source: trunk/Cbc/src/CbcModel.hpp @ 1876

Last change on this file since 1876 was 1876, checked in by forrest, 9 years ago

changes for cuts and extra variables

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 100.2 KB
Line 
1/* $Id: CbcModel.hpp 1876 2013-03-19 13:04:43Z forrest $ */
2// Copyright (C) 2002, International Business Machines
3// Corporation and others.  All Rights Reserved.
4// This code is licensed under the terms of the Eclipse Public License (EPL).
5
6#ifndef CbcModel_H
7#define CbcModel_H
8#include <string>
9#include <vector>
10#include "CoinMessageHandler.hpp"
11#include "OsiSolverInterface.hpp"
12#include "OsiBranchingObject.hpp"
13#include "OsiCuts.hpp"
14#include "CoinWarmStartBasis.hpp"
15#include "CbcCompareBase.hpp"
16#include "CbcCountRowCut.hpp"
17#include "CbcMessage.hpp"
18#include "CbcEventHandler.hpp"
19#include "ClpDualRowPivot.hpp"
20
21
22class CbcCutGenerator;
23class CbcBaseModel;
24class OsiRowCut;
25class OsiBabSolver;
26class OsiRowCutDebugger;
27class CglCutGenerator;
28class CglStored;
29class CbcCutModifier;
30class CglTreeProbingInfo;
31class CbcHeuristic;
32class OsiObject;
33class CbcThread;
34class CbcTree;
35class CbcStrategy;
36class CbcFeasibilityBase;
37class CbcStatistics;
38class CbcFullNodeInfo;
39class CbcEventHandler ;
40class CglPreProcess;
41# ifdef COIN_HAS_CLP
42class OsiClpSolverInterface;
43class ClpNodeStuff;
44#endif
45// #define CBC_CHECK_BASIS 1
46
47//#############################################################################
48
49/** Simple Branch and bound class
50
51  The initialSolve() method solves the initial LP relaxation of the MIP
52  problem. The branchAndBound() method can then be called to finish using
53  a branch and cut algorithm.
54
55  <h3>Search Tree Traversal</h3>
56
57  Subproblems (aka nodes) requiring additional evaluation are stored using
58  the CbcNode and CbcNodeInfo objects. Ancestry linkage is maintained in the
59  CbcNodeInfo object. Evaluation of a subproblem within branchAndBound()
60  proceeds as follows:
61  <ul>
62    <li> The node representing the most promising parent subproblem is popped
63         from the heap which holds the set of subproblems requiring further
64         evaluation.
65    <li> Using branching instructions stored in the node, and information in
66         its ancestors, the model and solver are adjusted to create the
67         active subproblem.
68    <li> If the parent subproblem will require further evaluation
69         (<i>i.e.</i>, there are branches remaining) its node is pushed back
70         on the heap. Otherwise, the node is deleted.  This may trigger
71         recursive deletion of ancestors.
72    <li> The newly created subproblem is evaluated.
73    <li> If the subproblem requires further evaluation, a node is created.
74         All information needed to recreate the subproblem (branching
75         information, row and column cuts) is placed in the node and the node
76         is added to the set of subproblems awaiting further evaluation.
77  </ul>
78  Note that there is never a node representing the active subproblem; the model
79  and solver represent the active subproblem.
80
81  <h3>Row (Constraint) Cut Handling</h3>
82
83  For a typical subproblem, the sequence of events is as follows:
84  <ul>
85    <li> The subproblem is rebuilt for further evaluation: One result of a
86         call to addCuts() is a traversal of ancestors, leaving a list of all
87         cuts used in the ancestors in #addedCuts_. This list is then scanned
88         to construct a basis that includes only tight cuts. Entries for
89         loose cuts are set to NULL.
90    <li> The subproblem is evaluated: One result of a call to solveWithCuts()
91         is the return of a set of newly generated cuts for the subproblem.
92         #addedCuts_ is also kept up-to-date as old cuts become loose.
93    <li> The subproblem is stored for further processing: A call to
94         CbcNodeInfo::addCuts() adds the newly generated cuts to the
95         CbcNodeInfo object associated with this node.
96  </ul>
97  See CbcCountRowCut for details of the bookkeeping associated with cut
98  management.
99*/
100
101class CbcModel  {
102
103public:
104
105    enum CbcIntParam {
106        /** The maximum number of nodes before terminating */
107        CbcMaxNumNode = 0,
108        /** The maximum number of solutions before terminating */
109        CbcMaxNumSol,
110        /** Fathoming discipline
111
112          Controls objective function comparisons for purposes of fathoming by bound
113          or determining monotonic variables.
114
115          If 1, action is taken only when the current objective is strictly worse
116          than the target. Implementation is handled by adding a small tolerance to
117          the target.
118        */
119        CbcFathomDiscipline,
120        /** Adjusts printout
121            1 does different node message with number unsatisfied on last branch
122        */
123        CbcPrinting,
124        /** Number of branches (may be more than number of nodes as may
125            include strong branching) */
126        CbcNumberBranches,
127        /** Just a marker, so that a static sized array can store parameters. */
128        CbcLastIntParam
129    };
130
131    enum CbcDblParam {
132        /** The maximum amount the value of an integer variable can vary from
133            integer and still be considered feasible. */
134        CbcIntegerTolerance = 0,
135        /** The objective is assumed to worsen by this amount for each
136            integer infeasibility. */
137        CbcInfeasibilityWeight,
138        /** The amount by which to tighten the objective function cutoff when
139            a new solution is discovered. */
140        CbcCutoffIncrement,
141        /** Stop when the gap between the objective value of the best known solution
142          and the best bound on the objective of any solution is less than this.
143
144          This is an absolute value. Conversion from a percentage is left to the
145          client.
146        */
147        CbcAllowableGap,
148        /** Stop when the gap between the objective value of the best known solution
149          and the best bound on the objective of any solution is less than this
150          fraction of of the absolute value of best known solution.
151
152          Code stops if either this test or CbcAllowableGap test succeeds
153        */
154        CbcAllowableFractionGap,
155        /** \brief The maximum number of seconds before terminating.
156               A double should be adequate! */
157        CbcMaximumSeconds,
158        /// Cutoff - stored for speed
159        CbcCurrentCutoff,
160        /// Optimization direction - stored for speed
161        CbcOptimizationDirection,
162        /// Current objective value
163        CbcCurrentObjectiveValue,
164        /// Current minimization objective value
165        CbcCurrentMinimizationObjectiveValue,
166        /** \brief The time at start of model.
167               So that other pieces of code can access */
168        CbcStartSeconds,
169        /** Stop doing heuristics when the gap between the objective value of the
170            best known solution and the best bound on the objective of any solution
171            is less than this.
172
173          This is an absolute value. Conversion from a percentage is left to the
174          client.
175        */
176        CbcHeuristicGap,
177        /** Stop doing heuristics when the gap between the objective value of the
178            best known solution and the best bound on the objective of any solution
179            is less than this fraction of of the absolute value of best known
180            solution.
181
182          Code stops if either this test or CbcAllowableGap test succeeds
183        */
184        CbcHeuristicFractionGap,
185        /// Smallest non-zero change on a branch
186        CbcSmallestChange,
187        /// Sum of non-zero changes on a branch
188        CbcSumChange,
189        /// Largest non-zero change on a branch
190        CbcLargestChange,
191        /// Small non-zero change on a branch to be used as guess
192        CbcSmallChange,
193        /** Just a marker, so that a static sized array can store parameters. */
194        CbcLastDblParam
195    };
196
197    //---------------------------------------------------------------------------
198
199public:
200    ///@name Solve methods
201    //@{
202    /** \brief Solve the initial LP relaxation
203
204      Invoke the solver's %initialSolve() method.
205    */
206    void initialSolve();
207
208    /** \brief Invoke the branch \& cut algorithm
209
210      The method assumes that initialSolve() has been called to solve the
211      LP relaxation. It processes the root node, then proceeds to explore the
212      branch & cut search tree. The search ends when the tree is exhausted or
213      one of several execution limits is reached.
214      If doStatistics is 1 summary statistics are printed
215      if 2 then also the path to best solution (if found by branching)
216      if 3 then also one line per node
217    */
218    void branchAndBound(int doStatistics = 0);
219private:
220
221    /** \brief Evaluate a subproblem using cutting planes and heuristics
222
223      The method invokes a main loop which generates cuts, applies heuristics,
224      and reoptimises using the solver's native %resolve() method.
225      It returns true if the subproblem remains feasible at the end of the
226      evaluation.
227    */
228    bool solveWithCuts(OsiCuts & cuts, int numberTries, CbcNode * node);
229    /** Generate one round of cuts - serial mode
230      returns -
231      0 - normal
232      1 - must keep going
233      2 - set numberTries to zero
234      -1 - infeasible
235    */
236    int serialCuts(OsiCuts & cuts, CbcNode * node, OsiCuts & slackCuts, int lastNumberCuts);
237    /** Generate one round of cuts - parallel mode
238        returns -
239        0 - normal
240        1 - must keep going
241        2 - set numberTries to zero
242        -1 - infeasible
243    */
244    int parallelCuts(CbcBaseModel * master, OsiCuts & cuts, CbcNode * node, OsiCuts & slackCuts, int lastNumberCuts);
245    /** Input one node output N nodes to put on tree and optional solution update
246        This should be able to operate in parallel so is given a solver and is const(ish)
247        However we will need to keep an array of solver_ and bases and more
248        status is 0 for normal, 1 if solution
249        Calling code should always push nodes back on tree
250    */
251    CbcNode ** solveOneNode(int whichSolver, CbcNode * node,
252                            int & numberNodesOutput, int & status) ;
253    /// Update size of whichGenerator
254    void resizeWhichGenerator(int numberNow, int numberAfter);
255public:
256#ifdef CBC_KEEP_DEPRECATED
257    // See if anyone is using these any more!!
