1 | // Copyright (C) 2002, International Business Machines |
---|
2 | // Corporation and others. All Rights Reserved. |
---|
3 | #if defined(_MSC_VER) |
---|
4 | // Turn off compiler warning about long names |
---|
5 | # pragma warning(disable:4786) |
---|
6 | #endif |
---|
7 | #include <cassert> |
---|
8 | #include <cmath> |
---|
9 | #include <cfloat> |
---|
10 | |
---|
11 | #include "OsiSolverInterface.hpp" |
---|
12 | #include "CbcModel.hpp" |
---|
13 | #include "CbcMessage.hpp" |
---|
14 | #include "CbcHeuristic.hpp" |
---|
15 | |
---|
16 | // Default Constructor |
---|
17 | CbcHeuristic::CbcHeuristic() |
---|
18 | :model_(NULL), |
---|
19 | when_(2) |
---|
20 | { |
---|
21 | } |
---|
22 | |
---|
23 | // Constructor from model |
---|
24 | CbcHeuristic::CbcHeuristic(CbcModel & model) |
---|
25 | : |
---|
26 | model_(&model), |
---|
27 | when_(2) |
---|
28 | { |
---|
29 | } |
---|
30 | // Resets stuff if model changes |
---|
31 | void |
---|
32 | CbcHeuristic::resetModel(CbcModel * model) |
---|
33 | { |
---|
34 | model_=model; |
---|
35 | } |
---|
36 | |
---|
37 | // Destructor |
---|
38 | CbcHeuristic::~CbcHeuristic () |
---|
39 | { |
---|
40 | } |
---|
41 | |
---|
42 | // update model |
---|
43 | void CbcHeuristic::setModel(CbcModel * model) |
---|
44 | { |
---|
45 | model_ = model; |
---|
46 | } |
---|
47 | |
---|
48 | // Default Constructor |
---|
49 | CbcRounding::CbcRounding() |
---|
50 | :CbcHeuristic() |
---|
51 | { |
---|
52 | // matrix and row copy will automatically be empty |
---|
53 | } |
---|
54 | |
---|
55 | // Constructor from model |
---|
56 | CbcRounding::CbcRounding(CbcModel & model) |
---|
57 | :CbcHeuristic(model) |
---|
58 | { |
---|
59 | // Get a copy of original matrix (and by row for rounding); |
---|
60 | assert(model.solver()); |
---|
61 | matrix_ = *model.solver()->getMatrixByCol(); |
---|
62 | matrixByRow_ = *model.solver()->getMatrixByRow(); |
---|
63 | seed_=1; |
---|
64 | } |
---|
65 | |
---|
66 | // Destructor |
---|
67 | CbcRounding::~CbcRounding () |
---|
68 | { |
---|
69 | } |
---|
70 | |
---|
71 | // Clone |
---|
72 | CbcHeuristic * |
---|
73 | CbcRounding::clone() const |
---|
74 | { |
---|
75 | return new CbcRounding(*this); |
---|
76 | } |
---|
77 | |
---|
78 | // Copy constructor |
---|
79 | CbcRounding::CbcRounding(const CbcRounding & rhs) |
---|
80 | : |
---|
81 | CbcHeuristic(rhs), |
---|
82 | matrix_(rhs.matrix_), |
---|
83 | matrixByRow_(rhs.matrixByRow_), |
---|
84 | seed_(rhs.seed_) |
---|
85 | { |
---|
86 | setWhen(rhs.when()); |
---|
87 | } |
---|
88 | |
---|
89 | // Resets stuff if model changes |
---|
90 | void |
---|
91 | CbcRounding::resetModel(CbcModel * model) |
---|
92 | { |
---|
93 | model_=model; |
---|
94 | // Get a copy of original matrix (and by row for rounding); |
---|
95 | assert(model_->solver()); |
---|
96 | matrix_ = *model_->solver()->getMatrixByCol(); |
---|
97 | matrixByRow_ = *model_->solver()->getMatrixByRow(); |
---|
98 | } |
---|
99 | // See if rounding will give solution |
---|
100 | // Sets value of solution |
---|
101 | // Assumes rhs for original matrix still okay |
---|
102 | // At present only works with integers |
---|
103 | // Fix values if asked for |
---|
104 | // Returns 1 if solution, 0 if not |
---|
105 | int |
---|
106 | CbcRounding::solution(double & solutionValue, |
---|
107 | double * betterSolution) |
---|
108 | { |
---|
109 | |
---|
110 | // See if to do |
---|
111 | if (!when()||(when()%10==1&&model_->phase()!=1)|| |
