source: trunk/Cbc/src/CbcModel.hpp @ 1943

Last change on this file since 1943 was 1943, checked in by forrest, 6 years ago

more options, copy statistics structure analysis
start coding of "switch" variables i.e. badly scaled ints or hi/lo
changes to allow more influence on small branch and bound
changes to get correct printout with threads

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 103.3 KB
Line 
1/* $Id: CbcModel.hpp 1943 2013-07-21 09:05:45Z forrest $ */
2// Copyright (C) 2002, International Business Machines
3// Corporation and others.  All Rights Reserved.
4// This code is licensed under the terms of the Eclipse Public License (EPL).
5
6#ifndef CbcModel_H
7#define CbcModel_H
8#include <string>
9#include <vector>
10#include "CoinMessageHandler.hpp"
11#include "OsiSolverInterface.hpp"
12#include "OsiBranchingObject.hpp"
13#include "OsiCuts.hpp"
14#include "CoinWarmStartBasis.hpp"
15#include "CbcCompareBase.hpp"
16#include "CbcCountRowCut.hpp"
17#include "CbcMessage.hpp"
18#include "CbcEventHandler.hpp"
19#include "ClpDualRowPivot.hpp"
20
21
22class CbcCutGenerator;
23class CbcBaseModel;
24class OsiRowCut;
25class OsiBabSolver;
26class OsiRowCutDebugger;
27class CglCutGenerator;
28class CglStored;
29class CbcCutModifier;
30class CglTreeProbingInfo;
31class CbcHeuristic;
32class OsiObject;
33class CbcThread;
34class CbcTree;
35class CbcStrategy;
36class CbcFeasibilityBase;
37class CbcStatistics;
38class CbcFullNodeInfo;
39class CbcEventHandler ;
40class CglPreProcess;
41class OsiClpSolverInterface;
42class ClpNodeStuff;
43
44// #define CBC_CHECK_BASIS 1
45
46//#############################################################################
47
48/** Simple Branch and bound class
49
50  The initialSolve() method solves the initial LP relaxation of the MIP
51  problem. The branchAndBound() method can then be called to finish using
52  a branch and cut algorithm.
53
54  <h3>Search Tree Traversal</h3>
55
56  Subproblems (aka nodes) requiring additional evaluation are stored using
57  the CbcNode and CbcNodeInfo objects. Ancestry linkage is maintained in the
58  CbcNodeInfo object. Evaluation of a subproblem within branchAndBound()
59  proceeds as follows:
60  <ul>
61    <li> The node representing the most promising parent subproblem is popped
62         from the heap which holds the set of subproblems requiring further
63         evaluation.
64    <li> Using branching instructions stored in the node, and information in
65         its ancestors, the model and solver are adjusted to create the
66         active subproblem.
67    <li> If the parent subproblem will require further evaluation
68         (<i>i.e.</i>, there are branches remaining) its node is pushed back
69         on the heap. Otherwise, the node is deleted.  This may trigger
70         recursive deletion of ancestors.
71    <li> The newly created subproblem is evaluated.
72    <li> If the subproblem requires further evaluation, a node is created.
73         All information needed to recreate the subproblem (branching
74         information, row and column cuts) is placed in the node and the node
75         is added to the set of subproblems awaiting further evaluation.
76  </ul>
77  Note that there is never a node representing the active subproblem; the model
78  and solver represent the active subproblem.
79
80  <h3>Row (Constraint) Cut Handling</h3>
81
82  For a typical subproblem, the sequence of events is as follows:
83  <ul>
84    <li> The subproblem is rebuilt for further evaluation: One result of a
85         call to addCuts() is a traversal of ancestors, leaving a list of all
86         cuts used in the ancestors in #addedCuts_. This list is then scanned
87         to construct a basis that includes only tight cuts. Entries for
88         loose cuts are set to NULL.
89    <li> The subproblem is evaluated: One result of a call to solveWithCuts()
90         is the return of a set of newly generated cuts for the subproblem.
91         #addedCuts_ is also kept up-to-date as old cuts become loose.
92    <li> The subproblem is stored for further processing: A call to
93         CbcNodeInfo::addCuts() adds the newly generated cuts to the
94         CbcNodeInfo object associated with this node.
95  </ul>
96  See CbcCountRowCut for details of the bookkeeping associated with cut
97  management.
98*/
99
100class CbcModel  {
101
102public:
103
104    enum CbcIntParam {
105        /** The maximum number of nodes before terminating */
106        CbcMaxNumNode = 0,
107        /** The maximum number of solutions before terminating */
108        CbcMaxNumSol,
109        /** Fathoming discipline
110
111          Controls objective function comparisons for purposes of fathoming by bound
112          or determining monotonic variables.
113
114          If 1, action is taken only when the current objective is strictly worse
115          than the target. Implementation is handled by adding a small tolerance to
116          the target.
117        */
118        CbcFathomDiscipline,
119        /** Adjusts printout
120            1 does different node message with number unsatisfied on last branch
121        */
122        CbcPrinting,
123        /** Number of branches (may be more than number of nodes as may
124            include strong branching) */
125        CbcNumberBranches,
126        /** Just a marker, so that a static sized array can store parameters. */
127        CbcLastIntParam
128    };
129
130    enum CbcDblParam {
131        /** The maximum amount the value of an integer variable can vary from
132            integer and still be considered feasible. */
133        CbcIntegerTolerance = 0,
134        /** The objective is assumed to worsen by this amount for each
135            integer infeasibility. */
136        CbcInfeasibilityWeight,
137        /** The amount by which to tighten the objective function cutoff when
138            a new solution is discovered. */
139        CbcCutoffIncrement,
140        /** Stop when the gap between the objective value of the best known solution
141          and the best bound on the objective of any solution is less than this.
142
143          This is an absolute value. Conversion from a percentage is left to the
144          client.
145        */
146        CbcAllowableGap,
147        /** Stop when the gap between the objective value of the best known solution
148          and the best bound on the objective of any solution is less than this
149          fraction of of the absolute value of best known solution.
150
151          Code stops if either this test or CbcAllowableGap test succeeds
152        */
153        CbcAllowableFractionGap,
154        /** \brief The maximum number of seconds before terminating.
155               A double should be adequate! */
156        CbcMaximumSeconds,
157        /// Cutoff - stored for speed
158        CbcCurrentCutoff,
159        /// Optimization direction - stored for speed
160        CbcOptimizationDirection,
161        /// Current objective value
162        CbcCurrentObjectiveValue,
163        /// Current minimization objective value
164        CbcCurrentMinimizationObjectiveValue,
165        /** \brief The time at start of model.
166               So that other pieces of code can access */
167        CbcStartSeconds,
168        /** Stop doing heuristics when the gap between the objective value of the
169            best known solution and the best bound on the objective of any solution
170            is less than this.
171
172          This is an absolute value. Conversion from a percentage is left to the
173          client.
174        */
175        CbcHeuristicGap,
176        /** Stop doing heuristics when the gap between the objective value of the
177            best known solution and the best bound on the objective of any solution
178            is less than this fraction of of the absolute value of best known
179            solution.
180
181          Code stops if either this test or CbcAllowableGap test succeeds
182        */
183        CbcHeuristicFractionGap,
184        /// Smallest non-zero change on a branch
185        CbcSmallestChange,
186        /// Sum of non-zero changes on a branch
187        CbcSumChange,
188        /// Largest non-zero change on a branch
189        CbcLargestChange,
190        /// Small non-zero change on a branch to be used as guess
191        CbcSmallChange,
192        /** Just a marker, so that a static sized array can store parameters. */
193        CbcLastDblParam
194    };
195
196    //---------------------------------------------------------------------------
197
198public:
199    ///@name Solve methods
200    //@{
201    /** \brief Solve the initial LP relaxation
202
203      Invoke the solver's %initialSolve() method.
204    */
205    void initialSolve();
206
207    /** \brief Invoke the branch \& cut algorithm
208
209      The method assumes that initialSolve() has been called to solve the
210      LP relaxation. It processes the root node, then proceeds to explore the
211      branch & cut search tree. The search ends when the tree is exhausted or
212      one of several execution limits is reached.
213      If doStatistics is 1 summary statistics are printed
214      if 2 then also the path to best solution (if found by branching)
215      if 3 then also one line per node
216    */
217    void branchAndBound(int doStatistics = 0);
218private:
219
220    /** \brief Evaluate a subproblem using cutting planes and heuristics
221
222      The method invokes a main loop which generates cuts, applies heuristics,
223      and reoptimises using the solver's native %resolve() method.
224      It returns true if the subproblem remains feasible at the end of the
225      evaluation.
226    */
227    bool solveWithCuts(OsiCuts & cuts, int numberTries, CbcNode * node);
228    /** Generate one round of cuts - serial mode
229      returns -
230      0 - normal
231      1 - must keep going
232      2 - set numberTries to zero
233      -1 - infeasible
234    */
235    int serialCuts(OsiCuts & cuts, CbcNode * node, OsiCuts & slackCuts, int lastNumberCuts);
236    /** Generate one round of cuts - parallel mode
237        returns -
238        0 - normal
239        1 - must keep going
240        2 - set numberTries to zero
241        -1 - infeasible
242    */
243    int parallelCuts(CbcBaseModel * master, OsiCuts & cuts, CbcNode * node, OsiCuts & slackCuts, int lastNumberCuts);
244    /** Input one node output N nodes to put on tree and optional solution update
245        This should be able to operate in parallel so is given a solver and is const(ish)
246        However we will need to keep an array of solver_ and bases and more
247        status is 0 for normal, 1 if solution
248        Calling code should always push nodes back on tree
249    */
250    CbcNode ** solveOneNode(int whichSolver, CbcNode * node,
251                            int & numberNodesOutput, int & status) ;
252    /// Update size of whichGenerator
253    void resizeWhichGenerator(int numberNow, int numberAfter);
254public:
255#ifdef CBC_KEEP_DEPRECATED
256    // See if anyone is using these any more!!
257    /** \brief create a clean model from partially fixed problem
258
259      The method creates a new model with given bounds and with no tree.
260    */
261    CbcModel *  cleanModel(const double * lower, const double * upper);
262    /** \brief Invoke the branch \& cut algorithm on partially fixed problem
263
264      The method presolves the given model and does branch and cut. The search
265      ends when the tree is exhausted or maximum nodes is reached.
266
267      If better solution found then it is saved.
268
269      Returns 0 if search completed and solution, 1 if not completed and solution,
270      2 if completed and no solution, 3 if not completed and no solution.
271
272      Normally okay to do cleanModel immediately followed by subBranchandBound
273      (== other form of subBranchAndBound)
274      but may need to get at model for advanced features.
275
276      Deletes model2
277    */
278    int subBranchAndBound(CbcModel * model2,
279                          CbcModel * presolvedModel,
280                          int maximumNodes);
281    /** \brief Invoke the branch \& cut algorithm on partially fixed problem
282
283      The method creates a new model with given bounds, presolves it
284      then proceeds to explore the branch & cut search tree. The search
285      ends when the tree is exhausted or maximum nodes is reached.
286
287      If better solution found then it is saved.
288
289      Returns 0 if search completed and solution, 1 if not completed and solution,
290      2 if completed and no solution, 3 if not completed and no solution.
291
292      This is just subModel immediately followed by other version of
293      subBranchandBound.
294
295    */
296    int subBranchAndBound(const double * lower, const double * upper,
297                          int maximumNodes);
298
299    /** \brief Process root node and return a strengthened model
300
301      The method assumes that initialSolve() has been called to solve the
302      LP relaxation. It processes the root node and then returns a pointer
303      to the strengthened model (or NULL if infeasible)
304    */
305    OsiSolverInterface *  strengthenedModel();
306    /** preProcess problem - replacing solver
307        If makeEquality true then <= cliques converted to ==.
308        Presolve will be done numberPasses times.
309
310        Returns NULL if infeasible
311
312        If makeEquality is 1 add slacks to get cliques,
313        if 2 add slacks to get sos (but only if looks plausible) and keep sos info
314    */
315    CglPreProcess * preProcess( int makeEquality = 0, int numberPasses = 5,
316                                int tuning = 5);
317    /** Does postprocessing - original solver back.
318        User has to delete process */
319    void postProcess(CglPreProcess * process);
320#endif
321    /// Adds an update information object
322    void addUpdateInformation(const CbcObjectUpdateData & data);
323    /** Do one node - broken out for clarity?
324        also for parallel (when baseModel!=this)
325        Returns 1 if solution found
326        node NULL on return if no branches left
327        newNode NULL if no new node created
328    */
329    int doOneNode(CbcModel * baseModel, CbcNode * & node, CbcNode * & newNode);
330
331public:
332    /** \brief Reoptimise an LP relaxation
333
334      Invoke the solver's %resolve() method.
335      whereFrom -
336      0 - initial continuous
337      1 - resolve on branch (before new cuts)
338      2 - after new cuts
339      3  - obsolete code or something modified problem in unexpected way
340      10 - after strong branching has fixed variables at root
341      11 - after strong branching has fixed variables in tree
342
343      returns 1 feasible, 0 infeasible, -1 feasible but skip cuts
344    */
345    int resolve(CbcNodeInfo * parent, int whereFrom,
346                double * saveSolution = NULL,
347                double * saveLower = NULL,
348                double * saveUpper = NULL);
349    /// Make given rows (L or G) into global cuts and remove from lp
350    void makeGlobalCuts(int numberRows, const int * which);
351    /// Make given cut into a global cut
352    void makeGlobalCut(const OsiRowCut * cut);
353    /// Make given cut into a global cut
354    void makeGlobalCut(const OsiRowCut & cut);
355    /// Make given column cut into a global cut
356    void makeGlobalCut(const OsiColCut * cut);
357    /// Make given column cut into a global cut
358    void makeGlobalCut(const OsiColCut & cut);
359    /// Make partial cut into a global cut and save
360  void makePartialCut(const OsiRowCut * cut, const OsiSolverInterface * solver=NULL);
361    /// Make partial cuts into global cuts
362    void makeGlobalCuts();
363    /// Which cut generator generated this cut
364    inline const int * whichGenerator() const
365    { return whichGenerator_;}
366    //@}
367
368    /** \name Presolve methods */
369    //@{
370
371    /** Identify cliques and construct corresponding objects.