258    /** \brief create a clean model from partially fixed problem
259
260      The method creates a new model with given bounds and with no tree.
261    */
262    CbcModel *  cleanModel(const double * lower, const double * upper);
263    /** \brief Invoke the branch \& cut algorithm on partially fixed problem
264
265      The method presolves the given model and does branch and cut. The search
266      ends when the tree is exhausted or maximum nodes is reached.
267
268      If better solution found then it is saved.
269
270      Returns 0 if search completed and solution, 1 if not completed and solution,
271      2 if completed and no solution, 3 if not completed and no solution.
272
273      Normally okay to do cleanModel immediately followed by subBranchandBound
274      (== other form of subBranchAndBound)
275      but may need to get at model for advanced features.
276
277      Deletes model2
278    */
279    int subBranchAndBound(CbcModel * model2,
280                          CbcModel * presolvedModel,
281                          int maximumNodes);
282    /** \brief Invoke the branch \& cut algorithm on partially fixed problem
283
284      The method creates a new model with given bounds, presolves it
285      then proceeds to explore the branch & cut search tree. The search
286      ends when the tree is exhausted or maximum nodes is reached.
287
288      If better solution found then it is saved.
289
290      Returns 0 if search completed and solution, 1 if not completed and solution,
291      2 if completed and no solution, 3 if not completed and no solution.
292
293      This is just subModel immediately followed by other version of
294      subBranchandBound.
295
296    */
297    int subBranchAndBound(const double * lower, const double * upper,
298                          int maximumNodes);
299
300    /** \brief Process root node and return a strengthened model
301
302      The method assumes that initialSolve() has been called to solve the
303      LP relaxation. It processes the root node and then returns a pointer
304      to the strengthened model (or NULL if infeasible)
305    */
306    OsiSolverInterface *  strengthenedModel();
307    /** preProcess problem - replacing solver
308        If makeEquality true then <= cliques converted to ==.
309        Presolve will be done numberPasses times.
310
311        Returns NULL if infeasible
312
313        If makeEquality is 1 add slacks to get cliques,
314        if 2 add slacks to get sos (but only if looks plausible) and keep sos info
315    */
316    CglPreProcess * preProcess( int makeEquality = 0, int numberPasses = 5,
317                                int tuning = 5);
318    /** Does postprocessing - original solver back.
319        User has to delete process */
320    void postProcess(CglPreProcess * process);
321#endif
322    /// Adds an update information object
323    void addUpdateInformation(const CbcObjectUpdateData & data);
324    /** Do one node - broken out for clarity?
325        also for parallel (when baseModel!=this)
326        Returns 1 if solution found
327        node NULL on return if no branches left
328        newNode NULL if no new node created
329    */
330    int doOneNode(CbcModel * baseModel, CbcNode * & node, CbcNode * & newNode);
331
332public:
333    /** \brief Reoptimise an LP relaxation
334
335      Invoke the solver's %resolve() method.
336      whereFrom -
337      0 - initial continuous
338      1 - resolve on branch (before new cuts)
339      2 - after new cuts
340      3  - obsolete code or something modified problem in unexpected way
341      10 - after strong branching has fixed variables at root
342      11 - after strong branching has fixed variables in tree
343
344      returns 1 feasible, 0 infeasible, -1 feasible but skip cuts
345    */
346    int resolve(CbcNodeInfo * parent, int whereFrom,
347                double * saveSolution = NULL,
348                double * saveLower = NULL,
349                double * saveUpper = NULL);
350    /// Make given rows (L or G) into global cuts and remove from lp
351    void makeGlobalCuts(int numberRows, const int * which);
352    /// Make given cut into a global cut
353    void makeGlobalCut(const OsiRowCut * cut);
354    /// Make given cut into a global cut
355    void makeGlobalCut(const OsiRowCut & cut);
356    /// Make given column cut into a global cut
357    void makeGlobalCut(const OsiColCut * cut);
358    /// Make given column cut into a global cut
359    void makeGlobalCut(const OsiColCut & cut);
360    /// Make partial cut into a global cut and save
361    void makePartialCut(const OsiRowCut * cut);
362    /// Make partial cuts into global cuts
363    void makeGlobalCuts();
364    /// Which cut generator generated this cut
365    inline const int * whichGenerator() const
366    { return whichGenerator_;}
367    //@}
368
369    /** \name Presolve methods */
370    //@{
371
372    /** Identify cliques and construct corresponding objects.
373
374        Find cliques with size in the range
375        [\p atLeastThisMany, \p lessThanThis] and construct corresponding
376        CbcClique objects.
377        If \p makeEquality is true then a new model may be returned if
378        modifications had to be made, otherwise \c this is returned.
379        If the problem is infeasible #numberObjects_ is set to -1.
380        A client must use deleteObjects() before a second call to findCliques().
381        If priorities exist, clique priority is set to the default.
382    */
383    CbcModel * findCliques(bool makeEquality, int atLeastThisMany,
384                           int lessThanThis, int defaultValue = 1000);
385
386    /** Do integer presolve, creating a new (presolved) model.
387
388      Returns the new model, or NULL if feasibility is lost.
389      If weak is true then just does a normal presolve
390
391      \todo It remains to work out the cleanest way of getting a solution to
392            the original problem at the end. So this is very preliminary.
393     */
394    CbcModel * integerPresolve(bool weak = false);
395
396    /** Do integer presolve, modifying the current model.
397
398        Returns true if the model remains feasible after presolve.
399    */
400    bool integerPresolveThisModel(OsiSolverInterface * originalSolver, bool weak = false);
401
402
403    /// Put back information into the original model after integer presolve.
404    void originalModel(CbcModel * presolvedModel, bool weak);
405
406    /** \brief For variables involved in VUB constraints, see if we can tighten
407           bounds by solving lp's
408
409        Returns false if feasibility is lost.
410        If CglProbing is available, it will be tried as well to see if it can
411        tighten bounds.
412        This routine is just a front end for tightenVubs(int,const int*,double).
413
414        If <tt>type = -1</tt> all variables are processed (could be very slow).
415        If <tt>type = 0</tt> only variables involved in VUBs are processed.
416        If <tt>type = n > 0</tt>, only the n most expensive VUB variables
417        are processed, where it is assumed that x is at its maximum so delta
418        would have to go to 1 (if x not at bound).
419
420        If \p allowMultipleBinary is true, then a VUB constraint is a row with
421        one continuous variable and any number of binary variables.
422
423        If <tt>useCutoff < 1.0e30</tt>, the original objective is installed as a
424        constraint with \p useCutoff as a bound.
425    */
426    bool tightenVubs(int type, bool allowMultipleBinary = false,
427                     double useCutoff = 1.0e50);
428
429    /** \brief For variables involved in VUB constraints, see if we can tighten
430           bounds by solving lp's
431
432      This version is just handed a list of variables to be processed.
433    */
434    bool tightenVubs(int numberVubs, const int * which,
435                     double useCutoff = 1.0e50);
436    /**
437      Analyze problem to find a minimum change in the objective function.
438    */
439    void analyzeObjective();
440
441    /**
442      Add additional integers.
443    */
444    void AddIntegers();
445
446    /**
447      Save copy of the model.
448    */
449    void saveModel(OsiSolverInterface * saveSolver, double * checkCutoffForRestart, bool * feasible);
450    /**
451      Flip direction of optimization on all models
452    */
453    void flipModel();
454
455    //@}
456
457    /** \name Object manipulation routines
458
459      See OsiObject for an explanation of `object' in the context of CbcModel.
460    */
461    //@{
462
463    /// Get the number of objects
464    inline int numberObjects() const {
465        return numberObjects_;
466    }
467    /// Set the number of objects
468    inline void setNumberObjects(int number) {
469        numberObjects_ = number;
470    }
471
472    /// Get the array of objects
473    inline OsiObject ** objects() const {
474        return object_;
475    }
476
477    /// Get the specified object
478    const inline OsiObject * object(int which) const {
479        return object_[which];
480    }
481    /// Get the specified object
482    inline OsiObject * modifiableObject(int which) const {
483        return object_[which];
484    }
485
486    void setOptionalInteger(int index);
487
488    /// Delete all object information (and just back to integers if true)
489    void deleteObjects(bool findIntegers = true);
490
491    /** Add in object information.
492
493      Objects are cloned; the owner can delete the originals.
494    */
495    void addObjects(int numberObjects, OsiObject ** objects);
496
497    /** Add in object information.
498
499      Objects are cloned; the owner can delete the originals.
500    */
501    void addObjects(int numberObjects, CbcObject ** objects);
502
503    /// Ensure attached objects point to this model.
504    void synchronizeModel() ;
505
506    /** \brief Identify integer variables and create corresponding objects.
507
508      Record integer variables and create an CbcSimpleInteger object for each
509      one.
510      If \p startAgain is true, a new scan is forced, overwriting any existing
511      integer variable information.
512      If type > 0 then 1==PseudoCost, 2 new ones low priority
513    */
514
515    void findIntegers(bool startAgain, int type = 0);
516
517    //@}
518
519    //---------------------------------------------------------------------------
520
521    /**@name Parameter set/get methods
522
523       The set methods return true if the parameter was set to the given value,
524       false if the value of the parameter is out of range.