---|
112 | (when()%10==2&&model_->phase()!=2)) |
---|
113 | return 0; // switched off |
---|
114 | |
---|
115 | OsiSolverInterface * solver = model_->solver(); |
---|
116 | const double * lower = solver->getColLower(); |
---|
117 | const double * upper = solver->getColUpper(); |
---|
118 | const double * rowLower = solver->getRowLower(); |
---|
119 | const double * rowUpper = solver->getRowUpper(); |
---|
120 | const double * solution = solver->getColSolution(); |
---|
121 | const double * objective = solver->getObjCoefficients(); |
---|
122 | double integerTolerance = model_->getDblParam(CbcModel::CbcIntegerTolerance); |
---|
123 | double primalTolerance; |
---|
124 | solver->getDblParam(OsiPrimalTolerance,primalTolerance); |
---|
125 | |
---|
126 | int numberRows = matrix_.getNumRows(); |
---|
127 | |
---|
128 | int numberIntegers = model_->numberIntegers(); |
---|
129 | const int * integerVariable = model_->integerVariable(); |
---|
130 | int i; |
---|
131 | double direction = solver->getObjSense(); |
---|
132 | double newSolutionValue = direction*solver->getObjValue(); |
---|
133 | int returnCode = 0; |
---|
134 | |
---|
135 | // Column copy |
---|
136 | const double * element = matrix_.getElements(); |
---|
137 | const int * row = matrix_.getIndices(); |
---|
138 | const CoinBigIndex * columnStart = matrix_.getVectorStarts(); |
---|
139 | const int * columnLength = matrix_.getVectorLengths(); |
---|
140 | // Row copy |
---|
141 | const double * elementByRow = matrixByRow_.getElements(); |
---|
142 | const int * column = matrixByRow_.getIndices(); |
---|
143 | const CoinBigIndex * rowStart = matrixByRow_.getVectorStarts(); |
---|
144 | const int * rowLength = matrixByRow_.getVectorLengths(); |
---|
145 | |
---|
146 | // Get solution array for heuristic solution |
---|
147 | int numberColumns = solver->getNumCols(); |
---|
148 | double * newSolution = new double [numberColumns]; |
---|
149 | memcpy(newSolution,solution,numberColumns*sizeof(double)); |
---|
150 | |
---|
151 | double * rowActivity = new double[numberRows]; |
---|
152 | memset(rowActivity,0,numberRows*sizeof(double)); |
---|
153 | for (i=0;i<numberColumns;i++) { |
---|
154 | int j; |
---|
155 | double value = newSolution[i]; |
---|
156 | if (value<lower[i]) { |
---|
157 | value=lower[i]; |
---|
158 | newSolution[i]=value; |
---|
159 | } else if (value>upper[i]) { |
---|
160 | value=upper[i]; |
---|
161 | newSolution[i]=value; |
---|
162 | } |
---|
163 | if (value) { |
---|
164 | for (j=columnStart[i]; |
---|
165 | j<columnStart[i]+columnLength[i];j++) { |
---|
166 | int iRow=row[j]; |
---|
167 | rowActivity[iRow] += value*element[j]; |
---|
168 | } |
---|
169 | } |
---|
170 | } |
---|
171 | // check was feasible - if not adjust (cleaning may move) |
---|
172 | for (i=0;i<numberRows;i++) { |
---|
173 | if(rowActivity[i]<rowLower[i]) { |
---|
174 | //assert (rowActivity[i]>rowLower[i]-1000.0*primalTolerance); |
---|
175 | rowActivity[i]=rowLower[i]; |
---|
176 | } else if(rowActivity[i]>rowUpper[i]) { |
---|
177 | //assert (rowActivity[i]<rowUpper[i]+1000.0*primalTolerance); |
---|
178 | rowActivity[i]=rowUpper[i]; |
---|
179 | } |
---|
180 | } |
---|
181 | for (i=0;i<numberIntegers;i++) { |
---|
182 | int iColumn = integerVariable[i]; |
---|
183 | double value=newSolution[iColumn]; |
---|
184 | if (fabs(floor(value+0.5)-value)>integerTolerance) { |
---|
185 | double below = floor(value); |
---|
186 | double newValue=newSolution[iColumn]; |
---|