372
373        Find cliques with size in the range
374        [\p atLeastThisMany, \p lessThanThis] and construct corresponding
375        CbcClique objects.
376        If \p makeEquality is true then a new model may be returned if
377        modifications had to be made, otherwise \c this is returned.
378        If the problem is infeasible #numberObjects_ is set to -1.
379        A client must use deleteObjects() before a second call to findCliques().
380        If priorities exist, clique priority is set to the default.
381    */
382    CbcModel * findCliques(bool makeEquality, int atLeastThisMany,
383                           int lessThanThis, int defaultValue = 1000);
384
385    /** Do integer presolve, creating a new (presolved) model.
386
387      Returns the new model, or NULL if feasibility is lost.
388      If weak is true then just does a normal presolve
389
390      \todo It remains to work out the cleanest way of getting a solution to
391            the original problem at the end. So this is very preliminary.
392     */
393    CbcModel * integerPresolve(bool weak = false);
394
395    /** Do integer presolve, modifying the current model.
396
397        Returns true if the model remains feasible after presolve.
398    */
399    bool integerPresolveThisModel(OsiSolverInterface * originalSolver, bool weak = false);
400
401
402    /// Put back information into the original model after integer presolve.
403    void originalModel(CbcModel * presolvedModel, bool weak);
404
405    /** \brief For variables involved in VUB constraints, see if we can tighten
406           bounds by solving lp's
407
408        Returns false if feasibility is lost.
409        If CglProbing is available, it will be tried as well to see if it can
410        tighten bounds.
411        This routine is just a front end for tightenVubs(int,const int*,double).
412
413        If <tt>type = -1</tt> all variables are processed (could be very slow).
414        If <tt>type = 0</tt> only variables involved in VUBs are processed.
415        If <tt>type = n > 0</tt>, only the n most expensive VUB variables
416        are processed, where it is assumed that x is at its maximum so delta
417        would have to go to 1 (if x not at bound).
418
419        If \p allowMultipleBinary is true, then a VUB constraint is a row with
420        one continuous variable and any number of binary variables.
421
422        If <tt>useCutoff < 1.0e30</tt>, the original objective is installed as a
423        constraint with \p useCutoff as a bound.
424    */
425    bool tightenVubs(int type, bool allowMultipleBinary = false,
426                     double useCutoff = 1.0e50);
427
428    /** \brief For variables involved in VUB constraints, see if we can tighten
429           bounds by solving lp's
430
431      This version is just handed a list of variables to be processed.
432    */
433    bool tightenVubs(int numberVubs, const int * which,
434                     double useCutoff = 1.0e50);
435    /**
436      Analyze problem to find a minimum change in the objective function.
437    */
438    void analyzeObjective();
439
440    /**
441      Add additional integers.
442    */
443    void AddIntegers();
444    /**
445      Save copy of the model.
446    */
447    void saveModel(OsiSolverInterface * saveSolver, double * checkCutoffForRestart, bool * feasible);
448    /**
449      Flip direction of optimization on all models
450    */
451    void flipModel();
452
453    //@}
454
455    /** \name Object manipulation routines
456
457      See OsiObject for an explanation of `object' in the context of CbcModel.
458    */
459    //@{
460
461    /// Get the number of objects
462    inline int numberObjects() const {
463        return numberObjects_;
464    }
465    /// Set the number of objects
466    inline void setNumberObjects(int number) {
467        numberObjects_ = number;
468    }
469
470    /// Get the array of objects
471    inline OsiObject ** objects() const {
472        return object_;
473    }
474
475    /// Get the specified object
476    const inline OsiObject * object(int which) const {
477        return object_[which];
478    }
479    /// Get the specified object
480    inline OsiObject * modifiableObject(int which) const {
481        return object_[which];
482    }
483
484    void setOptionalInteger(int index);
485
486    /// Delete all object information (and just back to integers if true)
487    void deleteObjects(bool findIntegers = true);
488
489    /** Add in object information.
490
491      Objects are cloned; the owner can delete the originals.
492    */
493    void addObjects(int numberObjects, OsiObject ** objects);
494
495    /** Add in object information.
496
497      Objects are cloned; the owner can delete the originals.
498    */
499    void addObjects(int numberObjects, CbcObject ** objects);
500
501    /// Ensure attached objects point to this model.
502    void synchronizeModel() ;
503
504    /** \brief Identify integer variables and create corresponding objects.
505
506      Record integer variables and create an CbcSimpleInteger object for each
507      one.
508      If \p startAgain is true, a new scan is forced, overwriting any existing
509      integer variable information.
510      If type > 0 then 1==PseudoCost, 2 new ones low priority
511    */
512
513    void findIntegers(bool startAgain, int type = 0);
514
515#ifdef SWITCH_VARIABLES
516    /// Convert Dynamic to Switching
517    int findSwitching();
518    /// Fix associated variables
519    int fixAssociated(OsiSolverInterface * solver,int cleanBasis);
520    /// Debug associated variables
521    int checkAssociated(const OsiSolverInterface * solver,
522                        const double * solution, int printLevel);
523#endif
524    //@}
525
526    //---------------------------------------------------------------------------
527
528    /**@name Parameter set/get methods
529
530       The set methods return true if the parameter was set to the given value,
531       false if the value of the parameter is out of range.
532
533       The get methods return the value of the parameter.
534
535    */
536    //@{
537    /// Set an integer parameter
538    inline bool setIntParam(CbcIntParam key, int value) {
539        intParam_[key] = value;
540        return true;
541    }
542    /// Set a double parameter
543    inline bool setDblParam(CbcDblParam key, double value) {
544        dblParam_[key] = value;
545        return true;
546    }
547    /// Get an integer parameter
548    inline int getIntParam(CbcIntParam key) const {
549        return intParam_[key];
550    }
551    /// Get a double parameter
552    inline double getDblParam(CbcDblParam key) const {
553        return dblParam_[key];
554    }
555    /*! \brief Set cutoff bound on the objective function.
556
557      When using strict comparison, the bound is adjusted by a tolerance to
558      avoid accidentally cutting off the optimal solution.
559    */
560    void setCutoff(double value) ;
561
562    /// Get the cutoff bound on the objective function - always as minimize
563    inline double getCutoff() const { //double value ;
564        //solver_->getDblParam(OsiDualObjectiveLimit,value) ;
565        //assert( dblParam_[CbcCurrentCutoff]== value * solver_->getObjSense());
566        return dblParam_[CbcCurrentCutoff];
567    }
568
569    /// Set the \link CbcModel::CbcMaxNumNode maximum node limit \endlink
570    inline bool setMaximumNodes( int value) {
571        return setIntParam(CbcMaxNumNode, value);
572    }
573
574    /// Get the \link CbcModel::CbcMaxNumNode maximum node limit \endlink
575    inline int getMaximumNodes() const {
576        return getIntParam(CbcMaxNumNode);
577    }
578
579    /** Set the
580        \link CbcModel::CbcMaxNumSol maximum number of solutions \endlink
581        desired.
582    */
583    inline bool setMaximumSolutions( int value) {
584        return setIntParam(CbcMaxNumSol, value);
585    }
586    /** Get the
587        \link CbcModel::CbcMaxNumSol maximum number of solutions \endlink
588        desired.
589    */
590    inline int getMaximumSolutions() const {
591        return getIntParam(CbcMaxNumSol);
592    }
593    /// Set the printing mode
594    inline bool setPrintingMode( int value) {
595        return setIntParam(CbcPrinting, value);
596    }
597
598    /// Get the printing mode
599    inline int getPrintingMode() const {
600        return getIntParam(CbcPrinting);
601    }
602
603    /** Set the
604        \link CbcModel::CbcMaximumSeconds maximum number of seconds \endlink
605        desired.
606    */
607    inline bool setMaximumSeconds( double value) {
608        return setDblParam(CbcMaximumSeconds, value);
609    }
610    /** Get the
611        \link CbcModel::CbcMaximumSeconds maximum number of seconds \endlink
612        desired.
613    */
614    inline double getMaximumSeconds() const {
615        return getDblParam(CbcMaximumSeconds);
616    }
617    /// Current time since start of branchAndbound
618    double getCurrentSeconds() const ;
619
620    /// Return true if maximum time reached
621    bool maximumSecondsReached() const ;
622
623    /** Set the
624      \link CbcModel::CbcIntegerTolerance integrality tolerance \endlink
625    */
626    inline bool setIntegerTolerance( double value) {
627        return setDblParam(CbcIntegerTolerance, value);
628    }
629    /** Get the
630      \link CbcModel::CbcIntegerTolerance integrality tolerance \endlink
631    */
632    inline double getIntegerTolerance() const {
633        return getDblParam(CbcIntegerTolerance);
634    }
635
636    /** Set the
637        \link CbcModel::CbcInfeasibilityWeight
638          weight per integer infeasibility \endlink
639    */
640    inline bool setInfeasibilityWeight( double value) {
641        return setDblParam(CbcInfeasibilityWeight, value);
642    }
643    /** Get the
644        \link CbcModel::CbcInfeasibilityWeight
645          weight per integer infeasibility \endlink
646    */
647    inline double getInfeasibilityWeight() const {
648        return getDblParam(CbcInfeasibilityWeight);
649    }
650
651    /** Set the \link CbcModel::CbcAllowableGap allowable gap \endlink
652        between the best known solution and the best possible solution.
653    */
654    inline bool setAllowableGap( double value) {
655        return setDblParam(CbcAllowableGap, value);
656    }
657    /** Get the \link CbcModel::CbcAllowableGap allowable gap \endlink
658        between the best known solution and the best possible solution.
659    */
660    inline double getAllowableGap() const {
661        return getDblParam(CbcAllowableGap);
662    }
663
664    /** Set the \link CbcModel::CbcAllowableFractionGap fraction allowable gap \endlink
665        between the best known solution and the best possible solution.
666    */
667    inline bool setAllowableFractionGap( double value) {
668        return setDblParam(CbcAllowableFractionGap, value);
669    }
670    /** Get the \link CbcModel::CbcAllowableFractionGap fraction allowable gap \endlink
671        between the best known solution and the best possible solution.
672    */
673    inline double getAllowableFractionGap() const {
674        return getDblParam(CbcAllowableFractionGap);
675    }
676    /** Set the \link CbcModel::CbcAllowableFractionGap percentage allowable gap \endlink
677        between the best known solution and the best possible solution.
678    */
679    inline bool setAllowablePercentageGap( double value) {
680        return setDblParam(CbcAllowableFractionGap, value*0.01);
681    }
682    /** Get the \link CbcModel::CbcAllowableFractionGap percentage allowable gap \endlink
683        between the best known solution and the best possible solution.
684    */
685    inline double getAllowablePercentageGap() const {
686        return 100.0*getDblParam(CbcAllowableFractionGap);
687    }
688    /** Set the \link CbcModel::CbcHeuristicGap heuristic gap \endlink
689        between the best known solution and the best possible solution.
690    */
691    inline bool setHeuristicGap( double value) {
692        return setDblParam(CbcHeuristicGap, value);
693    }
694    /** Get the \link CbcModel::CbcHeuristicGap heuristic gap \endlink
695        between the best known solution and the best possible solution.
696    */
697    inline double getHeuristicGap() const {
698        return getDblParam(CbcHeuristicGap);
699    }
700
701    /** Set the \link CbcModel::CbcHeuristicFractionGap fraction heuristic gap \endlink
702        between the best known solution and the best possible solution.
703    */
704    inline bool setHeuristicFractionGap( double value) {
705        return setDblParam(CbcHeuristicFractionGap, value);
706    }
707    /** Get the \link CbcModel::CbcHeuristicFractionGap fraction heuristic gap \endlink
708        between the best known solution and the best possible solution.
709    */
710    inline double getHeuristicFractionGap() const {
711        return getDblParam(CbcHeuristicFractionGap);
712    }
713    /** Set the
714        \link CbcModel::CbcCutoffIncrement  \endlink
715        desired.
716    */
717    inline bool setCutoffIncrement( double value) {
718        return setDblParam(CbcCutoffIncrement, value);
719    }
720    /** Get the
721        \link CbcModel::CbcCutoffIncrement  \endlink
722        desired.
723    */
724    inline double getCutoffIncrement() const {
725        return getDblParam(CbcCutoffIncrement);
726    }
727    /// See if can stop on gap
728    bool canStopOnGap() const;
729
730    /** Pass in target solution and optional priorities.