525
526       The get methods return the value of the parameter.
527
528    */
529    //@{
530    /// Set an integer parameter
531    inline bool setIntParam(CbcIntParam key, int value) {
532        intParam_[key] = value;
533        return true;
534    }
535    /// Set a double parameter
536    inline bool setDblParam(CbcDblParam key, double value) {
537        dblParam_[key] = value;
538        return true;
539    }
540    /// Get an integer parameter
541    inline int getIntParam(CbcIntParam key) const {
542        return intParam_[key];
543    }
544    /// Get a double parameter
545    inline double getDblParam(CbcDblParam key) const {
546        return dblParam_[key];
547    }
548    /*! \brief Set cutoff bound on the objective function.
549
550      When using strict comparison, the bound is adjusted by a tolerance to
551      avoid accidentally cutting off the optimal solution.
552    */
553    void setCutoff(double value) ;
554
555    /// Get the cutoff bound on the objective function - always as minimize
556    inline double getCutoff() const { //double value ;
557        //solver_->getDblParam(OsiDualObjectiveLimit,value) ;
558        //assert( dblParam_[CbcCurrentCutoff]== value * solver_->getObjSense());
559        return dblParam_[CbcCurrentCutoff];
560    }
561
562    /// Set the \link CbcModel::CbcMaxNumNode maximum node limit \endlink
563    inline bool setMaximumNodes( int value) {
564        return setIntParam(CbcMaxNumNode, value);
565    }
566
567    /// Get the \link CbcModel::CbcMaxNumNode maximum node limit \endlink
568    inline int getMaximumNodes() const {
569        return getIntParam(CbcMaxNumNode);
570    }
571
572    /** Set the
573        \link CbcModel::CbcMaxNumSol maximum number of solutions \endlink
574        desired.
575    */
576    inline bool setMaximumSolutions( int value) {
577        return setIntParam(CbcMaxNumSol, value);
578    }
579    /** Get the
580        \link CbcModel::CbcMaxNumSol maximum number of solutions \endlink
581        desired.
582    */
583    inline int getMaximumSolutions() const {
584        return getIntParam(CbcMaxNumSol);
585    }
586    /// Set the printing mode
587    inline bool setPrintingMode( int value) {
588        return setIntParam(CbcPrinting, value);
589    }
590
591    /// Get the printing mode
592    inline int getPrintingMode() const {
593        return getIntParam(CbcPrinting);
594    }
595
596    /** Set the
597        \link CbcModel::CbcMaximumSeconds maximum number of seconds \endlink
598        desired.
599    */
600    inline bool setMaximumSeconds( double value) {
601        return setDblParam(CbcMaximumSeconds, value);
602    }
603    /** Get the
604        \link CbcModel::CbcMaximumSeconds maximum number of seconds \endlink
605        desired.
606    */
607    inline double getMaximumSeconds() const {
608        return getDblParam(CbcMaximumSeconds);
609    }
610    /// Current time since start of branchAndbound
611    double getCurrentSeconds() const ;
612
613    /// Return true if maximum time reached
614    bool maximumSecondsReached() const ;
615
616    /** Set the
617      \link CbcModel::CbcIntegerTolerance integrality tolerance \endlink
618    */
619    inline bool setIntegerTolerance( double value) {
620        return setDblParam(CbcIntegerTolerance, value);
621    }
622    /** Get the
623      \link CbcModel::CbcIntegerTolerance integrality tolerance \endlink
624    */
625    inline double getIntegerTolerance() const {
626        return getDblParam(CbcIntegerTolerance);
627    }
628
629    /** Set the
630        \link CbcModel::CbcInfeasibilityWeight
631          weight per integer infeasibility \endlink
632    */
633    inline bool setInfeasibilityWeight( double value) {
634        return setDblParam(CbcInfeasibilityWeight, value);
635    }
636    /** Get the
637        \link CbcModel::CbcInfeasibilityWeight
638          weight per integer infeasibility \endlink
639    */
640    inline double getInfeasibilityWeight() const {
641        return getDblParam(CbcInfeasibilityWeight);
642    }
643
644    /** Set the \link CbcModel::CbcAllowableGap allowable gap \endlink
645        between the best known solution and the best possible solution.
646    */
647    inline bool setAllowableGap( double value) {
648        return setDblParam(CbcAllowableGap, value);
649    }
650    /** Get the \link CbcModel::CbcAllowableGap allowable gap \endlink
651        between the best known solution and the best possible solution.
652    */
653    inline double getAllowableGap() const {
654        return getDblParam(CbcAllowableGap);
655    }
656
657    /** Set the \link CbcModel::CbcAllowableFractionGap fraction allowable gap \endlink
658        between the best known solution and the best possible solution.
659    */
660    inline bool setAllowableFractionGap( double value) {
661        return setDblParam(CbcAllowableFractionGap, value);
662    }
663    /** Get the \link CbcModel::CbcAllowableFractionGap fraction allowable gap \endlink
664        between the best known solution and the best possible solution.
665    */
666    inline double getAllowableFractionGap() const {
667        return getDblParam(CbcAllowableFractionGap);
668    }
669    /** Set the \link CbcModel::CbcAllowableFractionGap percentage allowable gap \endlink
670        between the best known solution and the best possible solution.
671    */
672    inline bool setAllowablePercentageGap( double value) {
673        return setDblParam(CbcAllowableFractionGap, value*0.01);
674    }
675    /** Get the \link CbcModel::CbcAllowableFractionGap percentage allowable gap \endlink
676        between the best known solution and the best possible solution.
677    */
678    inline double getAllowablePercentageGap() const {
679        return 100.0*getDblParam(CbcAllowableFractionGap);
680    }
681    /** Set the \link CbcModel::CbcHeuristicGap heuristic gap \endlink
682        between the best known solution and the best possible solution.
683    */
684    inline bool setHeuristicGap( double value) {
685        return setDblParam(CbcHeuristicGap, value);
686    }
687    /** Get the \link CbcModel::CbcHeuristicGap heuristic gap \endlink
688        between the best known solution and the best possible solution.
689    */
690    inline double getHeuristicGap() const {
691        return getDblParam(CbcHeuristicGap);
692    }
693
694    /** Set the \link CbcModel::CbcHeuristicFractionGap fraction heuristic gap \endlink
695        between the best known solution and the best possible solution.
696    */
697    inline bool setHeuristicFractionGap( double value) {
698        return setDblParam(CbcHeuristicFractionGap, value);
699    }
700    /** Get the \link CbcModel::CbcHeuristicFractionGap fraction heuristic gap \endlink
701        between the best known solution and the best possible solution.
702    */
703    inline double getHeuristicFractionGap() const {
704        return getDblParam(CbcHeuristicFractionGap);
705    }
706    /** Set the
707        \link CbcModel::CbcCutoffIncrement  \endlink
708        desired.
709    */
710    inline bool setCutoffIncrement( double value) {
711        return setDblParam(CbcCutoffIncrement, value);
712    }
713    /** Get the
714        \link CbcModel::CbcCutoffIncrement  \endlink
715        desired.
716    */
717    inline double getCutoffIncrement() const {
718        return getDblParam(CbcCutoffIncrement);
719    }
720    /// See if can stop on gap
721    bool canStopOnGap() const;
722
723    /** Pass in target solution and optional priorities.
724        If priorities then >0 means only branch if incorrect
725        while <0 means branch even if correct. +1 or -1 are
726        highest priority */
727    void setHotstartSolution(const double * solution, const int * priorities = NULL) ;
728
729    /// Set the minimum drop to continue cuts
730    inline void setMinimumDrop(double value) {
731        minimumDrop_ = value;
732    }
733    /// Get the minimum drop to continue cuts
734    inline double getMinimumDrop() const {
735        return minimumDrop_;
736    }
737
738    /** Set the maximum number of cut passes at root node (default 20)
739        Minimum drop can also be used for fine tuning */
740    inline void setMaximumCutPassesAtRoot(int value) {
741        maximumCutPassesAtRoot_ = value;
742    }
743    /** Get the maximum number of cut passes at root node */
744    inline int getMaximumCutPassesAtRoot() const {
745        return maximumCutPassesAtRoot_;
746    }
747
748    /** Set the maximum number of cut passes at other nodes (default 10)
749        Minimum drop can also be used for fine tuning */
750    inline void setMaximumCutPasses(int value) {
751        maximumCutPasses_ = value;
752    }
753    /** Get the maximum number of cut passes at other nodes (default 10) */
754    inline int getMaximumCutPasses() const {
755        return maximumCutPasses_;
756    }
757    /** Get current cut pass number in this round of cuts.
758        (1 is first pass) */
759    inline int getCurrentPassNumber() const {
760        return currentPassNumber_;
761    }
762
763    /** Set the maximum number of candidates to be evaluated for strong
764      branching.
765
766      A value of 0 disables strong branching.
767    */
768    void setNumberStrong(int number);
769    /** Get the maximum number of candidates to be evaluated for strong
770      branching.