187 | double cost = direction * objective[iColumn]; |
---|
188 | double move; |
---|
189 | if (cost>0.0) { |
---|
190 | // try up |
---|
191 | move = 1.0 -(value-below); |
---|
192 | } else if (cost<0.0) { |
---|
193 | // try down |
---|
194 | move = below-value; |
---|
195 | } else { |
---|
196 | // won't be able to move unless we can grab another variable |
---|
197 | double randomNumber = CoinDrand48(); |
---|
198 | // which way? |
---|
199 | if (randomNumber<0.5) |
---|
200 | move = below-value; |
---|
201 | else |
---|
202 | move = 1.0 -(value-below); |
---|
203 | } |
---|
204 | newValue += move; |
---|
205 | newSolution[iColumn] = newValue; |
---|
206 | newSolutionValue += move*cost; |
---|
207 | int j; |
---|
208 | for (j=columnStart[iColumn]; |
---|
209 | j<columnStart[iColumn]+columnLength[iColumn];j++) { |
---|
210 | int iRow = row[j]; |
---|
211 | rowActivity[iRow] += move*element[j]; |
---|
212 | } |
---|
213 | } |
---|
214 | } |
---|
215 | |
---|
216 | double penalty=0.0; |
---|
217 | |
---|
218 | // see if feasible - just using singletons |
---|
219 | for (i=0;i<numberRows;i++) { |
---|
220 | double value = rowActivity[i]; |
---|
221 | double thisInfeasibility=0.0; |
---|
222 | if (value<rowLower[i]-primalTolerance) |
---|
223 | thisInfeasibility = value-rowLower[i]; |
---|
224 | else if (value>rowUpper[i]+primalTolerance) |
---|
225 | thisInfeasibility = value-rowUpper[i]; |
---|
226 | if (thisInfeasibility) { |
---|
227 | // See if there are any slacks I can use to fix up |
---|
228 | // maybe put in coding for multiple slacks? |
---|
229 | double bestCost = 1.0e50; |
---|
230 | int k; |
---|
231 | int iBest=-1; |
---|
232 | double addCost=0.0; |
---|
233 | double newValue=0.0; |
---|
234 | double changeRowActivity=0.0; |
---|
235 | double absInfeasibility = fabs(thisInfeasibility); |
---|
236 | for (k=rowStart[i];k<rowStart[i]+rowLength[i];k++) { |
---|
237 | int iColumn = column[k]; |
---|
238 | // See if all elements help |
---|
239 | if (columnLength[iColumn]==1) { |
---|
240 | double currentValue = newSolution[iColumn]; |
---|
241 | double elementValue = elementByRow[k]; |
---|
242 | double lowerValue = lower[iColumn]; |
---|
243 | double upperValue = upper[iColumn]; |
---|
244 | double gap = rowUpper[i]-rowLower[i]; |
---|
245 | double absElement=fabs(elementValue); |
---|
246 | if (thisInfeasibility*elementValue>0.0) { |
---|
247 | // we want to reduce |
---|
248 | if ((currentValue-lowerValue)*absElement>=absInfeasibility) { |
---|
249 | // possible - check if integer |
---|
250 | double distance = absInfeasibility/absElement; |
---|
251 | double thisCost = -direction*objective[iColumn]*distance; |
---|
252 | if (solver->isInteger(iColumn)) { |
---|
253 | distance = ceil(distance-primalTolerance); |
---|
254 | if (currentValue-distance>=lowerValue-primalTolerance) { |
---|
255 | if (absInfeasibility-distance*absElement< -gap-primalTolerance) |
---|
256 | thisCost=1.0e100; // no good |
---|
257 | else |
---|
258 | thisCost = -direction*objective[iColumn]*distance; |
---|
259 | } else { |
---|
260 | thisCost=1.0e100; // no good |
---|
261 | } |
---|
262 | } |
---|
263 | if (thisCost<bestCost) { |
---|
264 | bestCost=thisCost; |
---|
265 | iBest=iColumn; |
---|
266 | addCost = thisCost; |
---|
267 | newValue = currentValue-distance; |
---|
268 | changeRowActivity = -distance*elementValue; |
---|
269 | } |
---|
270 | } |
---|
271 | } else { |
---|
272 | // we want to increase |
---|