731        If priorities then >0 means only branch if incorrect
732        while <0 means branch even if correct. +1 or -1 are
733        highest priority */
734    void setHotstartSolution(const double * solution, const int * priorities = NULL) ;
735
736    /// Set the minimum drop to continue cuts
737    inline void setMinimumDrop(double value) {
738        minimumDrop_ = value;
739    }
740    /// Get the minimum drop to continue cuts
741    inline double getMinimumDrop() const {
742        return minimumDrop_;
743    }
744
745    /** Set the maximum number of cut passes at root node (default 20)
746        Minimum drop can also be used for fine tuning */
747    inline void setMaximumCutPassesAtRoot(int value) {
748        maximumCutPassesAtRoot_ = value;
749    }
750    /** Get the maximum number of cut passes at root node */
751    inline int getMaximumCutPassesAtRoot() const {
752        return maximumCutPassesAtRoot_;
753    }
754
755    /** Set the maximum number of cut passes at other nodes (default 10)
756        Minimum drop can also be used for fine tuning */
757    inline void setMaximumCutPasses(int value) {
758        maximumCutPasses_ = value;
759    }
760    /** Get the maximum number of cut passes at other nodes (default 10) */
761    inline int getMaximumCutPasses() const {
762        return maximumCutPasses_;
763    }
764    /** Get current cut pass number in this round of cuts.
765        (1 is first pass) */
766    inline int getCurrentPassNumber() const {
767        return currentPassNumber_;
768    }
769    /** Set current cut pass number in this round of cuts.
770        (1 is first pass) */
771    inline void setCurrentPassNumber(int value) {
772        currentPassNumber_ = value;
773    }
774
775    /** Set the maximum number of candidates to be evaluated for strong
776      branching.
777
778      A value of 0 disables strong branching.
779    */
780    void setNumberStrong(int number);
781    /** Get the maximum number of candidates to be evaluated for strong
782      branching.
783    */
784    inline int numberStrong() const {
785        return numberStrong_;
786    }
787    /** Set global preferred way to branch
788        -1 down, +1 up, 0 no preference */
789    inline void setPreferredWay(int value) {
790        preferredWay_ = value;
791    }
792    /** Get the preferred way to branch (default 0) */
793    inline int getPreferredWay() const {
794        return preferredWay_;
795    }
796    /// Get at which depths to do cuts
797    inline int whenCuts() const {
798        return whenCuts_;
799    }
800    /// Set at which depths to do cuts
801    inline void setWhenCuts(int value) {
802        whenCuts_ = value;
803    }
804    /** Return true if we want to do cuts
805        If allowForTopOfTree zero then just does on multiples of depth
806        if 1 then allows for doing at top of tree
807        if 2 then says if cuts allowed anywhere apart from root
808    */
809    bool doCutsNow(int allowForTopOfTree) const;
810
811    /** Set the number of branches before pseudo costs believed
812        in dynamic strong branching.
813
814      A value of 0 disables dynamic strong branching.
815    */
816    void setNumberBeforeTrust(int number);
817    /** get the number of branches before pseudo costs believed
818        in dynamic strong branching. */
819    inline int numberBeforeTrust() const {
820        return numberBeforeTrust_;
821    }
822    /** Set the number of variables for which to compute penalties
823        in dynamic strong branching.
824
825      A value of 0 disables penalties.
826    */
827    void setNumberPenalties(int number);
828    /** get the number of variables for which to compute penalties
829        in dynamic strong branching. */
830    inline int numberPenalties() const {
831        return numberPenalties_;
832    }
833    /// Pointer to top of tree
834    inline const CbcFullNodeInfo * topOfTree() const
835    { return topOfTree_;}
836    /// Number of analyze iterations to do
837    inline void setNumberAnalyzeIterations(int number) {
838        numberAnalyzeIterations_ = number;
839    }
840    inline int numberAnalyzeIterations() const {
841        return numberAnalyzeIterations_;
842    }
843    /** Get scale factor to make penalties match strong.
844        Should/will be computed */
845    inline double penaltyScaleFactor() const {
846        return penaltyScaleFactor_;
847    }
848    /** Set scale factor to make penalties match strong.
849        Should/will be computed */
850    void setPenaltyScaleFactor(double value);
851    /** Problem type as set by user or found by analysis.  This will be extended
852        0 - not known
853        1 - Set partitioning <=
854        2 - Set partitioning ==
855        3 - Set covering
856        4 - all +- 1 or all +1 and odd
857    */
858    void inline setProblemType(int number) {
859        problemType_ = number;
860    }
861    inline int problemType() const {
862        return problemType_;
863    }
864    /// Current depth
865    inline int currentDepth() const {
866        return currentDepth_;
867    }
868
869    /// Set how often to scan global cuts
870    void setHowOftenGlobalScan(int number);
871    /// Get how often to scan global cuts
872    inline int howOftenGlobalScan() const {
873        return howOftenGlobalScan_;
874    }
875    /// Original columns as created by integerPresolve or preprocessing
876    inline int * originalColumns() const {
877        return originalColumns_;
878    }
879    /// Set original columns as created by preprocessing
880    void setOriginalColumns(const int * originalColumns,
881                            int numberGood=COIN_INT_MAX) ;
882    /// Create conflict cut (well - most of)
883    OsiRowCut * conflictCut(const OsiSolverInterface * solver, bool & localCuts);
884
885    /** Set the print frequency.
886
887      Controls the number of nodes evaluated between status prints.
888      If <tt>number <=0</tt> the print frequency is set to 100 nodes for large
889      problems, 1000 for small problems.
890      Print frequency has very slight overhead if small.
891    */
892    inline void setPrintFrequency(int number) {
893        printFrequency_ = number;
894    }
895    /// Get the print frequency
896    inline int printFrequency() const {
897        return printFrequency_;
898    }
899    //@}
900
901    //---------------------------------------------------------------------------
902    ///@name Methods returning info on how the solution process terminated
903    //@{
904    /// Are there a numerical difficulties?
905    bool isAbandoned() const;
906    /// Is optimality proven?
907    bool isProvenOptimal() const;
908    /// Is  infeasiblity proven (or none better than cutoff)?
909    bool isProvenInfeasible() const;
910    /// Was continuous solution unbounded
911    bool isContinuousUnbounded() const;
912    /// Was continuous solution unbounded
913    bool isProvenDualInfeasible() const;
914    /// Node limit reached?
915    bool isNodeLimitReached() const;
916    /// Time limit reached?
917    bool isSecondsLimitReached() const;
918    /// Solution limit reached?
919    bool isSolutionLimitReached() const;
920    /// Get how many iterations it took to solve the problem.
921    inline int getIterationCount() const {
922        return numberIterations_;
923    }
924    /// Increment how many iterations it took to solve the problem.
925    inline void incrementIterationCount(int value) {
926        numberIterations_ += value;
927    }
928    /// Get how many Nodes it took to solve the problem (including those in complete fathoming B&B inside CLP).
929    inline int getNodeCount() const {
930        return numberNodes_;
931    }
932    /// Increment how many nodes it took to solve the problem.
933    inline void incrementNodeCount(int value) {
934        numberNodes_ += value;
935    }
936    /// Get how many Nodes were enumerated in complete fathoming B&B inside CLP
937    inline int getExtraNodeCount() const {
938       return numberExtraNodes_;
939    }
940    /** Final status of problem
941        Some of these can be found out by is...... functions
942        -1 before branchAndBound
943        0 finished - check isProvenOptimal or isProvenInfeasible to see if solution found
944        (or check value of best solution)
945        1 stopped - on maxnodes, maxsols, maxtime
946        2 difficulties so run was abandoned
947        (5 event user programmed event occurred)
948    */
949    inline int status() const {
950        return status_;
951    }
952    inline void setProblemStatus(int value) {
953        status_ = value;
954    }
955    /** Secondary status of problem
956        -1 unset (status_ will also be -1)
957        0 search completed with solution
958        1 linear relaxation not feasible (or worse than cutoff)
959        2 stopped on gap
960        3 stopped on nodes
961        4 stopped on time
962        5 stopped on user event
963        6 stopped on solutions
964        7 linear relaxation unbounded
965        8 stopped on iteration limit
966    */
967    inline int secondaryStatus() const {
968        return secondaryStatus_;
969    }
970    inline void setSecondaryStatus(int value) {
971        secondaryStatus_ = value;
972    }
973    /// Are there numerical difficulties (for initialSolve) ?
974    bool isInitialSolveAbandoned() const ;
975    /// Is optimality proven (for initialSolve) ?
976    bool isInitialSolveProvenOptimal() const ;
977    /// Is primal infeasiblity proven (for initialSolve) ?
978    bool isInitialSolveProvenPrimalInfeasible() const ;
979    /// Is dual infeasiblity proven (for initialSolve) ?
980    bool isInitialSolveProvenDualInfeasible() const ;
981
982    //@}
983
984    //---------------------------------------------------------------------------
985    /**@name Problem information methods
986
987       These methods call the solver's query routines to return
988       information about the problem referred to by the current object.
989       Querying a problem that has no data associated with it result in
990       zeros for the number of rows and columns, and NULL pointers from
991       the methods that return vectors.
992
993       Const pointers returned from any data-query method are valid as
994       long as the data is unchanged and the solver is not called.
995    */
996    //@{
997    /// Number of rows in continuous (root) problem.
998    inline int numberRowsAtContinuous() const {
999        return numberRowsAtContinuous_;
1000    }
1001
1002    /// Get number of columns
1003    inline int getNumCols() const {
1004        return solver_->getNumCols();
1005    }
1006
1007    /// Get number of rows
1008    inline int getNumRows() const {
1009        return solver_->getNumRows();
1010    }
1011
1012    /// Get number of nonzero elements
1013    inline CoinBigIndex getNumElements() const {
1014        return solver_->getNumElements();
1015    }
1016
1017    /// Number of integers in problem
1018    inline int numberIntegers() const {
1019        return numberIntegers_;
1020    }
1021    // Integer variables
1022    inline const int * integerVariable() const {
1023        return integerVariable_;
1024    }
1025    /// Whether or not integer
1026    inline char integerType(int i) const {
1027        assert (integerInfo_);
1028        assert (integerInfo_[i] == 0 || integerInfo_[i] == 1);
1029        return integerInfo_[i];
1030    }
1031    /// Whether or not integer
1032    inline const char * integerType() const {
1033        return integerInfo_;
1034    }
1035
1036    /// Get pointer to array[getNumCols()] of column lower bounds
1037    inline const double * getColLower() const {
1038        return solver_->getColLower();
1039    }
1040
1041    /// Get pointer to array[getNumCols()] of column upper bounds
1042    inline const double * getColUpper() const {
1043        return solver_->getColUpper();
1044    }
1045
1046    /** Get pointer to array[getNumRows()] of row constraint senses.
1047        <ul>
1048        <li>'L': <= constraint
1049        <li>'E': =  constraint
1050        <li>'G': >= constraint
1051        <li>'R': ranged constraint
1052        <li>'N': free constraint
1053        </ul>
1054    */
1055    inline const char * getRowSense() const {
1056        return solver_->getRowSense();
1057    }
1058
1059    /** Get pointer to array[getNumRows()] of rows right-hand sides
1060        <ul>
1061        <li> if rowsense()[i] == 'L' then rhs()[i] == rowupper()[i]
1062        <li> if rowsense()[i] == 'G' then rhs()[i] == rowlower()[i]
1063        <li> if rowsense()[i] == 'R' then rhs()[i] == rowupper()[i]
1064        <li> if rowsense()[i] == 'N' then rhs()[i] == 0.0
1065        </ul>
1066    */
1067    inline const double * getRightHandSide() const {
1068        return solver_->getRightHandSide();
1069    }
1070
1071    /** Get pointer to array[getNumRows()] of row ranges.
1072        <ul>
1073        <li> if rowsense()[i] == 'R' then
1074        rowrange()[i] == rowupper()[i] - rowlower()[i]
1075        <li> if rowsense()[i] != 'R' then
1076        rowrange()[i] is 0.0
1077        </ul>
1078    */
1079    inline const double * getRowRange() const {
1080        return solver_->getRowRange();
1081    }
1082
1083    /// Get pointer to array[getNumRows()] of row lower bounds
1084    inline const double * getRowLower() const {
1085        return solver_->getRowLower();
1086    }
1087
1088    /// Get pointer to array[getNumRows()] of row upper bounds
1089    inline const double * getRowUpper() const {
1090        return solver_->getRowUpper();
1091    }
1092
1093    /// Get pointer to array[getNumCols()] of objective function coefficients
1094    inline const double * getObjCoefficients() const {
1095        return solver_->getObjCoefficients();
1096    }
1097
1098    /// Get objective function sense (1 for min (default), -1 for max)
1099    inline double getObjSense() const {
1100        //assert (dblParam_[CbcOptimizationDirection]== solver_->getObjSense());
1101        return dblParam_[CbcOptimizationDirection];
1102    }
1103
1104    /// Return true if variable is continuous
1105    inline bool isContinuous(int colIndex) const {
1106        return solver_->isContinuous(colIndex);
1107    }
1108
1109    /// Return true if variable is binary
1110    inline bool isBinary(int colIndex) const {
1111        return solver_->isBinary(colIndex);
1112    }
1113
1114    /** Return true if column is integer.
1115        Note: This function returns true if the the column
1116        is binary or a general integer.