771    */
772    inline int numberStrong() const {
773        return numberStrong_;
774    }
775    /** Set global preferred way to branch
776        -1 down, +1 up, 0 no preference */
777    inline void setPreferredWay(int value) {
778        preferredWay_ = value;
779    }
780    /** Get the preferred way to branch (default 0) */
781    inline int getPreferredWay() const {
782        return preferredWay_;
783    }
784    /// Get at which depths to do cuts
785    inline int whenCuts() const {
786        return whenCuts_;
787    }
788    /// Set at which depths to do cuts
789    inline void setWhenCuts(int value) {
790        whenCuts_ = value;
791    }
792    /** Return true if we want to do cuts
793        If allowForTopOfTree zero then just does on multiples of depth
794        if 1 then allows for doing at top of tree
795        if 2 then says if cuts allowed anywhere apart from root
796    */
797    bool doCutsNow(int allowForTopOfTree) const;
798
799    /** Set the number of branches before pseudo costs believed
800        in dynamic strong branching.
801
802      A value of 0 disables dynamic strong branching.
803    */
804    void setNumberBeforeTrust(int number);
805    /** get the number of branches before pseudo costs believed
806        in dynamic strong branching. */
807    inline int numberBeforeTrust() const {
808        return numberBeforeTrust_;
809    }
810    /** Set the number of variables for which to compute penalties
811        in dynamic strong branching.
812
813      A value of 0 disables penalties.
814    */
815    void setNumberPenalties(int number);
816    /** get the number of variables for which to compute penalties
817        in dynamic strong branching. */
818    inline int numberPenalties() const {
819        return numberPenalties_;
820    }
821    /// Pointer to top of tree
822    inline const CbcFullNodeInfo * topOfTree() const
823    { return topOfTree_;}
824    /// Number of analyze iterations to do
825    inline void setNumberAnalyzeIterations(int number) {
826        numberAnalyzeIterations_ = number;
827    }
828    inline int numberAnalyzeIterations() const {
829        return numberAnalyzeIterations_;
830    }
831    /** Get scale factor to make penalties match strong.
832        Should/will be computed */
833    inline double penaltyScaleFactor() const {
834        return penaltyScaleFactor_;
835    }
836    /** Set scale factor to make penalties match strong.
837        Should/will be computed */
838    void setPenaltyScaleFactor(double value);
839    /** Problem type as set by user or found by analysis.  This will be extended
840        0 - not known
841        1 - Set partitioning <=
842        2 - Set partitioning ==
843        3 - Set covering
844        4 - all +- 1 or all +1 and odd
845    */
846    void inline setProblemType(int number) {
847        problemType_ = number;
848    }
849    inline int problemType() const {
850        return problemType_;
851    }
852    /// Current depth
853    inline int currentDepth() const {
854        return currentDepth_;
855    }
856
857    /// Set how often to scan global cuts
858    void setHowOftenGlobalScan(int number);
859    /// Get how often to scan global cuts
860    inline int howOftenGlobalScan() const {
861        return howOftenGlobalScan_;
862    }
863    /// Original columns as created by integerPresolve or preprocessing
864    inline int * originalColumns() const {
865        return originalColumns_;
866    }
867    /// Set original columns as created by preprocessing
868    void setOriginalColumns(const int * originalColumns,
869                            int numberGood=COIN_INT_MAX) ;
870
871    /** Set the print frequency.
872
873      Controls the number of nodes evaluated between status prints.
874      If <tt>number <=0</tt> the print frequency is set to 100 nodes for large
875      problems, 1000 for small problems.
876      Print frequency has very slight overhead if small.
877    */
878    inline void setPrintFrequency(int number) {
879        printFrequency_ = number;
880    }
881    /// Get the print frequency
882    inline int printFrequency() const {
883        return printFrequency_;
884    }
885    //@}
886
887    //---------------------------------------------------------------------------
888    ///@name Methods returning info on how the solution process terminated
889    //@{
890    /// Are there a numerical difficulties?
891    bool isAbandoned() const;
892    /// Is optimality proven?
893    bool isProvenOptimal() const;
894    /// Is  infeasiblity proven (or none better than cutoff)?
895    bool isProvenInfeasible() const;
896    /// Was continuous solution unbounded
897    bool isContinuousUnbounded() const;
898    /// Was continuous solution unbounded
899    bool isProvenDualInfeasible() const;
900    /// Node limit reached?
901    bool isNodeLimitReached() const;
902    /// Time limit reached?
903    bool isSecondsLimitReached() const;
904    /// Solution limit reached?
905    bool isSolutionLimitReached() const;
906    /// Get how many iterations it took to solve the problem.
907    inline int getIterationCount() const {
908        return numberIterations_;
909    }
910    /// Increment how many iterations it took to solve the problem.
911    inline void incrementIterationCount(int value) {
912        numberIterations_ += value;
913    }
914    /// Get how many Nodes it took to solve the problem (including those in complete fathoming B&B inside CLP).
915    inline int getNodeCount() const {
916        return numberNodes_;
917    }
918    /// Increment how many nodes it took to solve the problem.
919    inline void incrementNodeCount(int value) {
920        numberNodes_ += value;
921    }
922    /// Get how many Nodes were enumerated in complete fathoming B&B inside CLP
923    inline int getExtraNodeCount() const {
924       return numberExtraNodes_;
925    }
926    /** Final status of problem
927        Some of these can be found out by is...... functions
928        -1 before branchAndBound
929        0 finished - check isProvenOptimal or isProvenInfeasible to see if solution found
930        (or check value of best solution)
931        1 stopped - on maxnodes, maxsols, maxtime
932        2 difficulties so run was abandoned
933        (5 event user programmed event occurred)
934    */
935    inline int status() const {
936        return status_;
937    }
938    inline void setProblemStatus(int value) {
939        status_ = value;
940    }
941    /** Secondary status of problem
942        -1 unset (status_ will also be -1)
943        0 search completed with solution
944        1 linear relaxation not feasible (or worse than cutoff)
945        2 stopped on gap
946        3 stopped on nodes
947        4 stopped on time
948        5 stopped on user event
949        6 stopped on solutions
950        7 linear relaxation unbounded
951        8 stopped on iteration limit
952    */
953    inline int secondaryStatus() const {
954        return secondaryStatus_;
955    }
956    inline void setSecondaryStatus(int value) {
957        secondaryStatus_ = value;
958    }
959    /// Are there numerical difficulties (for initialSolve) ?
960    bool isInitialSolveAbandoned() const ;
961    /// Is optimality proven (for initialSolve) ?
962    bool isInitialSolveProvenOptimal() const ;
963    /// Is primal infeasiblity proven (for initialSolve) ?
964    bool isInitialSolveProvenPrimalInfeasible() const ;
965    /// Is dual infeasiblity proven (for initialSolve) ?
966    bool isInitialSolveProvenDualInfeasible() const ;
967
968    //@}
969
970    //---------------------------------------------------------------------------
971    /**@name Problem information methods
972
973       These methods call the solver's query routines to return
974       information about the problem referred to by the current object.
975       Querying a problem that has no data associated with it result in
976       zeros for the number of rows and columns, and NULL pointers from
977       the methods that return vectors.
978
979       Const pointers returned from any data-query method are valid as
980       long as the data is unchanged and the solver is not called.
981    */
982    //@{
983    /// Number of rows in continuous (root) problem.
984    inline int numberRowsAtContinuous() const {
985        return numberRowsAtContinuous_;
986    }
987
988    /// Get number of columns
989    inline int getNumCols() const {
990        return solver_->getNumCols();
991    }
992
993    /// Get number of rows
994    inline int getNumRows() const {
995        return solver_->getNumRows();
996    }
997
998    /// Get number of nonzero elements
999    inline CoinBigIndex getNumElements() const {
1000        return solver_->getNumElements();
1001    }
1002
1003    /// Number of integers in problem
1004    inline int numberIntegers() const {
1005        return numberIntegers_;
1006    }
1007    // Integer variables
1008    inline const int * integerVariable() const {
1009        return integerVariable_;
1010    }
1011    /// Whether or not integer
1012    inline char integerType(int i) const {
1013        assert (integerInfo_);
1014        assert (integerInfo_[i] == 0 || integerInfo_[i] == 1);
1015        return integerInfo_[i];
1016    }
1017    /// Whether or not integer
1018    inline const char * integerType() const {
1019        return integerInfo_;
1020    }
1021
1022    /// Get pointer to array[getNumCols()] of column lower bounds
1023    inline const double * getColLower() const {
1024        return solver_->getColLower();
1025    }
1026
1027    /// Get pointer to array[getNumCols()] of column upper bounds
1028    inline const double * getColUpper() const {
1029        return solver_->getColUpper();
1030    }
1031
1032    /** Get pointer to array[getNumRows()] of row constraint senses.
1033        <ul>
1034        <li>'L': <= constraint
1035        <li>'E': =  constraint
1036        <li>'G': >= constraint
1037        <li>'R': ranged constraint
1038        <li>'N': free constraint
1039        </ul>
1040    */
1041    inline const char * getRowSense() const {
1042        return solver_->getRowSense();
1043    }
1044
1045    /** Get pointer to array[getNumRows()] of rows right-hand sides
1046        <ul>
1047        <li> if rowsense()[i] == 'L' then rhs()[i] == rowupper()[i]
1048        <li> if rowsense()[i] == 'G' then rhs()[i] == rowlower()[i]
1049        <li> if rowsense()[i] == 'R' then rhs()[i] == rowupper()[i]
1050        <li> if rowsense()[i] == 'N' then rhs()[i] == 0.0
1051        </ul>
1052    */
1053    inline const double * getRightHandSide() const {
1054        return solver_->getRightHandSide();
1055    }
1056
1057    /** Get pointer to array[getNumRows()] of row ranges.