273 | if ((upperValue-currentValue)*absElement>=absInfeasibility) { |
---|
274 | // possible - check if integer |
---|
275 | double distance = absInfeasibility/absElement; |
---|
276 | double thisCost = direction*objective[iColumn]*distance; |
---|
277 | if (solver->isInteger(iColumn)) { |
---|
278 | distance = ceil(distance-1.0e-7); |
---|
279 | assert (currentValue-distance<=upperValue+primalTolerance); |
---|
280 | if (absInfeasibility-distance*absElement< -gap-primalTolerance) |
---|
281 | thisCost=1.0e100; // no good |
---|
282 | else |
---|
283 | thisCost = direction*objective[iColumn]*distance; |
---|
284 | } |
---|
285 | if (thisCost<bestCost) { |
---|
286 | bestCost=thisCost; |
---|
287 | iBest=iColumn; |
---|
288 | addCost = thisCost; |
---|
289 | newValue = currentValue+distance; |
---|
290 | changeRowActivity = distance*elementValue; |
---|
291 | } |
---|
292 | } |
---|
293 | } |
---|
294 | } |
---|
295 | } |
---|
296 | if (iBest>=0) { |
---|
297 | /*printf("Infeasibility of %g on row %d cost %g\n", |
---|
298 | thisInfeasibility,i,addCost);*/ |
---|
299 | newSolution[iBest]=newValue; |
---|
300 | thisInfeasibility=0.0; |
---|
301 | newSolutionValue += addCost; |
---|
302 | rowActivity[i] += changeRowActivity; |
---|
303 | } |
---|
304 | penalty += fabs(thisInfeasibility); |
---|
305 | } |
---|
306 | } |
---|
307 | if (penalty) { |
---|
308 | // see if feasible using any |
---|
309 | // first continuous |
---|
310 | double penaltyChange=0.0; |
---|
311 | int iColumn; |
---|
312 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
---|
313 | if (solver->isInteger(iColumn)) |
---|
314 | continue; |
---|
315 | double currentValue = newSolution[iColumn]; |
---|
316 | double lowerValue = lower[iColumn]; |
---|
317 | double upperValue = upper[iColumn]; |
---|
318 | int j; |
---|
319 | int anyBadDown=0; |
---|
320 | int anyBadUp=0; |
---|
321 | double upImprovement=0.0; |
---|
322 | double downImprovement=0.0; |
---|
323 | for (j=columnStart[iColumn]; |
---|
324 | j<columnStart[iColumn]+columnLength[iColumn];j++) { |
---|
325 | int iRow = row[j]; |
---|
326 | if (rowUpper[iRow]>rowLower[iRow]) { |
---|
327 | double value = element[j]; |
---|
328 | if (rowActivity[iRow]>rowUpper[iRow]+primalTolerance) { |
---|
329 | // infeasible above |
---|
330 | downImprovement += value; |
---|
331 | upImprovement -= value; |
---|
332 | if (value>0.0) |
---|
333 | anyBadUp++; |
---|
334 | else |
---|
335 | anyBadDown++; |
---|
336 | } else if (rowActivity[iRow]>rowUpper[iRow]-primalTolerance) { |
---|
337 | // feasible at ub |
---|
338 | if (value>0.0) { |
---|
339 | upImprovement -= value; |
---|
340 | anyBadUp++; |
---|
341 | } else { |
---|
342 | downImprovement += value; |
---|
343 | anyBadDown++; |
---|
344 | } |
---|
345 | } else if (rowActivity[iRow]>rowLower[iRow]+primalTolerance) { |
---|
346 | // feasible in interior |
---|
347 | } else if (rowActivity[iRow]>rowLower[iRow]-primalTolerance) { |
---|
348 | // feasible at lb |
---|
349 | if (value<0.0) { |
---|
350 | upImprovement += value; |
---|
351 | anyBadUp++; |
---|
352 | } else { |
---|
353 | downImprovement -= value; |
---|
354 | anyBadDown++; |
---|
355 | } |
---|
356 | } else { |
---|
357 | // infeasible below |
---|
358 | downImprovement -= value; |
---|
359 | upImprovement += value; |
---|
360 | if (value<0.0) |
---|
361 | anyBadUp++; |
---|
362 | else |
---|
363 | anyBadDown++; |
---|
364 | } |
---|
365 | } else { |
---|
366 | // equality row |
---|