1117    */
1118    inline bool isInteger(int colIndex) const {
1119        return solver_->isInteger(colIndex);
1120    }
1121
1122    /// Return true if variable is general integer
1123    inline bool isIntegerNonBinary(int colIndex) const {
1124        return solver_->isIntegerNonBinary(colIndex);
1125    }
1126
1127    /// Return true if variable is binary and not fixed at either bound
1128    inline bool isFreeBinary(int colIndex) const {
1129        return solver_->isFreeBinary(colIndex) ;
1130    }
1131
1132    /// Get pointer to row-wise copy of matrix
1133    inline const CoinPackedMatrix * getMatrixByRow() const {
1134        return solver_->getMatrixByRow();
1135    }
1136
1137    /// Get pointer to column-wise copy of matrix
1138    inline const CoinPackedMatrix * getMatrixByCol() const {
1139        return solver_->getMatrixByCol();
1140    }
1141
1142    /// Get solver's value for infinity
1143    inline double getInfinity() const {
1144        return solver_->getInfinity();
1145    }
1146    /// Get pointer to array[getNumCols()] (for speed) of column lower bounds
1147    inline const double * getCbcColLower() const {
1148        return cbcColLower_;
1149    }
1150    /// Get pointer to array[getNumCols()] (for speed) of column upper bounds
1151    inline const double * getCbcColUpper() const {
1152        return cbcColUpper_;
1153    }
1154    /// Get pointer to array[getNumRows()] (for speed) of row lower bounds
1155    inline const double * getCbcRowLower() const {
1156        return cbcRowLower_;
1157    }
1158    /// Get pointer to array[getNumRows()] (for speed) of row upper bounds
1159    inline const double * getCbcRowUpper() const {
1160        return cbcRowUpper_;
1161    }
1162    /// Get pointer to array[getNumCols()] (for speed) of primal solution vector
1163    inline const double * getCbcColSolution() const {
1164        return cbcColSolution_;
1165    }
1166    /// Get pointer to array[getNumRows()] (for speed) of dual prices
1167    inline const double * getCbcRowPrice() const {
1168        return cbcRowPrice_;
1169    }
1170    /// Get a pointer to array[getNumCols()] (for speed) of reduced costs
1171    inline const double * getCbcReducedCost() const {
1172        return cbcReducedCost_;
1173    }
1174    /// Get pointer to array[getNumRows()] (for speed) of row activity levels.
1175    inline const double * getCbcRowActivity() const {
1176        return cbcRowActivity_;
1177    }
1178    //@}
1179
1180
1181    /**@name Methods related to querying the solution */
1182    //@{
1183    /// Holds solution at continuous (after cuts if branchAndBound called)
1184    inline double * continuousSolution() const {
1185        return continuousSolution_;
1186    }
1187    /** Array marked whenever a solution is found if non-zero.
1188        Code marks if heuristic returns better so heuristic
1189        need only mark if it wants to on solutions which
1190        are worse than current */
1191    inline int * usedInSolution() const {
1192        return usedInSolution_;
1193    }
1194    /// Increases usedInSolution for nonzeros
1195    void incrementUsed(const double * solution);
1196    /// Record a new incumbent solution and update objectiveValue
1197    void setBestSolution(CBC_Message how,
1198                         double & objectiveValue, const double *solution,
1199                         int fixVariables = 0);
1200    /// Just update objectiveValue
1201    void setBestObjectiveValue( double objectiveValue);
1202    /// Deals with event handler and solution
1203    CbcEventHandler::CbcAction dealWithEventHandler(CbcEventHandler::CbcEvent event,
1204            double objValue,
1205            const double * solution);
1206
1207    /** Call this to really test if a valid solution can be feasible
1208        Solution is number columns in size.
1209        If fixVariables true then bounds of continuous solver updated.
1210        Returns objective value (worse than cutoff if not feasible)
1211        Previously computed objective value is now passed in (in case user does not do solve)
1212        virtual so user can override
1213    */
1214    virtual double checkSolution(double cutoff, double * solution,
1215                         int fixVariables, double originalObjValue);
1216    /** Test the current solution for feasiblility.
1217
1218      Scan all objects for indications of infeasibility. This is broken down
1219      into simple integer infeasibility (\p numberIntegerInfeasibilities)
1220      and all other reports of infeasibility (\p numberObjectInfeasibilities).
1221    */
1222    bool feasibleSolution(int & numberIntegerInfeasibilities,
1223                          int & numberObjectInfeasibilities) const;
1224
1225    /** Solution to the most recent lp relaxation.
1226
1227      The solver's solution to the most recent lp relaxation.
1228    */
1229
1230    inline double * currentSolution() const {
1231        return currentSolution_;
1232    }
1233    /** For testing infeasibilities - will point to
1234        currentSolution_ or solver-->getColSolution()
1235    */
1236    inline const double * testSolution() const {
1237        return testSolution_;
1238    }
1239    inline void setTestSolution(const double * solution) {
1240        testSolution_ = solution;
1241    }
1242    /// Make sure region there and optionally copy solution
1243    void reserveCurrentSolution(const double * solution = NULL);
1244
1245    /// Get pointer to array[getNumCols()] of primal solution vector
1246    inline const double * getColSolution() const {
1247        return solver_->getColSolution();
1248    }
1249
1250    /// Get pointer to array[getNumRows()] of dual prices
1251    inline const double * getRowPrice() const {
1252        return solver_->getRowPrice();
1253    }
1254
1255    /// Get a pointer to array[getNumCols()] of reduced costs
1256    inline const double * getReducedCost() const {
1257        return solver_->getReducedCost();
1258    }
1259
1260    /// Get pointer to array[getNumRows()] of row activity levels.
1261    inline const double * getRowActivity() const {
1262        return solver_->getRowActivity();
1263    }
1264
1265    /// Get current objective function value
1266    inline double getCurrentObjValue() const {
1267        return dblParam_[CbcCurrentObjectiveValue];
1268    }
1269    /// Get current minimization objective function value
1270    inline double getCurrentMinimizationObjValue() const {
1271        return dblParam_[CbcCurrentMinimizationObjectiveValue];
1272    }
1273
1274    /// Get best objective function value as minimization
1275    inline double getMinimizationObjValue() const {
1276        return bestObjective_;
1277    }
1278    /// Set best objective function value as minimization
1279    inline void setMinimizationObjValue(double value) {
1280        bestObjective_ = value;
1281    }
1282
1283    /// Get best objective function value
1284    inline double getObjValue() const {
1285        return bestObjective_ * solver_->getObjSense() ;
1286    }
1287    /** Get best possible objective function value.
1288        This is better of best possible left on tree
1289        and best solution found.
1290        If called from within branch and cut may be optimistic.
1291    */
1292    double getBestPossibleObjValue() const;
1293    /// Set best objective function value
1294    inline void setObjValue(double value) {
1295        bestObjective_ = value * solver_->getObjSense() ;
1296    }
1297    /// Get solver objective function value (as minimization)
1298    inline double getSolverObjValue() const {
1299        return solver_->getObjValue() * solver_->getObjSense() ;
1300    }
1301
1302    /** The best solution to the integer programming problem.
1303
1304      The best solution to the integer programming problem found during
1305      the search. If no solution is found, the method returns null.
1306    */
1307
1308    inline double * bestSolution() const {
1309        return bestSolution_;
1310    }
1311    /** User callable setBestSolution.
1312        If check false does not check valid
1313        If true then sees if feasible and warns if objective value
1314        worse than given (so just set to COIN_DBL_MAX if you don't care).
1315        If check true then does not save solution if not feasible
1316    */
1317    void setBestSolution(const double * solution, int numberColumns,
1318                         double objectiveValue, bool check = false);
1319
1320    /// Get number of solutions
1321    inline int getSolutionCount() const {
1322        return numberSolutions_;
1323    }
1324
1325    /// Set number of solutions (so heuristics will be different)
1326    inline void setSolutionCount(int value) {
1327        numberSolutions_ = value;
1328    }
1329    /// Number of saved solutions (including best)
1330    int numberSavedSolutions() const;
1331    /// Maximum number of extra saved solutions
1332    inline int maximumSavedSolutions() const {
1333        return maximumSavedSolutions_;
1334    }
1335    /// Set maximum number of extra saved solutions
1336    void setMaximumSavedSolutions(int value);
1337    /// Return a saved solution (0==best) - NULL if off end
1338    const double * savedSolution(int which) const;
1339    /// Return a saved solution objective (0==best) - COIN_DBL_MAX if off end
1340    double savedSolutionObjective(int which) const;
1341    /// Delete a saved solution and move others up
1342    void deleteSavedSolution(int which);
1343
1344    /** Current phase (so heuristics etc etc can find out).
1345        0 - initial solve
1346        1 - solve with cuts at root
1347        2 - solve with cuts
1348        3 - other e.g. strong branching
1349        4 - trying to validate a solution
1350        5 - at end of search
1351    */
1352    inline int phase() const {
1353        return phase_;
1354    }
1355
1356    /// Get number of heuristic solutions
1357    inline int getNumberHeuristicSolutions() const {
1358        return numberHeuristicSolutions_;
1359    }
1360    /// Set number of heuristic solutions
1361    inline void setNumberHeuristicSolutions(int value) {
1362        numberHeuristicSolutions_ = value;
1363    }
1364
1365    /// Set objective function sense (1 for min (default), -1 for max,)
1366    inline void setObjSense(double s) {
1367        dblParam_[CbcOptimizationDirection] = s;
1368        solver_->setObjSense(s);
1369    }
1370
1371    /// Value of objective at continuous
1372    inline double getContinuousObjective() const {
1373        return originalContinuousObjective_;
1374    }
1375    inline void setContinuousObjective(double value) {
1376        originalContinuousObjective_ = value;
1377    }
1378    /// Number of infeasibilities at continuous
1379    inline int getContinuousInfeasibilities() const {
1380        return continuousInfeasibilities_;
1381    }
1382    inline void setContinuousInfeasibilities(int value) {
1383        continuousInfeasibilities_ = value;
1384    }
1385    /// Value of objective after root node cuts added
1386    inline double rootObjectiveAfterCuts() const {
1387        return continuousObjective_;
1388    }
1389    /// Sum of Changes to objective by first solve
1390    inline double sumChangeObjective() const {
1391        return sumChangeObjective1_;
1392    }
1393    /** Number of times global cuts violated.  When global cut pool then this
1394        should be kept for each cut and type of cut */
1395    inline int numberGlobalViolations() const {
1396        return numberGlobalViolations_;
1397    }
1398    inline void clearNumberGlobalViolations() {
1399        numberGlobalViolations_ = 0;
1400    }
1401    /// Whether to force a resolve after takeOffCuts
1402    inline bool resolveAfterTakeOffCuts() const {
1403        return resolveAfterTakeOffCuts_;
1404    }
1405    inline void setResolveAfterTakeOffCuts(bool yesNo) {
1406        resolveAfterTakeOffCuts_ = yesNo;
1407    }
1408    /// Maximum number of rows
1409    inline int maximumRows() const {
1410        return maximumRows_;
1411    }
1412    /// Work basis for temporary use
1413    inline CoinWarmStartBasis & workingBasis() {
1414        return workingBasis_;
1415    }
1416    /// Get number of "iterations" to stop after
1417    inline int getStopNumberIterations() const {
1418        return stopNumberIterations_;
1419    }
1420    /// Set number of "iterations" to stop after
1421    inline void setStopNumberIterations(int value) {
1422        stopNumberIterations_ = value;
1423    }
1424    /// A pointer to model from CbcHeuristic
1425    inline CbcModel * heuristicModel() const
1426    { return heuristicModel_;}
1427    /// Set a pointer to model from CbcHeuristic
1428    inline void setHeuristicModel(CbcModel * model)
1429    { heuristicModel_ = model;}
1430    //@}
1431
1432    /** \name Node selection */
1433    //@{
1434    // Comparison functions (which may be overridden by inheritance)
1435    inline CbcCompareBase * nodeComparison() const {
1436        return nodeCompare_;
1437    }
1438    void setNodeComparison(CbcCompareBase * compare);
1439    void setNodeComparison(CbcCompareBase & compare);
1440    //@}
1441
1442    /** \name Problem feasibility checking */
1443    //@{
1444    // Feasibility functions (which may be overridden by inheritance)
1445    inline CbcFeasibilityBase * problemFeasibility() const {
1446        return problemFeasibility_;
1447    }
1448    void setProblemFeasibility(CbcFeasibilityBase * feasibility);
1449    void setProblemFeasibility(CbcFeasibilityBase & feasibility);
1450    //@}
1451
1452    /** \name Tree methods and subtree methods */
1453    //@{
1454    /// Tree method e.g. heap (which may be overridden by inheritance)
1455    inline CbcTree * tree() const {
1456        return tree_;
1457    }
1458    /// For modifying tree handling (original is cloned)
1459    void passInTreeHandler(CbcTree & tree);
1460    /** For passing in an CbcModel to do a sub Tree (with derived tree handlers).
1461        Passed in model must exist for duration of branch and bound
1462    */
1463    void passInSubTreeModel(CbcModel & model);
1464    /** For retrieving a copy of subtree model with given OsiSolver.
1465        If no subtree model will use self (up to user to reset cutoff etc).
1466        If solver NULL uses current
1467    */
1468    CbcModel * subTreeModel(OsiSolverInterface * solver = NULL) const;
1469    /// Returns number of times any subtree stopped on nodes, time etc
1470    inline int numberStoppedSubTrees() const {
1471        return numberStoppedSubTrees_;
1472    }
1473    /// Says a sub tree was stopped
1474    inline void incrementSubTreeStopped() {
1475        numberStoppedSubTrees_++;
1476    }
1477    /** Whether to automatically do presolve before branch and bound (subTrees).
1478        0 - no
1479        1 - ordinary presolve
1480        2 - integer presolve (dodgy)
1481    */
1482    inline int typePresolve() const {
1483        return presolve_;
1484    }
1485    inline void setTypePresolve(int value) {
1486        presolve_ = value;
1487    }
1488
1489    //@}
1490
1491    /** \name Branching Decisions
1492
1493      See the CbcBranchDecision class for additional information.
1494    */
1495    //@{
1496
1497    /// Get the current branching decision method.
1498    inline CbcBranchDecision * branchingMethod() const {
1499        return branchingMethod_;
1500    }
1501    /// Set the branching decision method.