1058        <ul>
1059        <li> if rowsense()[i] == 'R' then
1060        rowrange()[i] == rowupper()[i] - rowlower()[i]
1061        <li> if rowsense()[i] != 'R' then
1062        rowrange()[i] is 0.0
1063        </ul>
1064    */
1065    inline const double * getRowRange() const {
1066        return solver_->getRowRange();
1067    }
1068
1069    /// Get pointer to array[getNumRows()] of row lower bounds
1070    inline const double * getRowLower() const {
1071        return solver_->getRowLower();
1072    }
1073
1074    /// Get pointer to array[getNumRows()] of row upper bounds
1075    inline const double * getRowUpper() const {
1076        return solver_->getRowUpper();
1077    }
1078
1079    /// Get pointer to array[getNumCols()] of objective function coefficients
1080    inline const double * getObjCoefficients() const {
1081        return solver_->getObjCoefficients();
1082    }
1083
1084    /// Get objective function sense (1 for min (default), -1 for max)
1085    inline double getObjSense() const {
1086        //assert (dblParam_[CbcOptimizationDirection]== solver_->getObjSense());
1087        return dblParam_[CbcOptimizationDirection];
1088    }
1089
1090    /// Return true if variable is continuous
1091    inline bool isContinuous(int colIndex) const {
1092        return solver_->isContinuous(colIndex);
1093    }
1094
1095    /// Return true if variable is binary
1096    inline bool isBinary(int colIndex) const {
1097        return solver_->isBinary(colIndex);
1098    }
1099
1100    /** Return true if column is integer.
1101        Note: This function returns true if the the column
1102        is binary or a general integer.
1103    */
1104    inline bool isInteger(int colIndex) const {
1105        return solver_->isInteger(colIndex);
1106    }
1107
1108    /// Return true if variable is general integer
1109    inline bool isIntegerNonBinary(int colIndex) const {
1110        return solver_->isIntegerNonBinary(colIndex);
1111    }
1112
1113    /// Return true if variable is binary and not fixed at either bound
1114    inline bool isFreeBinary(int colIndex) const {
1115        return solver_->isFreeBinary(colIndex) ;
1116    }
1117
1118    /// Get pointer to row-wise copy of matrix
1119    inline const CoinPackedMatrix * getMatrixByRow() const {
1120        return solver_->getMatrixByRow();
1121    }
1122
1123    /// Get pointer to column-wise copy of matrix
1124    inline const CoinPackedMatrix * getMatrixByCol() const {
1125        return solver_->getMatrixByCol();
1126    }
1127
1128    /// Get solver's value for infinity
1129    inline double getInfinity() const {
1130        return solver_->getInfinity();
1131    }
1132    /// Get pointer to array[getNumCols()] (for speed) of column lower bounds
1133    inline const double * getCbcColLower() const {
1134        return cbcColLower_;
1135    }
1136    /// Get pointer to array[getNumCols()] (for speed) of column upper bounds
1137    inline const double * getCbcColUpper() const {
1138        return cbcColUpper_;
1139    }
1140    /// Get pointer to array[getNumRows()] (for speed) of row lower bounds
1141    inline const double * getCbcRowLower() const {
1142        return cbcRowLower_;
1143    }
1144    /// Get pointer to array[getNumRows()] (for speed) of row upper bounds
1145    inline const double * getCbcRowUpper() const {
1146        return cbcRowUpper_;
1147    }
1148    /// Get pointer to array[getNumCols()] (for speed) of primal solution vector
1149    inline const double * getCbcColSolution() const {
1150        return cbcColSolution_;
1151    }
1152    /// Get pointer to array[getNumRows()] (for speed) of dual prices
1153    inline const double * getCbcRowPrice() const {
1154        return cbcRowPrice_;
1155    }
1156    /// Get a pointer to array[getNumCols()] (for speed) of reduced costs
1157    inline const double * getCbcReducedCost() const {
1158        return cbcReducedCost_;
1159    }
1160    /// Get pointer to array[getNumRows()] (for speed) of row activity levels.
1161    inline const double * getCbcRowActivity() const {
1162        return cbcRowActivity_;
1163    }
1164    //@}
1165
1166
1167    /**@name Methods related to querying the solution */
1168    //@{
1169    /// Holds solution at continuous (after cuts if branchAndBound called)
1170    inline double * continuousSolution() const {
1171        return continuousSolution_;
1172    }
1173    /** Array marked whenever a solution is found if non-zero.
1174        Code marks if heuristic returns better so heuristic
1175        need only mark if it wants to on solutions which
1176        are worse than current */
1177    inline int * usedInSolution() const {
1178        return usedInSolution_;
1179    }
1180    /// Increases usedInSolution for nonzeros
1181    void incrementUsed(const double * solution);
1182    /// Record a new incumbent solution and update objectiveValue
1183    void setBestSolution(CBC_Message how,
1184                         double & objectiveValue, const double *solution,
1185                         int fixVariables = 0);
1186    /// Just update objectiveValue
1187    void setBestObjectiveValue( double objectiveValue);
1188    /// Deals with event handler and solution
1189    CbcEventHandler::CbcAction dealWithEventHandler(CbcEventHandler::CbcEvent event,
1190            double objValue,
1191            const double * solution);
1192
1193    /** Call this to really test if a valid solution can be feasible
1194        Solution is number columns in size.
1195        If fixVariables true then bounds of continuous solver updated.
1196        Returns objective value (worse than cutoff if not feasible)
1197        Previously computed objective value is now passed in (in case user does not do solve)
1198        virtual so user can override
1199    */
1200    virtual double checkSolution(double cutoff, double * solution,
1201                         int fixVariables, double originalObjValue);
1202    /** Test the current solution for feasiblility.
1203
1204      Scan all objects for indications of infeasibility. This is broken down
1205      into simple integer infeasibility (\p numberIntegerInfeasibilities)
1206      and all other reports of infeasibility (\p numberObjectInfeasibilities).
1207    */
1208    bool feasibleSolution(int & numberIntegerInfeasibilities,
1209                          int & numberObjectInfeasibilities) const;
1210
1211    /** Solution to the most recent lp relaxation.
1212
1213      The solver's solution to the most recent lp relaxation.
1214    */
1215
1216    inline double * currentSolution() const {
1217        return currentSolution_;
1218    }
1219    /** For testing infeasibilities - will point to
1220        currentSolution_ or solver-->getColSolution()
1221    */
1222    inline const double * testSolution() const {
1223        return testSolution_;
1224    }
1225    inline void setTestSolution(const double * solution) {
1226        testSolution_ = solution;
1227    }
1228    /// Make sure region there and optionally copy solution
1229    void reserveCurrentSolution(const double * solution = NULL);
1230
1231    /// Get pointer to array[getNumCols()] of primal solution vector
1232    inline const double * getColSolution() const {
1233        return solver_->getColSolution();
1234    }
1235
1236    /// Get pointer to array[getNumRows()] of dual prices
1237    inline const double * getRowPrice() const {
1238        return solver_->getRowPrice();
1239    }
1240
1241    /// Get a pointer to array[getNumCols()] of reduced costs
1242    inline const double * getReducedCost() const {
1243        return solver_->getReducedCost();
1244    }
1245
1246    /// Get pointer to array[getNumRows()] of row activity levels.
1247    inline const double * getRowActivity() const {
1248        return solver_->getRowActivity();
1249    }
1250
1251    /// Get current objective function value
1252    inline double getCurrentObjValue() const {
1253        return dblParam_[CbcCurrentObjectiveValue];
1254    }
1255    /// Get current minimization objective function value
1256    inline double getCurrentMinimizationObjValue() const {
1257        return dblParam_[CbcCurrentMinimizationObjectiveValue];
1258    }
1259
1260    /// Get best objective function value as minimization
1261    inline double getMinimizationObjValue() const {
1262        return bestObjective_;
1263    }
1264    /// Set best objective function value as minimization
1265    inline void setMinimizationObjValue(double value) {
1266        bestObjective_ = value;
1267    }
1268
1269    /// Get best objective function value
1270    inline double getObjValue() const {
1271        return bestObjective_ * solver_->getObjSense() ;
1272    }
1273    /** Get best possible objective function value.
1274        This is better of best possible left on tree
1275        and best solution found.
1276        If called from within branch and cut may be optimistic.
1277    */
1278    double getBestPossibleObjValue() const;
1279    /// Set best objective function value
1280    inline void setObjValue(double value) {
1281        bestObjective_ = value * solver_->getObjSense() ;
1282    }
1283    /// Get solver objective function value (as minimization)
1284    inline double getSolverObjValue() const {
1285        return solver_->getObjValue() * solver_->getObjSense() ;
1286    }
1287
1288    /** The best solution to the integer programming problem.
1289
1290      The best solution to the integer programming problem found during
1291      the search. If no solution is found, the method returns null.
1292    */
1293
1294    inline double * bestSolution() const {
1295        return bestSolution_;
1296    }
1297    /** User callable setBestSolution.
1298        If check false does not check valid
1299        If true then sees if feasible and warns if objective value
1300        worse than given (so just set to COIN_DBL_MAX if you don't care).
