-389, 1994.

R. Borndorfer. Aspects of Set Packing, Partitioning, and Covering. PhD
thesis, Technischen Universitat Berlin, December 1997.

E. Balas and M.W. Padberg. Set partitioning: A survey. SIAM Review,
18(4):710-760, 1976.

M.L. Balinski and R.E. Quandt. On an integer program for a delivery
problem. Operations Research, 12(2):300-304, 1964.

222

[CCo7]

[Chr85]

[Chv73]

[Chv75]

[CPX95]

[ECTA96]

[Edm62]

[EDMO90]

[EL97]
[ELRT97]

[FR87]

[Ger89]

[GI79]

223

E. Cheng and W.H. Cunningham. Wheel inequalities for stable set
polytopes. Mathematical Programming, 77:389-421, 1997.

N. Christofides. Vehicle routing. In E.L. Lawler, J.K. Lenstra,
A H.G. Rinnooy Kan, and D.B. Shmoys, editors, The Traveling Sales-
man Problem: A Guided Tour of Combinatorial Optimization, chap-
ter 12. Wiley, New York, 1985.

V. Chviatal. Edmonds polytopes and a hierarchy of combinatorial prob-
lems. Discrete Mathematics, 4:305-337, 1973.

V. Chvatal. On certain polytopes associated with graphs. Journal of
Combinatorial Theory (B), 18:138-154, 1975.

CPLEX Optimization, Inc. Using the cPLEX© Callable Library, Ver-
ston 4.0, 1995.

M. Eben-Chaime, C.A. Tovey, and J.C. Ammons. Circuit partition-
ing via set partitioning and column generation. Operations Research,
44(1):65-76, 1996.

J. Edmonds. Covers and packings in a family of sets. Bulletin of the
American Mathematical Society, 68:494—-499, 1962.

E. El-Darzi and G. Mitra. Set covering and set partitioning: A collection
of test problems. Omega International Journal of Management Science,
18(2):195-201, 1990.

M. Esé and L. Ladényi. CompSys User’s Manual (unpublished), 1997.

M. Es6, L. Ladanyi, T.K. Ralphs, and L.E. Trotter. Fully parallel
generic branch-and-cut. In Proceedings of the Eighth SIAM Conference

on Parallel Processing for Scientific Computing, Minneapolis, March
14-17 1997.

J.C. Falkner and D.M. Ryan. A bus crew scheduling system using a
set partitioning model. Asia-Pacific Journal of Operational Research,
4:39-56, 1987.

[. Gershkoff. Optimizing flight crew schedules. Interfaces, 19(4):29-43,
1989.

M.R. Garey and D.S. Johnson. Computers and Intractability. W.H.
Freeman and Company, New York, 1979.

224

[GLS8S]

[GNT0]

[GNT72]

[Hoc95]

[HP93]

[Kop99]

[Lad96]

[LK79]

[LR]
[LS90]

[NS89]

[NS92]

M. Grotschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization. Springer-Verlag, 1988.

R.S. Garfinkel and G.L. Nemhauser. Optimal political districting by
implicit enumeration techniques. Management Science, 16:B495-B508,
1970.

R.S. Garfinkel and G.L. Nemhauser. Integer Programming. Wiley, New
York, 1972.

D. Hochbaum. Approximating covering and packing problems: set
cover, vertex cover, independent set and related problems. In
D. Hochbaum, editor, Approximation Algorithms for NP-hard problems,
chapter 3. PWS Publishing Company, Boston, 1995.

K.L. Hoffman and M. Padberg. Solving airline crew scheduling problems
by branch-and-cut. Management Science, 39(6):657-682, 1993.

L. Kopman. A New Generic Separation Routine and its Application in a
Branch and Cut Algorithm for the Capacitated Vehicle Routing Problem,
in preparation. PhD thesis, Cornell University, Ithaca, NY, 1999.

L. Ladanyi. Parallel Branch and Cut and its Application to the Traveling
Salesman Problem. PhD thesis, Cornell University, Ithaca, NY, January
1996.

J.K. Lenstra and A.H.G. Rinnooy Kan. Computational complexity of
discrete optimization problems. Annals of Discrete Mathematics, 4:121—
140, 1979.

L. Laddnyi and T.K. Ralphs. Private communication.

L. Lovasz and A. Schrijver. Matrix cones, projection representations
and stable set polyhedra. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 1:1-17, 1990.

P. Nobili and A. Sassano. Facets and lifting procedures for the set
covering polytope. Mathematical Programming, 45:111-137, 1989.

G.L. Nemhauser and G. Sigismondi. A strong cutting plane/branch-and-
bound algorithm for node packing. Journal of the Operational Research
Society, 43(5):443-457, 1992.

INT74]

INT75]

[NW88]

[Ous94]
[Pad73]

[Pan]
[PVM]

[PY91]

[Ral95]

[RFS7]

[Sas89)]

[Sch86]

[Shm95]

[Tro75]

225

G.L. Nemhauser and L.E. Trotter. Properties of vertex packing and
independence system polyhedra. Mathematical Programming, 6:48-61,
1974.

G.L. Nemhauser and L.E. Trotter. Vertex packings: structural proper-
ties and algorithms. Mathematical Programming, 8:232-248, 1975.

G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimiza-
tion. Wiley, New York, 1988.

J.K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

M.W. Padberg. On the facial structure of set packing polyhedra. Math-
ematical Programming, 5:199-215, 1973.

G. Pangborn. Private communication.

Pvm: Parallel virtual machine.
Home page: http://www.epm.orml.gov/pvm/pvm_home.html.

C.H. Papadimitriou and M. Yannakakis. Optimization, approximation
and complexity classes. Journal of Computer and System Sciences,
43:425-440, 1991.

T.K. Ralphs. Parallel Branch and Cut for Vehicle Routing. PhD thesis,
Cornell University, Ithaca, NY, May 1995.

D.M. Ryan and J.C. Falkner. A bus crew scheduling system using a
set partitioning model. Asia Pacific Journal of Operational Research,
4:39-56, 1987.

A. Sassano. On the facial structure of the set covering polytope. Math-
ematical Programming, 44:181-202, 1989.

A. Schrijver. Theory of Linear and Integer Programming. Wiley, New
York, 1986.

D.B. Shmoys. Computing near-optimal solutions to combinatorial op-
timization problems. In W. Cook, L. Lovéasz, and P. Seymour, editors,
Advances in Combinatorial Optimization, pages 355-397. AMS, Provi-
dence, RI, 1995.

L.E. Trotter. A class of facet producing graphs for vertex packing poly-
hedra. Discrete Mathematics, 12:373-388, 1975.

226

[Wel95] M. Welsh. Using Tcl and Tk from your C programs. Linuz Journal,
pages 26-33, February 1995.