367 | double value = element[j]; |
---|
368 | if (rowActivity[iRow]>rowUpper[iRow]+primalTolerance) { |
---|
369 | // infeasible above |
---|
370 | downImprovement += value; |
---|
371 | upImprovement -= value; |
---|
372 | if (value>0.0) |
---|
373 | anyBadUp++; |
---|
374 | else |
---|
375 | anyBadDown++; |
---|
376 | } else if (rowActivity[iRow]<rowLower[iRow]-primalTolerance) { |
---|
377 | // infeasible below |
---|
378 | downImprovement -= value; |
---|
379 | upImprovement += value; |
---|
380 | if (value<0.0) |
---|
381 | anyBadUp++; |
---|
382 | else |
---|
383 | anyBadDown++; |
---|
384 | } else { |
---|
385 | // feasible - no good |
---|
386 | anyBadUp=-1; |
---|
387 | break; |
---|
388 | } |
---|
389 | } |
---|
390 | } |
---|
391 | // could change tests for anyBad |
---|
392 | if (anyBadUp) |
---|
393 | upImprovement=0.0; |
---|
394 | if (anyBadDown) |
---|
395 | downImprovement=0.0; |
---|
396 | double way=0.0; |
---|
397 | double improvement=0.0; |
---|
398 | if (downImprovement>0.0&¤tValue>lowerValue) { |
---|
399 | way=-1.0; |
---|
400 | improvement = downImprovement; |
---|
401 | } else if (upImprovement>0.0&¤tValue<upperValue) { |
---|
402 | way=1.0; |
---|
403 | improvement = upImprovement; |
---|
404 | } |
---|
405 | if (way) { |
---|
406 | // can improve |
---|
407 | double distance=COIN_DBL_MAX; |
---|
408 | for (j=columnStart[iColumn]; |
---|
409 | j<columnStart[iColumn]+columnLength[iColumn];j++) { |
---|
410 | int iRow = row[j]; |
---|
411 | double value = element[j]*way; |
---|
412 | if (rowActivity[iRow]>rowUpper[iRow]+primalTolerance) { |
---|
413 | // infeasible above |
---|
414 | assert (value<0.0); |
---|
415 | double gap = rowActivity[iRow]-rowUpper[iRow]; |
---|
416 | if (gap+value*distance<0.0) |
---|
417 | distance = -gap/value; |
---|
418 | } else if (rowActivity[iRow]<rowLower[iRow]-primalTolerance) { |
---|
419 | // infeasible below |
---|
420 | assert (value>0.0); |
---|
421 | double gap = rowActivity[iRow]-rowLower[iRow]; |
---|
422 | if (gap+value*distance>0.0) |
---|
423 | distance = -gap/value; |
---|
424 | } else { |
---|
425 | // feasible |
---|
426 | if (value>0) { |
---|
427 | double gap = rowActivity[iRow]-rowUpper[iRow]; |
---|
428 | if (gap+value*distance>0.0) |
---|
429 | distance = -gap/value; |
---|
430 | } else { |
---|
431 | double gap = rowActivity[iRow]-rowLower[iRow]; |
---|
432 | if (gap+value*distance<0.0) |
---|
433 | distance = -gap/value; |
---|
434 | } |
---|
435 | } |
---|
436 | } |
---|
437 | //move |
---|
438 | penaltyChange += improvement*distance; |
---|
439 | distance *= way; |
---|
440 | newSolution[iColumn] += distance; |
---|
441 | newSolutionValue += direction*objective[iColumn]*distance; |
---|
442 | for (j=columnStart[iColumn]; |
---|
443 | j<columnStart[iColumn]+columnLength[iColumn];j++) { |
---|
444 | int iRow = row[j]; |
---|
445 | double value = element[j]; |
---|
446 | rowActivity[iRow] += distance*value; |
---|
447 | } |
---|
448 | } |
---|
449 | } |
---|
450 | // and now all if improving |
---|
451 | double lastChange= penaltyChange ? 1.0 : 0.0; |
---|
452 | while (lastChange>1.0e-2) { |
---|
453 | lastChange=0; |
---|
454 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
---|
455 | bool isInteger = solver->isInteger(iColumn); |
---|
456 | double currentValue = newSolution[iColumn]; |
---|
457 | double lowerValue = lower[iColumn]; |
---|
458 | double upperValue = upper[iColumn]; |
---|
459 | int j; |
---|
460 | int anyBadDown=0; |
---|