1301        If check true then does not save solution if not feasible
1302    */
1303    void setBestSolution(const double * solution, int numberColumns,
1304                         double objectiveValue, bool check = false);
1305
1306    /// Get number of solutions
1307    inline int getSolutionCount() const {
1308        return numberSolutions_;
1309    }
1310
1311    /// Set number of solutions (so heuristics will be different)
1312    inline void setSolutionCount(int value) {
1313        numberSolutions_ = value;
1314    }
1315    /// Number of saved solutions (including best)
1316    int numberSavedSolutions() const;
1317    /// Maximum number of extra saved solutions
1318    inline int maximumSavedSolutions() const {
1319        return maximumSavedSolutions_;
1320    }
1321    /// Set maximum number of extra saved solutions
1322    void setMaximumSavedSolutions(int value);
1323    /// Return a saved solution (0==best) - NULL if off end
1324    const double * savedSolution(int which) const;
1325    /// Return a saved solution objective (0==best) - COIN_DBL_MAX if off end
1326    double savedSolutionObjective(int which) const;
1327    /// Delete a saved solution and move others up
1328    void deleteSavedSolution(int which);
1329
1330    /** Current phase (so heuristics etc etc can find out).
1331        0 - initial solve
1332        1 - solve with cuts at root
1333        2 - solve with cuts
1334        3 - other e.g. strong branching
1335        4 - trying to validate a solution
1336        5 - at end of search
1337    */
1338    inline int phase() const {
1339        return phase_;
1340    }
1341
1342    /// Get number of heuristic solutions
1343    inline int getNumberHeuristicSolutions() const {
1344        return numberHeuristicSolutions_;
1345    }
1346    /// Set number of heuristic solutions
1347    inline void setNumberHeuristicSolutions(int value) {
1348        numberHeuristicSolutions_ = value;
1349    }
1350
1351    /// Set objective function sense (1 for min (default), -1 for max,)
1352    inline void setObjSense(double s) {
1353        dblParam_[CbcOptimizationDirection] = s;
1354        solver_->setObjSense(s);
1355    }
1356
1357    /// Value of objective at continuous
1358    inline double getContinuousObjective() const {
1359        return originalContinuousObjective_;
1360    }
1361    inline void setContinuousObjective(double value) {
1362        originalContinuousObjective_ = value;
1363    }
1364    /// Number of infeasibilities at continuous
1365    inline int getContinuousInfeasibilities() const {
1366        return continuousInfeasibilities_;
1367    }
1368    inline void setContinuousInfeasibilities(int value) {
1369        continuousInfeasibilities_ = value;
1370    }
1371    /// Value of objective after root node cuts added
1372    inline double rootObjectiveAfterCuts() const {
1373        return continuousObjective_;
1374    }
1375    /// Sum of Changes to objective by first solve
1376    inline double sumChangeObjective() const {
1377        return sumChangeObjective1_;
1378    }
1379    /** Number of times global cuts violated.  When global cut pool then this
1380        should be kept for each cut and type of cut */
1381    inline int numberGlobalViolations() const {
1382        return numberGlobalViolations_;
1383    }
1384    inline void clearNumberGlobalViolations() {
1385        numberGlobalViolations_ = 0;
1386    }
1387    /// Whether to force a resolve after takeOffCuts
1388    inline bool resolveAfterTakeOffCuts() const {
1389        return resolveAfterTakeOffCuts_;
1390    }
1391    inline void setResolveAfterTakeOffCuts(bool yesNo) {
1392        resolveAfterTakeOffCuts_ = yesNo;
1393    }
1394    /// Maximum number of rows
1395    inline int maximumRows() const {
1396        return maximumRows_;
1397    }
1398    /// Work basis for temporary use
1399    inline CoinWarmStartBasis & workingBasis() {
1400        return workingBasis_;
1401    }
1402    /// Get number of "iterations" to stop after
1403    inline int getStopNumberIterations() const {
1404        return stopNumberIterations_;
1405    }
1406    /// Set number of "iterations" to stop after
1407    inline void setStopNumberIterations(int value) {
1408        stopNumberIterations_ = value;
1409    }
1410    /// A pointer to model from CbcHeuristic
1411    inline CbcModel * heuristicModel() const
1412    { return heuristicModel_;}
1413    /// Set a pointer to model from CbcHeuristic
1414    inline void setHeuristicModel(CbcModel * model)
1415    { heuristicModel_ = model;}
1416    //@}
1417
1418    /** \name Node selection */
1419    //@{
1420    // Comparison functions (which may be overridden by inheritance)
1421    inline CbcCompareBase * nodeComparison() const {
1422        return nodeCompare_;
1423    }
1424    void setNodeComparison(CbcCompareBase * compare);
1425    void setNodeComparison(CbcCompareBase & compare);
1426    //@}
1427
1428    /** \name Problem feasibility checking */
1429    //@{
1430    // Feasibility functions (which may be overridden by inheritance)
1431    inline CbcFeasibilityBase * problemFeasibility() const {
1432        return problemFeasibility_;
1433    }
1434    void setProblemFeasibility(CbcFeasibilityBase * feasibility);
1435    void setProblemFeasibility(CbcFeasibilityBase & feasibility);
1436    //@}
1437
1438    /** \name Tree methods and subtree methods */
1439    //@{
1440    /// Tree method e.g. heap (which may be overridden by inheritance)
1441    inline CbcTree * tree() const {
1442        return tree_;
1443    }
1444    /// For modifying tree handling (original is cloned)
1445    void passInTreeHandler(CbcTree & tree);
1446    /** For passing in an CbcModel to do a sub Tree (with derived tree handlers).
1447        Passed in model must exist for duration of branch and bound
1448    */
1449    void passInSubTreeModel(CbcModel & model);
1450    /** For retrieving a copy of subtree model with given OsiSolver.
1451        If no subtree model will use self (up to user to reset cutoff etc).
1452        If solver NULL uses current
1453    */
1454    CbcModel * subTreeModel(OsiSolverInterface * solver = NULL) const;
1455    /// Returns number of times any subtree stopped on nodes, time etc
1456    inline int numberStoppedSubTrees() const {
1457        return numberStoppedSubTrees_;
1458    }
1459    /// Says a sub tree was stopped
1460    inline void incrementSubTreeStopped() {
1461        numberStoppedSubTrees_++;
1462    }
1463    /** Whether to automatically do presolve before branch and bound (subTrees).
1464        0 - no
1465        1 - ordinary presolve
1466        2 - integer presolve (dodgy)
1467    */
1468    inline int typePresolve() const {
1469        return presolve_;
1470    }
1471    inline void setTypePresolve(int value) {
1472        presolve_ = value;
1473    }
1474
1475    //@}
1476
1477    /** \name Branching Decisions
1478
1479      See the CbcBranchDecision class for additional information.
1480    */
1481    //@{
1482
1483    /// Get the current branching decision method.
1484    inline CbcBranchDecision * branchingMethod() const {
1485        return branchingMethod_;
1486    }
1487    /// Set the branching decision method.
1488    inline void setBranchingMethod(CbcBranchDecision * method) {
1489        delete branchingMethod_;
1490        branchingMethod_ = method->clone();
1491    }
1492    /** Set the branching method
1493
1494      \overload
1495    */
1496    inline void setBranchingMethod(CbcBranchDecision & method) {
1497        delete branchingMethod_;
1498        branchingMethod_ = method.clone();
1499    }
1500    /// Get the current cut modifier method
1501    inline CbcCutModifier * cutModifier() const {
1502        return cutModifier_;
1503    }
1504    /// Set the cut modifier method
1505    void setCutModifier(CbcCutModifier * modifier);
1506    /** Set the cut modifier method
1507
1508      \overload
1509    */
1510    void setCutModifier(CbcCutModifier & modifier);
1511    //@}
1512
1513    /** \name Row (constraint) and Column (variable) cut generation */
1514    //@{
1515
1516    /** State of search
1517        0 - no solution
1518        1 - only heuristic solutions
1519        2 - branched to a solution
1520        3 - no solution but many nodes
1521    */
1522    inline int stateOfSearch() const {
1523        return stateOfSearch_;
1524    }
1525    inline void setStateOfSearch(int state) {
1526        stateOfSearch_ = state;
1527    }
1528    /// Strategy worked out - mainly at root node for use by CbcNode
1529    inline int searchStrategy() const {
1530        return searchStrategy_;
1531    }
1532    /// Set strategy worked out - mainly at root node for use by CbcNode
1533    inline void setSearchStrategy(int value) {
1534        searchStrategy_ = value;
1535    }
1536    /// Stong branching strategy
1537    inline int strongStrategy() const {
1538        return strongStrategy_;
1539    }
1540    /// Set strong branching strategy
1541    inline void setStrongStrategy(int value) {
1542        strongStrategy_ = value;
1543    }
1544
1545    /// Get the number of cut generators
1546    inline int numberCutGenerators() const {
1547        return numberCutGenerators_;
1548    }
1549    /// Get the list of cut generators
1550    inline CbcCutGenerator ** cutGenerators() const {
1551        return generator_;
1552    }
1553    ///Get the specified cut generator
1554    inline CbcCutGenerator * cutGenerator(int i) const {
1555        return generator_[i];
1556    }
1557    ///Get the specified cut generator before any changes
1558    inline CbcCutGenerator * virginCutGenerator(int i) const {
1559        return virginGenerator_[i];
1560    }
1561    /** Add one generator - up to user to delete generators.
1562        howoften affects how generator is used. 0 or 1 means always,
1563        >1 means every that number of nodes.  Negative values have same
1564        meaning as positive but they may be switched off (-> -100) by code if
1565        not many cuts generated at continuous.  -99 is just done at root.