1502    inline void setBranchingMethod(CbcBranchDecision * method) {
1503        delete branchingMethod_;
1504        branchingMethod_ = method->clone();
1505    }
1506    /** Set the branching method
1507
1508      \overload
1509    */
1510    inline void setBranchingMethod(CbcBranchDecision & method) {
1511        delete branchingMethod_;
1512        branchingMethod_ = method.clone();
1513    }
1514    /// Get the current cut modifier method
1515    inline CbcCutModifier * cutModifier() const {
1516        return cutModifier_;
1517    }
1518    /// Set the cut modifier method
1519    void setCutModifier(CbcCutModifier * modifier);
1520    /** Set the cut modifier method
1521
1522      \overload
1523    */
1524    void setCutModifier(CbcCutModifier & modifier);
1525    //@}
1526
1527    /** \name Row (constraint) and Column (variable) cut generation */
1528    //@{
1529
1530    /** State of search
1531        0 - no solution
1532        1 - only heuristic solutions
1533        2 - branched to a solution
1534        3 - no solution but many nodes
1535    */
1536    inline int stateOfSearch() const {
1537        return stateOfSearch_;
1538    }
1539    inline void setStateOfSearch(int state) {
1540        stateOfSearch_ = state;
1541    }
1542    /// Strategy worked out - mainly at root node for use by CbcNode
1543    inline int searchStrategy() const {
1544        return searchStrategy_;
1545    }
1546    /// Set strategy worked out - mainly at root node for use by CbcNode
1547    inline void setSearchStrategy(int value) {
1548        searchStrategy_ = value;
1549    }
1550    /// Stong branching strategy
1551    inline int strongStrategy() const {
1552        return strongStrategy_;
1553    }
1554    /// Set strong branching strategy
1555    inline void setStrongStrategy(int value) {
1556        strongStrategy_ = value;
1557    }
1558
1559    /// Get the number of cut generators
1560    inline int numberCutGenerators() const {
1561        return numberCutGenerators_;
1562    }
1563    /// Get the list of cut generators
1564    inline CbcCutGenerator ** cutGenerators() const {
1565        return generator_;
1566    }
1567    ///Get the specified cut generator
1568    inline CbcCutGenerator * cutGenerator(int i) const {
1569        return generator_[i];
1570    }
1571    ///Get the specified cut generator before any changes
1572    inline CbcCutGenerator * virginCutGenerator(int i) const {
1573        return virginGenerator_[i];
1574    }
1575    /** Add one generator - up to user to delete generators.
1576        howoften affects how generator is used. 0 or 1 means always,
1577        >1 means every that number of nodes.  Negative values have same
1578        meaning as positive but they may be switched off (-> -100) by code if
1579        not many cuts generated at continuous.  -99 is just done at root.
1580        Name is just for printout.
1581        If depth >0 overrides how often generator is called (if howOften==-1 or >0).
1582    */
1583    void addCutGenerator(CglCutGenerator * generator,
1584                         int howOften = 1, const char * name = NULL,
1585                         bool normal = true, bool atSolution = false,
1586                         bool infeasible = false, int howOftenInSub = -100,
1587                         int whatDepth = -1, int whatDepthInSub = -1);
1588//@}
1589    /** \name Strategy and sub models
1590
1591      See the CbcStrategy class for additional information.
1592    */
1593    //@{
1594
1595    /// Get the current strategy
1596    inline CbcStrategy * strategy() const {
1597        return strategy_;
1598    }
1599    /// Set the strategy. Clones
1600    void setStrategy(CbcStrategy & strategy);
1601    /// Set the strategy. assigns
1602    inline void setStrategy(CbcStrategy * strategy) {
1603        strategy_ = strategy;
1604    }
1605    /// Get the current parent model
1606    inline CbcModel * parentModel() const {
1607        return parentModel_;
1608    }
1609    /// Set the parent model
1610    inline void setParentModel(CbcModel & parentModel) {
1611        parentModel_ = &parentModel;
1612    }
1613    //@}
1614
1615
1616    /** \name Heuristics and priorities */
1617    //@{
1618    /*! \brief Add one heuristic - up to user to delete
1619
1620      The name is just used for print messages.
1621    */
1622    void addHeuristic(CbcHeuristic * generator, const char *name = NULL,
1623                      int before = -1);
1624    ///Get the specified heuristic
1625    inline CbcHeuristic * heuristic(int i) const {
1626        return heuristic_[i];
1627    }
1628    /// Get the number of heuristics
1629    inline int numberHeuristics() const {
1630        return numberHeuristics_;
1631    }
1632    /// Set the number of heuristics
1633    inline void setNumberHeuristics(int value) {
1634        numberHeuristics_ = value;
1635    }
1636    /// Pointer to heuristic solver which found last solution (or NULL)
1637    inline CbcHeuristic * lastHeuristic() const {
1638        return lastHeuristic_;
1639    }
1640    /// set last heuristic which found a solution
1641    inline void setLastHeuristic(CbcHeuristic * last) {
1642        lastHeuristic_ = last;
1643    }
1644
1645    /** Pass in branching priorities.
1646
1647        If ifClique then priorities are on cliques otherwise priorities are
1648        on integer variables.
1649        Other type (if exists set to default)
1650        1 is highest priority. (well actually -INT_MAX is but that's ugly)
1651        If hotstart > 0 then branches are created to force
1652        the variable to the value given by best solution.  This enables a
1653        sort of hot start.  The node choice should be greatest depth
1654        and hotstart should normally be switched off after a solution.
1655
1656        If ifNotSimpleIntegers true then appended to normal integers
1657
1658        This is now deprecated except for simple usage.  If user
1659        creates Cbcobjects then set priority in them
1660
1661        \internal Added for Kurt Spielberg.
1662    */
1663    void passInPriorities(const int * priorities, bool ifNotSimpleIntegers);
1664
1665    /// Returns priority level for an object (or 1000 if no priorities exist)
1666    inline int priority(int sequence) const {
1667        return object_[sequence]->priority();
1668    }
1669
1670    /*! \brief Set an event handler
1671
1672      A clone of the handler passed as a parameter is stored in CbcModel.
1673    */
1674    void passInEventHandler(const CbcEventHandler *eventHandler) ;
1675
1676    /*! \brief Retrieve a pointer to the event handler */
1677    inline CbcEventHandler* getEventHandler() const {
1678        return (eventHandler_) ;
1679    }
1680
1681    //@}
1682
1683    /**@name Setting/Accessing application data */
1684    //@{
1685    /** Set application data.
1686
1687    This is a pointer that the application can store into and
1688    retrieve from the solver interface.
1689    This field is available for the application to optionally
1690    define and use.
1691    */
1692    void setApplicationData (void * appData);
1693
1694    /// Get application data
1695    void * getApplicationData() const;
1696    /**
1697        For advanced applications you may wish to modify the behavior of Cbc
1698        e.g. if the solver is a NLP solver then you may not have an exact
1699        optimum solution at each step.  Information could be built into
1700        OsiSolverInterface but this is an alternative so that that interface
1701        does not have to be changed.  If something similar is useful to
1702        enough solvers then it could be migrated
1703        You can also pass in by using solver->setAuxiliaryInfo.
1704        You should do that if solver is odd - if solver is normal simplex
1705        then use this.
1706        NOTE - characteristics are not cloned
1707    */
1708    void passInSolverCharacteristics(OsiBabSolver * solverCharacteristics);
1709    /// Get solver characteristics
1710    inline const OsiBabSolver * solverCharacteristics() const {
1711        return solverCharacteristics_;
1712    }
1713    //@}
1714
1715    //---------------------------------------------------------------------------
1716
1717    /**@name Message handling etc */
1718    //@{
1719    /// Pass in Message handler (not deleted at end)
1720    void passInMessageHandler(CoinMessageHandler * handler);
1721    /// Set language
1722    void newLanguage(CoinMessages::Language language);
1723    inline void setLanguage(CoinMessages::Language language) {
1724        newLanguage(language);
1725    }
1726    /// Return handler
1727    inline CoinMessageHandler * messageHandler() const {
1728        return handler_;
1729    }
1730    /// Return messages
1731    inline CoinMessages & messages() {
1732        return messages_;
1733    }
1734    /// Return pointer to messages
1735    inline CoinMessages * messagesPointer() {
1736        return &messages_;
1737    }
1738    /// Set log level
1739    void setLogLevel(int value);
1740    /// Get log level
1741    inline int logLevel() const {
1742        return handler_->logLevel();
1743    }
1744    /** Set flag to say if handler_ is the default handler.
1745
1746      The default handler is deleted when the model is deleted. Other
1747      handlers (supplied by the client) will not be deleted.
1748    */
1749    inline void setDefaultHandler(bool yesNo) {
1750        defaultHandler_ = yesNo;
1751    }
1752    /// Check default handler
1753    inline bool defaultHandler() const {
1754        return defaultHandler_;
1755    }
1756    //@}
1757    //---------------------------------------------------------------------------
1758    ///@name Specialized
1759    //@{
1760
1761    /**
1762        Set special options
1763        0 bit (1) - check if cuts valid (if on debugger list)
1764        1 bit (2) - use current basis to check integer solution (rather than all slack)
1765        2 bit (4) - don't check integer solution (by solving LP)
1766        3 bit (8) - fast analyze
1767        4 bit (16) - non-linear model - so no well defined CoinPackedMatrix
1768        5 bit (32) - keep names
1769        6 bit (64) - try for dominated columns
1770        7 bit (128) - SOS type 1 but all declared integer
1771        8 bit (256) - Set to say solution just found, unset by doing cuts
1772        9 bit (512) - Try reduced model after 100 nodes
1773        10 bit (1024) - Switch on some heuristics even if seems unlikely
1774        11 bit (2048) - Mark as in small branch and bound
1775        12 bit (4096) - Funny cuts so do slow way (in some places)
1776        13 bit (8192) - Funny cuts so do slow way (in other places)
1777        14 bit (16384) - Use Cplex! for fathoming
1778        15 bit (32768) - Try reduced model after 0 nodes
1779        16 bit (65536) - Original model had integer bounds
1780        17 bit (131072) - Perturbation switched off
1781        18 bit (262144) - donor CbcModel
1782        19 bit (524288) - recipient CbcModel
1783        20 bit (1048576) - waiting for sub model to return
1784        22 bit (4194304) - do not initialize random seed in solver (user has)
1785        23 bit (8388608) - leave solver_ with cuts
1786        24 bit (16777216) - just get feasible if no cutoff
1787    */
1788    inline void setSpecialOptions(int value) {
1789        specialOptions_ = value;
1790    }
1791    /// Get special options
1792    inline int specialOptions() const {
1793        return specialOptions_;
1794    }
1795    /// Set random seed
1796    inline void setRandomSeed(int value) {
1797        randomSeed_ = value;
1798    }
1799    /// Get random seed
1800    inline int getRandomSeed() const {
1801        return randomSeed_;
1802    }
1803    /// Set multiple root tries
1804    inline void setMultipleRootTries(int value) {
1805        multipleRootTries_ = value;
1806    }
1807    /// Get multiple root tries
1808    inline int getMultipleRootTries() const {
1809        return multipleRootTries_;
1810    }
1811    /// Tell model to stop on event
1812    inline void sayEventHappened()
1813    { eventHappened_=true;}
1814    /// Says if normal solver i.e. has well defined CoinPackedMatrix
1815    inline bool normalSolver() const {
1816        return (specialOptions_&16) == 0;
1817    }
1818    /** Says if model is sitting there waiting for mini branch and bound to finish
1819        This is because an event handler may only have access to parent model in
1820        mini branch and bound
1821    */
1822    inline bool waitingForMiniBranchAndBound() const {
1823        return (specialOptions_&1048576) != 0;
1824    }
1825    /** Set more special options
1826        at present bottom 6 bits used for shadow price mode
1827        1024 for experimental hotstart
1828        2048,4096 breaking out of cuts
1829        8192 slowly increase minimum drop
1830        16384 gomory
1831        32768 more heuristics in sub trees
1832        65536 no cuts in preprocessing
1833        131072 Time limits elapsed
1834        18 bit (262144) - Perturb fathom nodes
1835        19 bit (524288) - No limit on fathom nodes
1836        20 bit (1048576) - Reduce sum of infeasibilities before cuts
1837        21 bit (2097152) - Reduce sum of infeasibilities after cuts
1838        22 bit (4194304) - Conflict analysis
1839        23 bit (8388608) - Conflict analysis - temporary bit
1840        24 bit (16777216) - Add cutoff as LP constraint (out)
1841        25 bit (33554432) - diving/reordering
1842        26 bit (67108864) - load global cuts from file
1843        27 bit (134217728) - append binding global cuts to file
1844        28 bit (268435456) - idiot branching
1845        29 bit (536870912) - don't make fake objective
1846    */
1847    inline void setMoreSpecialOptions(int value) {
1848        moreSpecialOptions_ = value;
1849    }
1850    /// Get more special options
1851    inline int moreSpecialOptions() const {
1852        return moreSpecialOptions_;
1853    }
1854    /** Set more more special options
1855        0 bit (1) - find switching variables
1856        1 bit (2) - using fake objective until solution
1857        2 bit (4) - switching variables exist
1858        3 bit (8) - skip most of setBestSolution checks
1859        4 bit (16) - very lightweight preprocessing in smallB&B
1860        5 bit (32) - event handler needs to be cloned when parallel
1861    */
1862    inline void setMoreSpecialOptions2(int value) {
1863        moreSpecialOptions2_ = value;
1864    }
1865    /// Get more special options2
1866    inline int moreSpecialOptions2() const {
1867        return moreSpecialOptions2_;
1868    }
1869    /// Set cutoff as constraint
1870    inline void setCutoffAsConstraint(bool yesNo) {
1871      cutoffRowNumber_ = (yesNo) ? -2 : -1;
1872    }
1873    /// Set time method
1874    inline void setUseElapsedTime(bool yesNo) {
1875        if (yesNo)
1876          moreSpecialOptions_ |= 131072;
1877        else
1878          moreSpecialOptions_ &= ~131072;
1879    }
1880    /// Get time method
1881    inline bool useElapsedTime() const {
1882        return (moreSpecialOptions_&131072)!=0;
1883    }
1884    /// Get useful temporary pointer
1885    inline void * temporaryPointer() const
1886    { return temporaryPointer_;}
1887    /// Set useful temporary pointer
1888    inline void setTemporaryPointer(void * pointer)
1889    { temporaryPointer_=pointer;}
1890    /// Go to dantzig pivot selection if easy problem (clp only)
1891    void goToDantzig(int numberNodes, ClpDualRowPivot *& savePivotMethod);
1892    /// Now we may not own objects - just point to solver's objects
1893    inline bool ownObjects() const {
1894        return ownObjects_;
1895    }
1896    /// Check original model before it gets messed up
1897    void checkModel();
1898    //@}
1899    //---------------------------------------------------------------------------
1900
1901    ///@name Constructors and destructors etc
1902    //@{
1903    /// Default Constructor
1904    CbcModel();
1905
1906    /// Constructor from solver
1907    CbcModel(const OsiSolverInterface &);
1908
1909    /** Assign a solver to the model (model assumes ownership)
1910
1911      On return, \p solver will be NULL.
1912      If deleteSolver then current solver deleted (if model owned)
1913
1914      \note Parameter settings in the outgoing solver are not inherited by
1915        the incoming solver.