461 | int anyBadUp=0; |
---|
462 | double upImprovement=0.0; |
---|
463 | double downImprovement=0.0; |
---|
464 | for (j=columnStart[iColumn]; |
---|
465 | j<columnStart[iColumn]+columnLength[iColumn];j++) { |
---|
466 | int iRow = row[j]; |
---|
467 | double value = element[j]; |
---|
468 | if (isInteger) { |
---|
469 | if (value>0.0) { |
---|
470 | if (rowActivity[iRow]+value>rowUpper[iRow]+primalTolerance) |
---|
471 | anyBadUp++; |
---|
472 | if (rowActivity[iRow]-value<rowLower[iRow]-primalTolerance) |
---|
473 | anyBadDown++; |
---|
474 | } else { |
---|
475 | if (rowActivity[iRow]-value>rowUpper[iRow]+primalTolerance) |
---|
476 | anyBadDown++; |
---|
477 | if (rowActivity[iRow]+value<rowLower[iRow]-primalTolerance) |
---|
478 | anyBadUp++; |
---|
479 | } |
---|
480 | } |
---|
481 | if (rowUpper[iRow]>rowLower[iRow]) { |
---|
482 | if (rowActivity[iRow]>rowUpper[iRow]+primalTolerance) { |
---|
483 | // infeasible above |
---|
484 | downImprovement += value; |
---|
485 | upImprovement -= value; |
---|
486 | if (value>0.0) |
---|
487 | anyBadUp++; |
---|
488 | else |
---|
489 | anyBadDown++; |
---|
490 | } else if (rowActivity[iRow]>rowUpper[iRow]-primalTolerance) { |
---|
491 | // feasible at ub |
---|
492 | if (value>0.0) { |
---|
493 | upImprovement -= value; |
---|
494 | anyBadUp++; |
---|
495 | } else { |
---|
496 | downImprovement += value; |
---|
497 | anyBadDown++; |
---|
498 | } |
---|
499 | } else if (rowActivity[iRow]>rowLower[iRow]+primalTolerance) { |
---|
500 | // feasible in interior |
---|
501 | } else if (rowActivity[iRow]>rowLower[iRow]-primalTolerance) { |
---|
502 | // feasible at lb |
---|
503 | if (value<0.0) { |
---|
504 | upImprovement += value; |
---|
505 | anyBadUp++; |
---|
506 | } else { |
---|
507 | downImprovement -= value; |
---|
508 | anyBadDown++; |
---|
509 | } |
---|
510 | } else { |
---|
511 | // infeasible below |
---|
512 | downImprovement -= value; |
---|
513 | upImprovement += value; |
---|
514 | if (value<0.0) |
---|
515 | anyBadUp++; |
---|
516 | else |
---|
517 | anyBadDown++; |
---|
518 | } |
---|
519 | } else { |
---|
520 | // equality row |
---|
521 | if (rowActivity[iRow]>rowUpper[iRow]+primalTolerance) { |
---|
522 | // infeasible above |
---|
523 | downImprovement += value; |
---|
524 | upImprovement -= value; |
---|
525 | if (value>0.0) |
---|
526 | anyBadUp++; |
---|
527 | else |
---|
528 | anyBadDown++; |
---|
529 | } else if (rowActivity[iRow]<rowLower[iRow]-primalTolerance) { |
---|
530 | // infeasible below |
---|
531 | downImprovement -= value; |
---|
532 | upImprovement += value; |
---|
533 | if (value<0.0) |
---|
534 | anyBadUp++; |
---|
535 | else |
---|
536 | anyBadDown++; |
---|
537 | } else { |
---|
538 | // feasible - no good |
---|
539 | anyBadUp=-1; |
---|
540 | anyBadDown=-1; |
---|
541 | break; |
---|
542 | } |
---|
543 | } |
---|
544 | } |
---|
545 | // could change tests for anyBad |
---|
546 | if (anyBadUp) |
---|
547 | upImprovement=0.0; |
---|
548 | if (anyBadDown) |
---|
549 | downImprovement=0.0; |
---|
550 | double way=0.0; |
---|
551 | double improvement=0.0; |
---|
552 | if (downImprovement>0.0&¤tValue>lowerValue) { |
---|
553 | way=-1.0; |
---|
554 | improvement = downImprovement; |
---|
555 | } else if (upImprovement>0.0&¤tValue<upperValue) { |
---|
556 | way=1.0; |
---|
557 | improvement = upImprovement; |
---|
558 | } |
---|
559 | if (way) { |
---|
560 | // can improve |
---|
561 | double distance=COIN_DBL_MAX; |
---|