1566        Name is just for printout.
1567        If depth >0 overrides how often generator is called (if howOften==-1 or >0).
1568    */
1569    void addCutGenerator(CglCutGenerator * generator,
1570                         int howOften = 1, const char * name = NULL,
1571                         bool normal = true, bool atSolution = false,
1572                         bool infeasible = false, int howOftenInSub = -100,
1573                         int whatDepth = -1, int whatDepthInSub = -1);
1574//@}
1575    /** \name Strategy and sub models
1576
1577      See the CbcStrategy class for additional information.
1578    */
1579    //@{
1580
1581    /// Get the current strategy
1582    inline CbcStrategy * strategy() const {
1583        return strategy_;
1584    }
1585    /// Set the strategy. Clones
1586    void setStrategy(CbcStrategy & strategy);
1587    /// Set the strategy. assigns
1588    inline void setStrategy(CbcStrategy * strategy) {
1589        strategy_ = strategy;
1590    }
1591    /// Get the current parent model
1592    inline CbcModel * parentModel() const {
1593        return parentModel_;
1594    }
1595    /// Set the parent model
1596    inline void setParentModel(CbcModel & parentModel) {
1597        parentModel_ = &parentModel;
1598    }
1599    //@}
1600
1601
1602    /** \name Heuristics and priorities */
1603    //@{
1604    /*! \brief Add one heuristic - up to user to delete
1605
1606      The name is just used for print messages.
1607    */
1608    void addHeuristic(CbcHeuristic * generator, const char *name = NULL,
1609                      int before = -1);
1610    ///Get the specified heuristic
1611    inline CbcHeuristic * heuristic(int i) const {
1612        return heuristic_[i];
1613    }
1614    /// Get the number of heuristics
1615    inline int numberHeuristics() const {
1616        return numberHeuristics_;
1617    }
1618    /// Set the number of heuristics
1619    inline void setNumberHeuristics(int value) {
1620        numberHeuristics_ = value;
1621    }
1622    /// Pointer to heuristic solver which found last solution (or NULL)
1623    inline CbcHeuristic * lastHeuristic() const {
1624        return lastHeuristic_;
1625    }
1626    /// set last heuristic which found a solution
1627    inline void setLastHeuristic(CbcHeuristic * last) {
1628        lastHeuristic_ = last;
1629    }
1630
1631    /** Pass in branching priorities.
1632
1633        If ifClique then priorities are on cliques otherwise priorities are
1634        on integer variables.
1635        Other type (if exists set to default)
1636        1 is highest priority. (well actually -INT_MAX is but that's ugly)
1637        If hotstart > 0 then branches are created to force
1638        the variable to the value given by best solution.  This enables a
1639        sort of hot start.  The node choice should be greatest depth
1640        and hotstart should normally be switched off after a solution.
1641
1642        If ifNotSimpleIntegers true then appended to normal integers
1643
1644        This is now deprecated except for simple usage.  If user
1645        creates Cbcobjects then set priority in them
1646
1647        \internal Added for Kurt Spielberg.
1648    */
1649    void passInPriorities(const int * priorities, bool ifNotSimpleIntegers);
1650
1651    /// Returns priority level for an object (or 1000 if no priorities exist)
1652    inline int priority(int sequence) const {
1653        return object_[sequence]->priority();
1654    }
1655
1656    /*! \brief Set an event handler
1657
1658      A clone of the handler passed as a parameter is stored in CbcModel.
1659    */
1660    void passInEventHandler(const CbcEventHandler *eventHandler) ;
1661
1662    /*! \brief Retrieve a pointer to the event handler */
1663    inline CbcEventHandler* getEventHandler() const {
1664        return (eventHandler_) ;
1665    }
1666
1667    //@}
1668
1669    /**@name Setting/Accessing application data */
1670    //@{
1671    /** Set application data.
1672
1673    This is a pointer that the application can store into and
1674    retrieve from the solver interface.
1675    This field is available for the application to optionally
1676    define and use.
1677    */
1678    void setApplicationData (void * appData);
1679
1680    /// Get application data
1681    void * getApplicationData() const;
1682    /**
1683        For advanced applications you may wish to modify the behavior of Cbc
1684        e.g. if the solver is a NLP solver then you may not have an exact
1685        optimum solution at each step.  Information could be built into
1686        OsiSolverInterface but this is an alternative so that that interface
1687        does not have to be changed.  If something similar is useful to
1688        enough solvers then it could be migrated
1689        You can also pass in by using solver->setAuxiliaryInfo.
1690        You should do that if solver is odd - if solver is normal simplex
1691        then use this.
1692        NOTE - characteristics are not cloned
1693    */
1694    void passInSolverCharacteristics(OsiBabSolver * solverCharacteristics);
1695    /// Get solver characteristics
1696    inline const OsiBabSolver * solverCharacteristics() const {
1697        return solverCharacteristics_;
1698    }
1699    //@}
1700
1701    //---------------------------------------------------------------------------
1702
1703    /**@name Message handling etc */
1704    //@{
1705    /// Pass in Message handler (not deleted at end)
1706    void passInMessageHandler(CoinMessageHandler * handler);
1707    /// Set language
1708    void newLanguage(CoinMessages::Language language);
1709    inline void setLanguage(CoinMessages::Language language) {
1710        newLanguage(language);
1711    }
1712    /// Return handler
1713    inline CoinMessageHandler * messageHandler() const {
1714        return handler_;
1715    }
1716    /// Return messages
1717    inline CoinMessages & messages() {
1718        return messages_;
1719    }
1720    /// Return pointer to messages
1721    inline CoinMessages * messagesPointer() {
1722        return &messages_;
1723    }
1724    /// Set log level
1725    void setLogLevel(int value);
1726    /// Get log level
1727    inline int logLevel() const {
1728        return handler_->logLevel();
1729    }
1730    /** Set flag to say if handler_ is the default handler.
1731
1732      The default handler is deleted when the model is deleted. Other
1733      handlers (supplied by the client) will not be deleted.
1734    */
1735    inline void setDefaultHandler(bool yesNo) {
1736        defaultHandler_ = yesNo;
1737    }
1738    //@}
1739    //---------------------------------------------------------------------------
1740    ///@name Specialized
1741    //@{
1742
1743    /**
1744        Set special options
1745        0 bit (1) - check if cuts valid (if on debugger list)
1746        1 bit (2) - use current basis to check integer solution (rather than all slack)
1747        2 bit (4) - don't check integer solution (by solving LP)
1748        3 bit (8) - fast analyze
1749        4 bit (16) - non-linear model - so no well defined CoinPackedMatrix
1750        5 bit (32) - keep names
1751        6 bit (64) - try for dominated columns
1752        7 bit (128) - SOS type 1 but all declared integer
1753        8 bit (256) - Set to say solution just found, unset by doing cuts
1754        9 bit (512) - Try reduced model after 100 nodes
1755        10 bit (1024) - Switch on some heuristics even if seems unlikely
1756        11 bit (2048) - Mark as in small branch and bound
1757        12 bit (4096) - Funny cuts so do slow way (in some places)
1758        13 bit (8192) - Funny cuts so do slow way (in other places)
1759        14 bit (16384) - Use Cplex! for fathoming
1760        15 bit (32768) - Try reduced model after 0 nodes
1761        16 bit (65536) - Original model had integer bounds
1762        17 bit (131072) - Perturbation switched off
1763        18 bit (262144) - donor CbcModel
1764        19 bit (524288) - recipient CbcModel
1765        20 bit (1048576) - waiting for sub model to return
1766        22 bit (4194304) - do not initialize random seed in solver (user has)
1767        23 bit (8388608) - leave solver_ with cuts
1768    */
1769    inline void setSpecialOptions(int value) {
1770        specialOptions_ = value;
1771    }
1772    /// Get special options
1773    inline int specialOptions() const {
1774        return specialOptions_;
1775    }
1776    /// Set random seed
1777    inline void setRandomSeed(int value) {
1778        randomSeed_ = value;
1779    }
1780    /// Get random seed
1781    inline int getRandomSeed() const {
1782        return randomSeed_;
1783    }
1784    /// Set multiple root tries
1785    inline void setMultipleRootTries(int value) {
1786        multipleRootTries_ = value;
1787    }
1788    /// Get multiple root tries
1789    inline int getMultipleRootTries() const {
1790        return multipleRootTries_;
1791    }
1792    /// Tell model to stop on event
1793    inline void sayEventHappened()
1794    { eventHappened_=true;}
1795    /// Says if normal solver i.e. has well defined CoinPackedMatrix
1796    inline bool normalSolver() const {
1797        return (specialOptions_&16) == 0;
1798    }
1799    /** Says if model is sitting there waiting for mini branch and bound to finish
1800        This is because an event handler may only have access to parent model in
1801        mini branch and bound
1802    */
1803    inline bool waitingForMiniBranchAndBound() const {
1804        return (specialOptions_&1048576) != 0;
1805    }
1806    /** Set more special options
1807        at present bottom 6 bits used for shadow price mode
1808        1024 for experimental hotstart
1809        2048,4096 breaking out of cuts
1810        8192 slowly increase minimum drop
1811        16384 gomory
1812        32768 more heuristics in sub trees
1813        65536 no cuts in preprocessing
1814        131072 Time limits elapsed
1815        18 bit (262144) - Perturb fathom nodes
1816        19 bit (524288) - No limit on fathom nodes
1817        20 bit (1048576) - Reduce sum of infeasibilities before cuts
1818        21 bit (2097152) - Reduce sum of infeasibilities after cuts
1819        22 bit (4194304) - Conflict analysis
1820        23 bit (8388608) - Conflict analysis - temporary bit
1821        24 bit (16777216) - Add cutoff as LP constraint
1822    */
1823    inline void setMoreSpecialOptions(int value) {
1824        moreSpecialOptions_ = value;
1825    }
1826    /// Get more special options
1827    inline int moreSpecialOptions() const {
1828        return moreSpecialOptions_;
1829    }
1830  /// Set time method
1831    inline void setUseElapsedTime(bool yesNo) {
1832        if (yesNo)
1833          moreSpecialOptions_ |= 131072;
1834        else
1835          moreSpecialOptions_ &= ~131072;
1836    }
1837    /// Get time method
1838    inline bool useElapsedTime() const {
1839        return (moreSpecialOptions_&131072)!=0;
1840    }
1841    /// Go to dantzig pivot selection if easy problem (clp only)
1842#ifdef COIN_HAS_CLP
1843    void goToDantzig(int numberNodes, ClpDualRowPivot *& savePivotMethod);
1844#endif
1845    /// Now we may not own objects - just point to solver's objects
1846    inline bool ownObjects() const {
1847        return ownObjects_;
1848    }
1849    /// Check original model before it gets messed up
1850    void checkModel();
1851    //@}
1852    //---------------------------------------------------------------------------
1853
1854    ///@name Constructors and destructors etc
1855    //@{
1856    /// Default Constructor
1857    CbcModel();
1858
1859    /// Constructor from solver
1860    CbcModel(const OsiSolverInterface &);
1861
1862    /** Assign a solver to the model (model assumes ownership)