1916    */
1917    void assignSolver(OsiSolverInterface *&solver, bool deleteSolver = true);
1918
1919    /** \brief Set ownership of solver
1920
1921      A parameter of false tells CbcModel it does not own the solver and
1922      should not delete it. Once you claim ownership of the solver, you're
1923      responsible for eventually deleting it. Note that CbcModel clones
1924      solvers with abandon.  Unless you have a deep understanding of the
1925      workings of CbcModel, the only time you want to claim ownership is when
1926      you're about to delete the CbcModel object but want the solver to
1927      continue to exist (as, for example, when branchAndBound has finished
1928      and you want to hang on to the answer).
1929    */
1930    inline void setModelOwnsSolver (bool ourSolver) {
1931        ownership_ = ourSolver ? (ownership_ | 0x80000000) : (ownership_ & (~0x80000000)) ;
1932    }
1933
1934    /*! \brief Get ownership of solver
1935
1936      A return value of true means that CbcModel owns the solver and will
1937      take responsibility for deleting it when that becomes necessary.
1938    */
1939    inline bool modelOwnsSolver () {
1940        return ((ownership_&0x80000000) != 0) ;
1941    }
1942
1943    /** Copy constructor .
1944      If cloneHandler is true then message handler is cloned
1945    */
1946    CbcModel(const CbcModel & rhs, bool cloneHandler = false);
1947
1948    /// Assignment operator
1949    CbcModel & operator=(const CbcModel& rhs);
1950
1951    /// Destructor
1952    virtual ~CbcModel ();
1953
1954    /// Returns solver - has current state
1955    inline OsiSolverInterface * solver() const {
1956        return solver_;
1957    }
1958
1959    /// Returns current solver - sets new one
1960    inline OsiSolverInterface * swapSolver(OsiSolverInterface * solver) {
1961        OsiSolverInterface * returnSolver = solver_;
1962        solver_ = solver;
1963        return returnSolver;
1964    }
1965
1966    /// Returns solver with continuous state
1967    inline OsiSolverInterface * continuousSolver() const {
1968        return continuousSolver_;
1969    }
1970
1971    /// Create solver with continuous state
1972    inline void createContinuousSolver() {
1973        continuousSolver_ = solver_->clone();
1974    }
1975    /// Clear solver with continuous state
1976    inline void clearContinuousSolver() {
1977        delete continuousSolver_;
1978        continuousSolver_ = NULL;
1979    }
1980
1981    /// A copy of the solver, taken at constructor or by saveReferenceSolver
1982    inline OsiSolverInterface * referenceSolver() const {
1983        return referenceSolver_;
1984    }
1985
1986    /// Save a copy of the current solver so can be reset to
1987    void saveReferenceSolver();
1988
1989    /** Uses a copy of reference solver to be current solver.
1990        Because of possible mismatches all exotic integer information is loat
1991        (apart from normal information in OsiSolverInterface)
1992        so SOS etc and priorities will have to be redone
1993    */
1994    void resetToReferenceSolver();
1995
1996    /// Clears out as much as possible (except solver)
1997    void gutsOfDestructor();
1998    /** Clears out enough to reset CbcModel as if no branch and bound done
1999     */
2000    void gutsOfDestructor2();
2001    /** Clears out enough to reset CbcModel cutoff etc
2002     */
2003    void resetModel();
2004    /** Most of copy constructor
2005        mode - 0 copy but don't delete before
2006               1 copy and delete before
2007           2 copy and delete before (but use virgin generators)
2008    */
2009    void gutsOfCopy(const CbcModel & rhs, int mode = 0);
2010    /// Move status, nodes etc etc across
2011    void moveInfo(const CbcModel & rhs);
2012    //@}
2013
2014    ///@name Multithreading
2015    //@{
2016    /// Indicates whether Cbc library has been compiled with multithreading support
2017    static bool haveMultiThreadSupport();
2018    /// Get pointer to masterthread
2019    CbcThread * masterThread() const {
2020        return masterThread_;
2021    }
2022    /// Get pointer to walkback
2023    CbcNodeInfo ** walkback() const {
2024        return walkback_;
2025    }
2026    /// Get number of threads
2027    inline int getNumberThreads() const {
2028        return numberThreads_;
2029    }
2030    /// Set number of threads
2031    inline void setNumberThreads(int value) {
2032        numberThreads_ = value;
2033    }
2034    /// Get thread mode
2035    inline int getThreadMode() const {
2036        return threadMode_;
2037    }
2038    /** Set thread mode
2039        always use numberThreads for branching
2040        1 set then deterministic
2041        2 set then use numberThreads for root cuts
2042        4 set then use numberThreads in root mini branch and bound
2043        8 set and numberThreads - do heuristics numberThreads at a time
2044        8 set and numberThreads==0 do all heuristics at once
2045        default is 0
2046    */
2047    inline void setThreadMode(int value) {
2048        threadMode_ = value;
2049    }
2050    /** Return
2051        -2 if deterministic threaded and main thread
2052        -1 if deterministic threaded and serial thread
2053        0 if serial
2054        1 if opportunistic threaded
2055    */
2056    inline int parallelMode() const {
2057        if (!numberThreads_) {
2058            if ((threadMode_&1) == 0)
2059                return 0;
2060            else
2061                return -1;
2062            return 0;
2063        } else {
2064            if ((threadMode_&1) == 0)
2065                return 1;
2066            else
2067                return -2;
2068        }
2069    }
2070    /// From here to end of section - code in CbcThread.cpp until class changed
2071    /// Returns true if locked
2072    bool isLocked() const;
2073#ifdef CBC_THREAD
2074    /**
2075       Locks a thread if parallel so that stuff like cut pool
2076       can be updated and/or used.
2077    */
2078    void lockThread();
2079    /**
2080       Unlocks a thread if parallel to say cut pool stuff not needed
2081    */
2082    void unlockThread();
2083#else
2084    inline void lockThread() {}
2085    inline void unlockThread() {}
2086#endif
2087    /** Set information in a child
2088        -3 pass pointer to child thread info
2089        -2 just stop
2090        -1 delete simple child stuff
2091        0 delete opportunistic child stuff
2092        1 delete deterministic child stuff
2093    */
2094    void setInfoInChild(int type, CbcThread * info);
2095    /** Move/copy information from one model to another
2096        -1 - initialization
2097        0 - from base model
2098        1 - to base model (and reset)
2099        2 - add in final statistics etc (and reset so can do clean destruction)
2100    */
2101    void moveToModel(CbcModel * baseModel, int mode);
2102    /// Split up nodes
2103    int splitModel(int numberModels, CbcModel ** model,
2104                   int numberNodes);
2105    /// Start threads
2106    void startSplitModel(int numberIterations);
2107    /// Merge models
2108    void mergeModels(int numberModel, CbcModel ** model,
2109                     int numberNodes);
2110    //@}
2111
2112    ///@name semi-private i.e. users should not use
2113    //@{
2114    /// Get how many Nodes it took to solve the problem.
2115    int getNodeCount2() const {
2116        return numberNodes2_;
2117    }
2118    /// Set pointers for speed
2119    void setPointers(const OsiSolverInterface * solver);
2120    /** Perform reduced cost fixing
2121
2122      Fixes integer variables at their current value based on reduced cost
2123      penalties.  Returns number fixed
2124    */
2125    int reducedCostFix() ;
2126    /** Makes all handlers same.  If makeDefault 1 then makes top level
2127        default and rest point to that.  If 2 then each is copy
2128    */
2129    void synchronizeHandlers(int makeDefault);
2130    /// Save a solution to saved list
2131    void saveExtraSolution(const double * solution, double objectiveValue);
2132    /// Save a solution to best and move current to saved
2133    void saveBestSolution(const double * solution, double objectiveValue);
2134    /// Delete best and saved solutions
2135    void deleteSolutions();
2136    /// Encapsulates solver resolve
2137    int resolve(OsiSolverInterface * solver);
2138#ifdef CLP_RESOLVE
2139    /// Special purpose resolve
2140    int resolveClp(OsiClpSolverInterface * solver, int type);
2141#endif
2142
2143    /** Encapsulates choosing a variable -
2144        anyAction -2, infeasible (-1 round again), 0 done
2145    */
2146    int chooseBranch(CbcNode * & newNode, int numberPassesLeft,
2147                     CbcNode * oldNode, OsiCuts & cuts,
2148                     bool & resolved, CoinWarmStartBasis *lastws,
2149                     const double * lowerBefore, const double * upperBefore,
2150                     OsiSolverBranch * & branches);
2151    int chooseBranch(CbcNode * newNode, int numberPassesLeft, bool & resolved);
2152
2153    /** Return an empty basis object of the specified size
2154
2155      A useful utility when constructing a basis for a subproblem from scratch.
2156      The object returned will be of the requested capacity and appropriate for
2157      the solver attached to the model.
2158    */
2159    CoinWarmStartBasis *getEmptyBasis(int ns = 0, int na = 0) const ;
2160
2161    /** Remove inactive cuts from the model
2162
2163      An OsiSolverInterface is expected to maintain a valid basis, but not a
2164      valid solution, when loose cuts are deleted. Restoring a valid solution
2165      requires calling the solver to reoptimise. If it's certain the solution
2166      will not be required, set allowResolve to false to suppress
2167      reoptimisation.
2168      If saveCuts then slack cuts will be saved
2169      On input current cuts are cuts and newCuts
2170      on exit current cuts will be correct.  Returns number dropped
2171    */
2172    int takeOffCuts(OsiCuts &cuts,
2173                    bool allowResolve, OsiCuts * saveCuts,
2174                    int numberNewCuts = 0, const OsiRowCut ** newCuts = NULL) ;
2175
2176    /** Determine and install the active cuts that need to be added for
2177      the current subproblem
2178
2179      The whole truth is a bit more complicated. The first action is a call to
2180      addCuts1(). addCuts() then sorts through the list, installs the tight
2181      cuts in the model, and does bookkeeping (adjusts reference counts).
2182      The basis returned from addCuts1() is adjusted accordingly.
2183
2184      If it turns out that the node should really be fathomed by bound,
2185      addCuts() simply treats all the cuts as loose as it does the bookkeeping.
2186
2187      canFix true if extra information being passed
2188    */
2189    int addCuts(CbcNode * node, CoinWarmStartBasis *&lastws, bool canFix);
2190
2191    /** Traverse the tree from node to root and prep the model
2192
2193      addCuts1() begins the job of prepping the model to match the current
2194      subproblem. The model is stripped of all cuts, and the search tree is
2195      traversed from node to root to determine the changes required. Appropriate
2196      bounds changes are installed, a list of cuts is collected but not
2197      installed, and an appropriate basis (minus the cuts, but big enough to
2198      accommodate them) is constructed.
2199
2200      Returns true if new problem similar to old
2201
2202      \todo addCuts1() is called in contexts where it's known in advance that
2203        all that's desired is to determine a list of cuts and do the
2204        bookkeeping (adjust the reference counts). The work of installing
2205        bounds and building a basis goes to waste.
2206    */
2207    bool addCuts1(CbcNode * node, CoinWarmStartBasis *&lastws);
2208    /** Returns bounds just before where - initially original bounds.
2209        Also sets downstream nodes (lower if force 1, upper if 2)
2210    */
2211    void previousBounds (CbcNode * node, CbcNodeInfo * where, int iColumn,
2212                         double & lower, double & upper, int force);
2213    /** Set objective value in a node.  This is separated out so that
2214       odd solvers can use.  It may look at extra information in
2215       solverCharacteriscs_ and will also use bound from parent node
2216    */
2217    void setObjectiveValue(CbcNode * thisNode, const CbcNode * parentNode) const;
2218
2219    /** If numberBeforeTrust >0 then we are going to use CbcBranchDynamic.