562 | for (j=columnStart[iColumn]; |
---|
563 | j<columnStart[iColumn]+columnLength[iColumn];j++) { |
---|
564 | int iRow = row[j]; |
---|
565 | double value = element[j]*way; |
---|
566 | if (rowActivity[iRow]>rowUpper[iRow]+primalTolerance) { |
---|
567 | // infeasible above |
---|
568 | assert (value<0.0); |
---|
569 | double gap = rowActivity[iRow]-rowUpper[iRow]; |
---|
570 | if (gap+value*distance<0.0) |
---|
571 | distance = -gap/value; |
---|
572 | } else if (rowActivity[iRow]<rowLower[iRow]-primalTolerance) { |
---|
573 | // infeasible below |
---|
574 | assert (value>0.0); |
---|
575 | double gap = rowActivity[iRow]-rowLower[iRow]; |
---|
576 | if (gap+value*distance>0.0) |
---|
577 | distance = -gap/value; |
---|
578 | } else { |
---|
579 | // feasible |
---|
580 | if (value>0) { |
---|
581 | double gap = rowActivity[iRow]-rowUpper[iRow]; |
---|
582 | if (gap+value*distance>0.0) |
---|
583 | distance = -gap/value; |
---|
584 | } else { |
---|
585 | double gap = rowActivity[iRow]-rowLower[iRow]; |
---|
586 | if (gap+value*distance<0.0) |
---|
587 | distance = -gap/value; |
---|
588 | } |
---|
589 | } |
---|
590 | } |
---|
591 | if (isInteger) |
---|
592 | distance = floor(distance+1.0e-8); |
---|
593 | if (!distance) { |
---|
594 | // should never happen |
---|
595 | printf("zero distance in CbcRounding - debug\n"); |
---|
596 | } |
---|
597 | //move |
---|
598 | lastChange += improvement*distance; |
---|
599 | distance *= way; |
---|
600 | newSolution[iColumn] += distance; |
---|
601 | newSolutionValue += direction*objective[iColumn]*distance; |
---|
602 | for (j=columnStart[iColumn]; |
---|
603 | j<columnStart[iColumn]+columnLength[iColumn];j++) { |
---|
604 | int iRow = row[j]; |
---|
605 | double value = element[j]; |
---|
606 | rowActivity[iRow] += distance*value; |
---|
607 | } |
---|
608 | } |
---|
609 | } |
---|
610 | penaltyChange += lastChange; |
---|
611 | } |
---|
612 | penalty -= penaltyChange; |
---|
613 | if (penalty<1.0e-5*fabs(penaltyChange)) { |
---|
614 | // recompute |
---|
615 | penalty=0.0; |
---|
616 | for (i=0;i<numberRows;i++) { |
---|
617 | double value = rowActivity[i]; |
---|
618 | if (value<rowLower[i]-primalTolerance) |
---|
619 | penalty += rowLower[i]-value; |
---|
620 | else if (value>rowUpper[i]+primalTolerance) |
---|
621 | penalty += value-rowUpper[i]; |
---|
622 | } |
---|
623 | } |
---|
624 | } |
---|
625 | |
---|
626 | // Could also set SOS (using random) and repeat |
---|
627 | if (!penalty) { |
---|
628 | // See if we can do better |
---|
629 | //seed_++; |
---|
630 | //CoinSeedRandom(seed_); |
---|
631 | // Random number between 0 and 1. |
---|
632 | double randomNumber = CoinDrand48(); |
---|
633 | int iPass; |
---|
634 | int start[2]; |
---|
635 | int end[2]; |
---|
636 | int iRandom = (int) (randomNumber*((double) numberIntegers)); |
---|
637 | start[0]=iRandom; |
---|
638 | end[0]=numberIntegers; |
---|
639 | start[1]=0; |
---|
640 | end[1]=iRandom; |
---|
641 | for (iPass=0;iPass<2;iPass++) { |
---|
642 | int i; |
---|
643 | for (i=start[iPass];i<end[iPass];i++) { |
---|
644 | int iColumn = integerVariable[i]; |
---|
645 | double value=newSolution[iColumn]; |
---|
646 | assert (fabs(floor(value+0.5)-value)<integerTolerance); |
---|
647 | double cost = direction * objective[iColumn]; |
---|
648 | double move=0.0; |
---|
649 | if (cost>0.0) |
---|
650 | move = -1.0; |
---|
651 | else if (cost<0.0) |
---|
652 | move=1.0; |
---|
653 | while (move) { |
---|
654 | bool good=true; |