2220        Scan and convert CbcSimpleInteger objects
2221    */
2222    void convertToDynamic();
2223    /// Set numberBeforeTrust in all objects
2224    void synchronizeNumberBeforeTrust(int type = 0);
2225    /// Zap integer information in problem (may leave object info)
2226    void zapIntegerInformation(bool leaveObjects = true);
2227    /// Use cliques for pseudocost information - return nonzero if infeasible
2228    int cliquePseudoCosts(int doStatistics);
2229    /// Fill in useful estimates
2230    void pseudoShadow(int type);
2231    /** Return pseudo costs
2232        If not all integers or not pseudo costs - returns all zero
2233        Length of arrays are numberIntegers() and entries
2234        correspond to integerVariable()[i]
2235        User must allocate arrays before call
2236    */
2237    void fillPseudoCosts(double * downCosts, double * upCosts,
2238                         int * priority = NULL,
2239                         int * numberDown = NULL, int * numberUp = NULL,
2240                         int * numberDownInfeasible = NULL,
2241                         int * numberUpInfeasible = NULL) const;
2242    /** Do heuristics at root.
2243        0 - don't delete
2244        1 - delete
2245        2 - just delete - don't even use
2246    */
2247    void doHeuristicsAtRoot(int deleteHeuristicsAfterwards = 0);
2248    /// Adjust heuristics based on model
2249    void adjustHeuristics();
2250    /// Get the hotstart solution
2251    inline const double * hotstartSolution() const {
2252        return hotstartSolution_;
2253    }
2254    /// Get the hotstart priorities
2255    inline const int * hotstartPriorities() const {
2256        return hotstartPriorities_;
2257    }
2258
2259    /// Return the list of cuts initially collected for this subproblem
2260    inline CbcCountRowCut ** addedCuts() const {
2261        return addedCuts_;
2262    }
2263    /// Number of entries in the list returned by #addedCuts()
2264    inline int currentNumberCuts() const {
2265        return currentNumberCuts_;
2266    }
2267    /// Global cuts
2268    inline CbcRowCuts * globalCuts() {
2269        return &globalCuts_;
2270    }
2271    /// Copy and set a pointer to a row cut which will be added instead of normal branching.
2272    void setNextRowCut(const OsiRowCut & cut);
2273    /// Get a pointer to current node (be careful)
2274    inline CbcNode * currentNode() const {
2275        return currentNode_;
2276    }
2277    /// Get a pointer to probing info
2278    inline CglTreeProbingInfo * probingInfo() const {
2279        return probingInfo_;
2280    }
2281    /// Thread specific random number generator
2282    inline CoinThreadRandom * randomNumberGenerator() {
2283        return &randomNumberGenerator_;
2284    }
2285    /// Set the number of iterations done in strong branching.
2286    inline void setNumberStrongIterations(int number) {
2287        numberStrongIterations_ = number;
2288    }
2289    /// Get the number of iterations done in strong branching.
2290    inline int numberStrongIterations() const {
2291        return numberStrongIterations_;
2292    }
2293    /// Get maximum number of iterations (designed to be used in heuristics)
2294    inline int maximumNumberIterations() const {
2295        return maximumNumberIterations_;
2296    }
2297    /// Set maximum number of iterations (designed to be used in heuristics)
2298    inline void setMaximumNumberIterations(int value) {
2299        maximumNumberIterations_ = value;
2300    }
2301    /// Set depth for fast nodes
2302    inline void setFastNodeDepth(int value) {
2303        fastNodeDepth_ = value;
2304    }
2305    /// Get depth for fast nodes
2306    inline int fastNodeDepth() const {
2307        return fastNodeDepth_;
2308    }
2309    /// Get anything with priority >= this can be treated as continuous
2310    inline int continuousPriority() const {
2311        return continuousPriority_;
2312    }
2313    /// Set anything with priority >= this can be treated as continuous
2314    inline void setContinuousPriority(int value) {
2315        continuousPriority_ = value;
2316    }
2317    inline void incrementExtra(int nodes, int iterations) {
2318        numberExtraNodes_ += nodes;
2319        numberExtraIterations_ += iterations;
2320    }
2321    /// Number of extra iterations
2322    inline int numberExtraIterations() const {
2323        return numberExtraIterations_;
2324    }
2325    /// Increment strong info
2326    void incrementStrongInfo(int numberTimes, int numberIterations,
2327                             int numberFixed, bool ifInfeasible);
2328    /// Return strong info
2329    inline const int * strongInfo() const {
2330        return strongInfo_;
2331    }
2332
2333    /// Return mutable strong info
2334    inline int * mutableStrongInfo() {
2335        return strongInfo_;
2336    }
2337    /// Get stored row cuts for donor/recipient CbcModel
2338    CglStored * storedRowCuts() const {
2339        return storedRowCuts_;
2340    }
2341    /// Set stored row cuts for donor/recipient CbcModel
2342    void setStoredRowCuts(CglStored * cuts) {
2343        storedRowCuts_ = cuts;
2344    }
2345    /// Says whether all dynamic integers
2346    inline bool allDynamic () const {
2347        return ((ownership_&0x40000000) != 0) ;
2348    }
2349    /// Create C++ lines to get to current state
2350    void generateCpp( FILE * fp, int options);
2351    /// Generate an OsiBranchingInformation object
2352    OsiBranchingInformation usefulInformation() const;
2353    /** Warm start object produced by heuristic or strong branching
2354
2355        If get a valid integer solution outside branch and bound then it can take
2356        a reasonable time to solve LP which produces clean solution.  If this object has
2357        any size then it will be used in solve.
2358    */
2359    inline void setBestSolutionBasis(const CoinWarmStartBasis & bestSolutionBasis) {
2360        bestSolutionBasis_ = bestSolutionBasis;
2361    }
2362    /// Redo walkback arrays
2363    void redoWalkBack();
2364    //@}
2365   
2366    void setMIPStart( const std::vector< std::pair< std::string, double > > &mips ) {
2367       this->mipStart_ = mips;
2368    }
2369
2370    const std::vector< std::pair< std::string, double > > &getMIPStart() {
2371       return this->mipStart_;
2372    }
2373
2374
2375//---------------------------------------------------------------------------
2376
2377private:
2378    ///@name Private member data
2379    //@{
2380
2381    /// The solver associated with this model.
2382    OsiSolverInterface * solver_;
2383
2384    /** Ownership of objects and other stuff
2385
2386        0x80000000 model owns solver
2387        0x40000000 all variables CbcDynamicPseudoCost
2388    */
2389    unsigned int ownership_ ;
2390
2391    /// A copy of the solver, taken at the continuous (root) node.
2392    OsiSolverInterface * continuousSolver_;
2393
2394    /// A copy of the solver, taken at constructor or by saveReferenceSolver
2395    OsiSolverInterface * referenceSolver_;
2396
2397    /// Message handler
2398    CoinMessageHandler * handler_;
2399
2400    /** Flag to say if handler_ is the default handler.
2401
2402      The default handler is deleted when the model is deleted. Other
2403      handlers (supplied by the client) will not be deleted.
2404    */
2405    bool defaultHandler_;
2406
2407    /// Cbc messages
2408    CoinMessages messages_;
2409
2410    /// Array for integer parameters
2411    int intParam_[CbcLastIntParam];
2412
2413    /// Array for double parameters
2414    double dblParam_[CbcLastDblParam];
2415
2416    /** Pointer to an empty warm start object
2417
2418      It turns out to be useful to have this available as a base from
2419      which to build custom warm start objects. This is typed as CoinWarmStart
2420      rather than CoinWarmStartBasis to allow for the possibility that a
2421      client might want to apply a solver that doesn't use a basis-based warm
2422      start. See getEmptyBasis for an example of how this field can be used.
2423    */
2424    mutable CoinWarmStart *emptyWarmStart_ ;
2425
2426    /// Best objective
2427    double bestObjective_;
2428    /// Best possible objective
2429    double bestPossibleObjective_;
2430    /// Sum of Changes to objective by first solve
2431    double sumChangeObjective1_;
2432    /// Sum of Changes to objective by subsequent solves
2433    double sumChangeObjective2_;
2434
2435    /// Array holding the incumbent (best) solution.
2436    double * bestSolution_;
2437    /// Arrays holding other solutions.
2438    double ** savedSolutions_;
2439
2440    /** Array holding the current solution.
2441
2442      This array is used more as a temporary.
2443    */
2444    double * currentSolution_;
2445    /** For testing infeasibilities - will point to
2446        currentSolution_ or solver-->getColSolution()
2447    */
2448    mutable const double * testSolution_;
2449    /** MIPstart values
2450      values for integer variables which will be converted to a complete integer initial feasible solution
2451    */
2452    std::vector< std::pair< std::string, double > > mipStart_;
2453     /** Warm start object produced by heuristic or strong branching
2454
2455        If get a valid integer solution outside branch and bound then it can take
2456        a reasonable time to solve LP which produces clean solution.  If this object has
2457        any size then it will be used in solve.
2458    */
2459    CoinWarmStartBasis bestSolutionBasis_ ;
2460    /// Global cuts
2461    CbcRowCuts globalCuts_;
2462    /// Global conflict cuts
2463    CbcRowCuts * globalConflictCuts_;
2464
2465    /// Minimum degradation in objective value to continue cut generation
2466    double minimumDrop_;
2467    /// Number of solutions
2468    int numberSolutions_;
2469    /// Number of saved solutions
2470    int numberSavedSolutions_;
2471    /// Maximum number of saved solutions
2472    int maximumSavedSolutions_;
2473    /** State of search
2474        0 - no solution
2475        1 - only heuristic solutions
2476        2 - branched to a solution
2477        3 - no solution but many nodes
2478    */
2479    int stateOfSearch_;
2480    /// At which depths to do cuts
2481    int whenCuts_;
2482    /// Hotstart solution
2483    double * hotstartSolution_;
2484    /// Hotstart priorities
2485    int * hotstartPriorities_;
2486    /// Number of heuristic solutions
2487    int numberHeuristicSolutions_;
2488    /// Cumulative number of nodes
2489    int numberNodes_;
2490    /** Cumulative number of nodes for statistics.
2491        Must fix to match up
2492    */
2493    int numberNodes2_;
2494    /// Cumulative number of iterations
2495    int numberIterations_;
2496    /// Cumulative number of solves
2497    int numberSolves_;
2498    /// Status of problem - 0 finished, 1 stopped, 2 difficulties
2499    int status_;
2500    /** Secondary status of problem
2501        -1 unset (status_ will also be -1)
2502        0 search completed with solution
2503        1 linear relaxation not feasible (or worse than cutoff)
2504        2 stopped on gap
2505        3 stopped on nodes
2506        4 stopped on time
2507        5 stopped on user event
2508        6 stopped on solutions
2509     */
2510    int secondaryStatus_;
2511    /// Number of integers in problem
2512    int numberIntegers_;
2513    /// Number of rows at continuous
2514    int numberRowsAtContinuous_;
2515    /**
2516       -1 - cutoff as constraint not activated
2517       -2 - waiting to activate
2518       >=0 - activated
2519     */
2520    int cutoffRowNumber_;
2521    /// Maximum number of cuts
2522    int maximumNumberCuts_;
2523    /** Current phase (so heuristics etc etc can find out).
2524        0 - initial solve
2525        1 - solve with cuts at root
2526        2 - solve with cuts
2527        3 - other e.g. strong branching
2528        4 - trying to validate a solution
2529        5 - at end of search
2530    */
2531    int phase_;
2532
2533    /// Number of entries in #addedCuts_
2534    int currentNumberCuts_;
2535
2536    /** Current limit on search tree depth
2537
2538      The allocated size of #walkback_. Increased as needed.
2539    */
2540    int maximumDepth_;
2541    /** Array used to assemble the path between a node and the search tree root
2542
2543      The array is resized when necessary. #maximumDepth_  is the current
2544      allocated size.
2545    */
2546    CbcNodeInfo ** walkback_;
2547    CbcNodeInfo ** lastNodeInfo_;
2548    const OsiRowCut ** lastCut_;
2549    int lastDepth_;
2550    int lastNumberCuts2_;
2551    int maximumCuts_;
2552    int * lastNumberCuts_;
2553
2554    /** The list of cuts initially collected for this subproblem
2555
2556      When the subproblem at this node is rebuilt, a set of cuts is collected
2557      for inclusion in the constraint system. If any of these cuts are
2558      subsequently removed because they have become loose, the corresponding
2559      entry is set to NULL.
2560    */
2561    CbcCountRowCut ** addedCuts_;
2562
2563    /** A pointer to a row cut which will be added instead of normal branching.