---|
655 | double newValue=newSolution[iColumn]+move; |
---|
656 | if (newValue<lower[iColumn]-primalTolerance|| |
---|
657 | newValue>upper[iColumn]+primalTolerance) { |
---|
658 | move=0.0; |
---|
659 | } else { |
---|
660 | // see if we can move |
---|
661 | int j; |
---|
662 | for (j=columnStart[iColumn]; |
---|
663 | j<columnStart[iColumn]+columnLength[iColumn];j++) { |
---|
664 | int iRow = row[j]; |
---|
665 | double newActivity = rowActivity[iRow] + move*element[j]; |
---|
666 | if (newActivity<rowLower[iRow]-primalTolerance|| |
---|
667 | newActivity>rowUpper[iRow]+primalTolerance) { |
---|
668 | good=false; |
---|
669 | break; |
---|
670 | } |
---|
671 | } |
---|
672 | if (good) { |
---|
673 | newSolution[iColumn] = newValue; |
---|
674 | newSolutionValue += move*cost; |
---|
675 | int j; |
---|
676 | for (j=columnStart[iColumn]; |
---|
677 | j<columnStart[iColumn]+columnLength[iColumn];j++) { |
---|
678 | int iRow = row[j]; |
---|
679 | rowActivity[iRow] += move*element[j]; |
---|
680 | } |
---|
681 | } else { |
---|
682 | move=0.0; |
---|
683 | } |
---|
684 | } |
---|
685 | } |
---|
686 | } |
---|
687 | } |
---|
688 | if (newSolutionValue<solutionValue) { |
---|
689 | // paranoid check |
---|
690 | memset(rowActivity,0,numberRows*sizeof(double)); |
---|
691 | for (i=0;i<numberColumns;i++) { |
---|
692 | int j; |
---|
693 | double value = newSolution[i]; |
---|
694 | if (value) { |
---|
695 | for (j=columnStart[i]; |
---|
696 | j<columnStart[i]+columnLength[i];j++) { |
---|
697 | int iRow=row[j]; |
---|
698 | rowActivity[iRow] += value*element[j]; |
---|
699 | } |
---|
700 | } |
---|
701 | } |
---|
702 | // check was approximately feasible |
---|
703 | bool feasible=true; |
---|
704 | for (i=0;i<numberRows;i++) { |
---|
705 | if(rowActivity[i]<rowLower[i]) { |
---|
706 | if (rowActivity[i]<rowLower[i]-1000.0*primalTolerance) |
---|
707 | feasible = false; |
---|
708 | } else if(rowActivity[i]>rowUpper[i]) { |
---|
709 | if (rowActivity[i]>rowUpper[i]+1000.0*primalTolerance) |
---|
710 | feasible = false; |
---|
711 | } |
---|
712 | } |
---|
713 | if (feasible) { |
---|
714 | // new solution |
---|
715 | memcpy(betterSolution,newSolution,numberColumns*sizeof(double)); |
---|
716 | solutionValue = newSolutionValue; |
---|
717 | //printf("** Solution of %g found by rounding\n",newSolutionValue); |
---|
718 | returnCode=1; |
---|
719 | } else { |
---|
720 | // Can easily happen |
---|
721 | //printf("Debug CbcRounding giving bad solution\n"); |
---|
722 | } |
---|
723 | } |
---|
724 | } |
---|
725 | delete [] newSolution; |
---|
726 | delete [] rowActivity; |
---|
727 | return returnCode; |
---|
728 | } |
---|
729 | // update model |
---|
730 | void CbcRounding::setModel(CbcModel * model) |
---|
731 | { |
---|
732 | model_ = model; |
---|
733 | // Get a copy of original matrix (and by row for rounding); |
---|
734 | assert(model_->solver()); |
---|
735 | matrix_ = *model_->solver()->getMatrixByCol(); |
---|
736 | matrixByRow_ = *model_->solver()->getMatrixByRow(); |
---|
737 | // make sure model okay for heuristic |
---|
738 | validate(); |
---|
739 | } |
---|
740 | // Validate model i.e. sets when_ to 0 if necessary (may be NULL) |
---|
741 | void |
---|
742 | CbcRounding::validate() |
---|
743 | { |
---|
744 | if (model_&&when()<10) { |
---|
745 | if (model_->numberIntegers()!= |
---|
746 | model_->numberObjects()) |
---|
747 | setWhen(0); |
---|
748 | } |
---|
749 | } |
---|
750 | |
---|
751 | |
---|