2564        After use it should be set to NULL.
2565    */
2566    OsiRowCut * nextRowCut_;
2567
2568    /// Current node so can be used elsewhere
2569    CbcNode * currentNode_;
2570
2571    /// Indices of integer variables
2572    int * integerVariable_;
2573    /// Whether of not integer
2574    char * integerInfo_;
2575    /// Holds solution at continuous (after cuts)
2576    double * continuousSolution_;
2577    /// Array marked whenever a solution is found if non-zero
2578    int * usedInSolution_;
2579    /**
2580        Special options
2581        0 bit (1) - check if cuts valid (if on debugger list)
2582        1 bit (2) - use current basis to check integer solution (rather than all slack)
2583        2 bit (4) - don't check integer solution (by solving LP)
2584        3 bit (8) - fast analyze
2585        4 bit (16) - non-linear model - so no well defined CoinPackedMatrix
2586        5 bit (32) - keep names
2587        6 bit (64) - try for dominated columns
2588        7 bit (128) - SOS type 1 but all declared integer
2589        8 bit (256) - Set to say solution just found, unset by doing cuts
2590        9 bit (512) - Try reduced model after 100 nodes
2591        10 bit (1024) - Switch on some heuristics even if seems unlikely
2592        11 bit (2048) - Mark as in small branch and bound
2593        12 bit (4096) - Funny cuts so do slow way (in some places)
2594        13 bit (8192) - Funny cuts so do slow way (in other places)
2595        14 bit (16384) - Use Cplex! for fathoming
2596        15 bit (32768) - Try reduced model after 0 nodes
2597        16 bit (65536) - Original model had integer bounds
2598        17 bit (131072) - Perturbation switched off
2599        18 bit (262144) - donor CbcModel
2600        19 bit (524288) - recipient CbcModel
2601        20 bit (1048576) - waiting for sub model to return
2602        22 bit (4194304) - do not initialize random seed in solver (user has)
2603        23 bit (8388608) - leave solver_ with cuts
2604        24 bit (16777216) - just get feasible if no cutoff
2605    */
2606    int specialOptions_;
2607    /** More special options
2608        at present bottom 6 bits used for shadow price mode
2609        1024 for experimental hotstart
2610        2048,4096 breaking out of cuts
2611        8192 slowly increase minimum drop
2612        16384 gomory
2613        32768 more heuristics in sub trees
2614        65536 no cuts in preprocessing
2615        131072 Time limits elapsed
2616        18 bit (262144) - Perturb fathom nodes
2617        19 bit (524288) - No limit on fathom nodes
2618        20 bit (1048576) - Reduce sum of infeasibilities before cuts
2619        21 bit (2097152) - Reduce sum of infeasibilities after cuts
2620    */
2621    int moreSpecialOptions_;
2622    /** More more special options
2623        0 bit (1) - find switching variables
2624        1 bit (2) - using fake objective until solution
2625        2 bit (4) - switching variables exist
2626        3 bit (8) - skip most of setBestSolution checks
2627        4 bit (16) - very lightweight preprocessing in smallB&B
2628        5 bit (32) - event handler needs to be cloned when parallel
2629    */
2630    int moreSpecialOptions2_;
2631    /// User node comparison function
2632    CbcCompareBase * nodeCompare_;
2633    /// User feasibility function (see CbcFeasibleBase.hpp)
2634    CbcFeasibilityBase * problemFeasibility_;
2635    /// Tree
2636    CbcTree * tree_;
2637    /// Pointer to top of tree
2638    CbcFullNodeInfo * topOfTree_;
2639    /// A pointer to model to be used for subtrees
2640    CbcModel * subTreeModel_;
2641    /// A pointer to model from CbcHeuristic
2642    CbcModel * heuristicModel_;
2643    /// Number of times any subtree stopped on nodes, time etc
2644    int numberStoppedSubTrees_;
2645    /// Variable selection function
2646    CbcBranchDecision * branchingMethod_;
2647    /// Cut modifier function
2648    CbcCutModifier * cutModifier_;
2649    /// Strategy
2650    CbcStrategy * strategy_;
2651    /// Parent model
2652    CbcModel * parentModel_;
2653    /** Whether to automatically do presolve before branch and bound.
2654        0 - no
2655        1 - ordinary presolve
2656        2 - integer presolve (dodgy)
2657    */
2658    /// Pointer to array[getNumCols()] (for speed) of column lower bounds
2659    const double * cbcColLower_;
2660    /// Pointer to array[getNumCols()] (for speed) of column upper bounds
2661    const double * cbcColUpper_;
2662    /// Pointer to array[getNumRows()] (for speed) of row lower bounds
2663    const double * cbcRowLower_;
2664    /// Pointer to array[getNumRows()] (for speed) of row upper bounds
2665    const double * cbcRowUpper_;
2666    /// Pointer to array[getNumCols()] (for speed) of primal solution vector
2667    const double * cbcColSolution_;
2668    /// Pointer to array[getNumRows()] (for speed) of dual prices
2669    const double * cbcRowPrice_;
2670    /// Get a pointer to array[getNumCols()] (for speed) of reduced costs
2671    const double * cbcReducedCost_;
2672    /// Pointer to array[getNumRows()] (for speed) of row activity levels.
2673    const double * cbcRowActivity_;
2674    /// Pointer to user-defined data structure
2675    void * appData_;
2676    /// Presolve for CbcTreeLocal
2677    int presolve_;
2678    /** Maximum number of candidates to consider for strong branching.
2679      To disable strong branching, set this to 0.
2680    */
2681    int numberStrong_;
2682    /** \brief The number of branches before pseudo costs believed
2683           in dynamic strong branching.
2684
2685      A value of 0 is  off.
2686    */
2687    int numberBeforeTrust_;
2688    /** \brief The number of variables for which to compute penalties
2689           in dynamic strong branching.
2690    */
2691    int numberPenalties_;
2692    /// For threads - stop after this many "iterations"
2693    int stopNumberIterations_;
2694    /** Scale factor to make penalties match strong.
2695        Should/will be computed */
2696    double penaltyScaleFactor_;
2697    /// Number of analyze iterations to do
2698    int numberAnalyzeIterations_;
2699    /// Arrays with analysis results
2700    double * analyzeResults_;
2701    /// Useful temporary pointer
2702    void * temporaryPointer_;
2703    /// Number of nodes infeasible by normal branching (before cuts)
2704    int numberInfeasibleNodes_;
2705    /** Problem type as set by user or found by analysis.  This will be extended
2706        0 - not known
2707        1 - Set partitioning <=
2708        2 - Set partitioning ==
2709        3 - Set covering
2710    */
2711    int problemType_;
2712    /// Print frequency
2713    int printFrequency_;
2714    /// Number of cut generators
2715    int numberCutGenerators_;
2716    // Cut generators
2717    CbcCutGenerator ** generator_;
2718    // Cut generators before any changes
2719    CbcCutGenerator ** virginGenerator_;
2720    /// Number of heuristics
2721    int numberHeuristics_;
2722    /// Heuristic solvers
2723    CbcHeuristic ** heuristic_;
2724    /// Pointer to heuristic solver which found last solution (or NULL)
2725    CbcHeuristic * lastHeuristic_;
2726    /// Depth for fast nodes
2727    int fastNodeDepth_;
2728    /*! Pointer to the event handler */
2729# ifdef CBC_ONLY_CLP
2730    ClpEventHandler *eventHandler_ ;
2731# else
2732    CbcEventHandler *eventHandler_ ;
2733# endif
2734
2735    /// Total number of objects
2736    int numberObjects_;
2737
2738    /** \brief Integer and Clique and ... information
2739
2740      \note The code assumes that the first objects on the list will be
2741        SimpleInteger objects for each integer variable, followed by
2742        Clique objects. Portions of the code that understand Clique objects
2743        will fail if they do not immediately follow the SimpleIntegers.
2744        Large chunks of the code will fail if the first objects are not
2745        SimpleInteger. As of 2003.08, SimpleIntegers and Cliques are the only
2746        objects.
2747    */
2748    OsiObject ** object_;
2749    /// Now we may not own objects - just point to solver's objects
2750    bool ownObjects_;
2751
2752    /// Original columns as created by integerPresolve or preprocessing
2753    int * originalColumns_;
2754    /// How often to scan global cuts
2755    int howOftenGlobalScan_;
2756    /** Number of times global cuts violated.  When global cut pool then this
2757        should be kept for each cut and type of cut */
2758    int numberGlobalViolations_;
2759    /// Number of extra iterations in fast lp
2760    int numberExtraIterations_;
2761    /// Number of extra nodes in fast lp
2762    int numberExtraNodes_;
2763    /** Value of objective at continuous
2764        (Well actually after initial round of cuts)
2765    */
2766    double continuousObjective_;
2767    /** Value of objective before root node cuts added
2768    */
2769    double originalContinuousObjective_;
2770    /// Number of infeasibilities at continuous
2771    int continuousInfeasibilities_;
2772    /// Maximum number of cut passes at root
2773    int maximumCutPassesAtRoot_;
2774    /// Maximum number of cut passes
2775    int maximumCutPasses_;
2776    /// Preferred way of branching
2777    int preferredWay_;
2778    /// Current cut pass number
2779    int currentPassNumber_;
2780    /// Maximum number of cuts (for whichGenerator_)
2781    int maximumWhich_;
2782    /// Maximum number of rows
2783    int maximumRows_;
2784    /// Random seed
2785    int randomSeed_;
2786    /// Multiple root tries
2787    int multipleRootTries_;
2788    /// Current depth
2789    int currentDepth_;
2790    /// Thread specific random number generator
2791    mutable CoinThreadRandom randomNumberGenerator_;
2792    /// Work basis for temporary use
2793    CoinWarmStartBasis workingBasis_;
2794    /// Which cut generator generated this cut
2795    int * whichGenerator_;
2796    /// Maximum number of statistics
2797    int maximumStatistics_;
2798    /// statistics
2799    CbcStatistics ** statistics_;
2800    /// Maximum depth reached
2801    int maximumDepthActual_;
2802    /// Number of reduced cost fixings
2803    double numberDJFixed_;
2804    /// Probing info
2805    CglTreeProbingInfo * probingInfo_;
2806    /// Number of fixed by analyze at root
2807    int numberFixedAtRoot_;
2808    /// Number fixed by analyze so far
2809    int numberFixedNow_;
2810    /// Whether stopping on gap
2811    bool stoppedOnGap_;
2812    /// Whether event happened
2813    mutable bool eventHappened_;
2814    /// Number of long strong goes
2815    int numberLongStrong_;
2816    /// Number of old active cuts
2817    int numberOldActiveCuts_;
2818    /// Number of new cuts
2819    int numberNewCuts_;
2820    /// Strategy worked out - mainly at root node
2821    int searchStrategy_;
2822    /** Strategy for strong branching
2823        0 - normal
2824        when to do all fractional
2825        1 - root node
2826        2 - depth less than modifier
2827        4 - if objective == best possible
2828        6 - as 2+4
2829        when to do all including satisfied
2830        10 - root node etc.
2831        If >=100 then do when depth <= strategy/100 (otherwise 5)
2832     */
2833    int strongStrategy_;
2834    /// Number of iterations in strong branching
2835    int numberStrongIterations_;
2836    /** 0 - number times strong branching done, 1 - number fixed, 2 - number infeasible
2837        Second group of three is a snapshot at node [6] */
2838    int strongInfo_[7];
2839    /**
2840        For advanced applications you may wish to modify the behavior of Cbc
2841        e.g. if the solver is a NLP solver then you may not have an exact
2842        optimum solution at each step.  This gives characteristics - just for one BAB.
2843        For actually saving/restoring a solution you need the actual solver one.
2844    */
2845    OsiBabSolver * solverCharacteristics_;
2846    /// Whether to force a resolve after takeOffCuts
2847    bool resolveAfterTakeOffCuts_;
2848    /// Maximum number of iterations (designed to be used in heuristics)
2849    int maximumNumberIterations_;
2850    /// Anything with priority >= this can be treated as continuous
2851    int continuousPriority_;
2852    /// Number of outstanding update information items
2853    int numberUpdateItems_;
2854    /// Maximum number of outstanding update information items
2855    int maximumNumberUpdateItems_;
2856    /// Update items
2857    CbcObjectUpdateData * updateItems_;
2858    /// Stored row cuts for donor/recipient CbcModel
2859    CglStored * storedRowCuts_;
2860    /**
2861       Parallel
2862       0 - off
2863       1 - testing
2864       2-99 threads
2865       other special meanings
2866    */
2867    int numberThreads_;
2868    /** thread mode
2869        always use numberThreads for branching
2870        1 set then deterministic
2871        2 set then use numberThreads for root cuts
2872        4 set then use numberThreads in root mini branch and bound
2873        default is 0
2874    */
2875    int threadMode_;
2876    /// Thread stuff for master
2877    CbcBaseModel * master_;
2878    /// Pointer to masterthread
2879    CbcThread * masterThread_;
2880//@}
2881};
2882/// So we can use osiObject or CbcObject during transition
2883void getIntegerInformation(const OsiObject * object, double & originalLower,
2884                           double & originalUpper) ;
2885// So we can call from other programs
2886// Real main program
2887class OsiClpSolverInterface;
2888int CbcMain (int argc, const char *argv[], OsiClpSolverInterface & solver, CbcModel ** babSolver);
2889int CbcMain (int argc, const char *argv[], CbcModel & babSolver);
2890// four ways of calling
2891int callCbc(const char * input2, OsiClpSolverInterface& solver1);
2892int callCbc(const char * input2);
2893int callCbc(const std::string input2, OsiClpSolverInterface& solver1);
2894int callCbc(const std::string input2) ;
2895// When we want to load up CbcModel with options first
2896void CbcMain0 (CbcModel & babSolver);
2897int CbcMain1 (int argc, const char *argv[], CbcModel & babSolver);
2898// two ways of calling
2899int callCbc(const char * input2, CbcModel & babSolver);
2900int callCbc(const std::string input2, CbcModel & babSolver);
2901// And when CbcMain0 already called to initialize
2902int callCbc1(const char * input2, CbcModel & babSolver);
2903int callCbc1(const std::string input2, CbcModel & babSolver);
2904// And when CbcMain0 already called to initialize (with call back) (see CbcMain1 for whereFrom)
2905int callCbc1(const char * input2, CbcModel & babSolver, int (CbcModel * currentSolver, int whereFrom));
2906int callCbc1(const std::string input2, CbcModel & babSolver, int (CbcModel * currentSolver, int whereFrom));
2907int CbcMain1 (int argc, const char *argv[], CbcModel & babSolver, int (CbcModel * currentSolver, int whereFrom));
2908// For uniform setting of cut and heuristic options
2909void setCutAndHeuristicOptions(CbcModel & model);
2910#endif
2911
Note: See TracBrowser for help on using the repository browser.