1863
1864      On return, \p solver will be NULL.
1865      If deleteSolver then current solver deleted (if model owned)
1866
1867      \note Parameter settings in the outgoing solver are not inherited by
1868        the incoming solver.
1869    */
1870    void assignSolver(OsiSolverInterface *&solver, bool deleteSolver = true);
1871
1872    /** \brief Set ownership of solver
1873
1874      A parameter of false tells CbcModel it does not own the solver and
1875      should not delete it. Once you claim ownership of the solver, you're
1876      responsible for eventually deleting it. Note that CbcModel clones
1877      solvers with abandon.  Unless you have a deep understanding of the
1878      workings of CbcModel, the only time you want to claim ownership is when
1879      you're about to delete the CbcModel object but want the solver to
1880      continue to exist (as, for example, when branchAndBound has finished
1881      and you want to hang on to the answer).
1882    */
1883    inline void setModelOwnsSolver (bool ourSolver) {
1884        ownership_ = ourSolver ? (ownership_ | 0x80000000) : (ownership_ & (~0x80000000)) ;
1885    }
1886
1887    /*! \brief Get ownership of solver
1888
1889      A return value of true means that CbcModel owns the solver and will
1890      take responsibility for deleting it when that becomes necessary.
1891    */
1892    inline bool modelOwnsSolver () {
1893        return ((ownership_&0x80000000) != 0) ;
1894    }
1895
1896    /** Copy constructor .
1897      If cloneHandler is true then message handler is cloned
1898    */
1899    CbcModel(const CbcModel & rhs, bool cloneHandler = false);
1900
1901    /// Assignment operator
1902    CbcModel & operator=(const CbcModel& rhs);
1903
1904    /// Destructor
1905    virtual ~CbcModel ();
1906
1907    /// Returns solver - has current state
1908    inline OsiSolverInterface * solver() const {
1909        return solver_;
1910    }
1911
1912    /// Returns current solver - sets new one
1913    inline OsiSolverInterface * swapSolver(OsiSolverInterface * solver) {
1914        OsiSolverInterface * returnSolver = solver_;
1915        solver_ = solver;
1916        return returnSolver;
1917    }
1918
1919    /// Returns solver with continuous state
1920    inline OsiSolverInterface * continuousSolver() const {
1921        return continuousSolver_;
1922    }
1923
1924    /// Create solver with continuous state
1925    inline void createContinuousSolver() {
1926        continuousSolver_ = solver_->clone();
1927    }
1928    /// Clear solver with continuous state
1929    inline void clearContinuousSolver() {
1930        delete continuousSolver_;
1931        continuousSolver_ = NULL;
1932    }
1933
1934    /// A copy of the solver, taken at constructor or by saveReferenceSolver
1935    inline OsiSolverInterface * referenceSolver() const {
1936        return referenceSolver_;
1937    }
1938
1939    /// Save a copy of the current solver so can be reset to
1940    void saveReferenceSolver();
1941
1942    /** Uses a copy of reference solver to be current solver.
1943        Because of possible mismatches all exotic integer information is loat
1944        (apart from normal information in OsiSolverInterface)
1945        so SOS etc and priorities will have to be redone
1946    */
1947    void resetToReferenceSolver();
1948
1949    /// Clears out as much as possible (except solver)
1950    void gutsOfDestructor();
1951    /** Clears out enough to reset CbcModel as if no branch and bound done
1952     */
1953    void gutsOfDestructor2();
1954    /** Clears out enough to reset CbcModel cutoff etc
1955     */
1956    void resetModel();
1957    /** Most of copy constructor
1958        mode - 0 copy but don't delete before
1959               1 copy and delete before
1960           2 copy and delete before (but use virgin generators)
1961    */
1962    void gutsOfCopy(const CbcModel & rhs, int mode = 0);
1963    /// Move status, nodes etc etc across
1964    void moveInfo(const CbcModel & rhs);
1965    //@}
1966
1967    ///@name Multithreading
1968    //@{
1969    /// Indicates whether Cbc library has been compiled with multithreading support
1970    static bool haveMultiThreadSupport();
1971    /// Get pointer to masterthread
1972    CbcThread * masterThread() const {
1973        return masterThread_;
1974    }
1975    /// Get pointer to walkback
1976    CbcNodeInfo ** walkback() const {
1977        return walkback_;
1978    }
1979    /// Get number of threads
1980    inline int getNumberThreads() const {
1981        return numberThreads_;
1982    }
1983    /// Set number of threads
1984    inline void setNumberThreads(int value) {
1985        numberThreads_ = value;
1986    }
1987    /// Get thread mode
1988    inline int getThreadMode() const {
1989        return threadMode_;
1990    }
1991    /** Set thread mode
1992        always use numberThreads for branching
1993        1 set then deterministic
1994        2 set then use numberThreads for root cuts
1995        4 set then use numberThreads in root mini branch and bound
1996        8 set and numberThreads - do heuristics numberThreads at a time
1997        8 set and numberThreads==0 do all heuristics at once
1998        default is 0
1999    */
2000    inline void setThreadMode(int value) {
2001        threadMode_ = value;
2002    }
2003    /** Return
2004        -2 if deterministic threaded and main thread
2005        -1 if deterministic threaded and serial thread
2006        0 if serial
2007        1 if opportunistic threaded
2008    */
2009    inline int parallelMode() const {
2010        if (!numberThreads_) {
2011            if ((threadMode_&1) == 0)
2012                return 0;
2013            else
2014                return -1;
2015            return 0;
2016        } else {
2017            if ((threadMode_&1) == 0)
2018                return 1;
2019            else
2020                return -2;
2021        }
2022    }
2023    /// From here to end of section - code in CbcThread.cpp until class changed
2024    /// Returns true if locked
2025    bool isLocked() const;
2026#ifdef CBC_THREAD
2027    /**
2028       Locks a thread if parallel so that stuff like cut pool
2029       can be updated and/or used.
2030    */
2031    void lockThread();
2032    /**
2033       Unlocks a thread if parallel to say cut pool stuff not needed
2034    */
2035    void unlockThread();
2036#else
2037    inline void lockThread() {}
2038    inline void unlockThread() {}
2039#endif
2040    /** Set information in a child
2041        -3 pass pointer to child thread info
2042        -2 just stop
2043        -1 delete simple child stuff
2044        0 delete opportunistic child stuff
2045        1 delete deterministic child stuff
2046    */
2047    void setInfoInChild(int type, CbcThread * info);
2048    /** Move/copy information from one model to another
2049        -1 - initialization
2050        0 - from base model
2051        1 - to base model (and reset)
2052        2 - add in final statistics etc (and reset so can do clean destruction)
2053    */
2054    void moveToModel(CbcModel * baseModel, int mode);
2055    /// Split up nodes
2056    int splitModel(int numberModels, CbcModel ** model,
2057                   int numberNodes);
2058    /// Start threads
2059    void startSplitModel(int numberIterations);
2060    /// Merge models
2061    void mergeModels(int numberModel, CbcModel ** model,
2062                     int numberNodes);
2063    //@}
2064
2065    ///@name semi-private i.e. users should not use
2066    //@{
2067    /// Get how many Nodes it took to solve the problem.
2068    int getNodeCount2() const {
2069        return numberNodes2_;
2070    }
2071    /// Set pointers for speed
2072    void setPointers(const OsiSolverInterface * solver);
2073    /** Perform reduced cost fixing
2074
2075      Fixes integer variables at their current value based on reduced cost
2076      penalties.  Returns number fixed
2077    */
2078    int reducedCostFix() ;
2079    /** Makes all handlers same.  If makeDefault 1 then makes top level
2080        default and rest point to that.  If 2 then each is copy
2081    */
2082    void synchronizeHandlers(int makeDefault);
2083    /// Save a solution to saved list
2084    void saveExtraSolution(const double * solution, double objectiveValue);
2085    /// Save a solution to best and move current to saved
2086    void saveBestSolution(const double * solution, double objectiveValue);
2087    /// Delete best and saved solutions
2088    void deleteSolutions();
2089    /// Encapsulates solver resolve
2090    int resolve(OsiSolverInterface * solver);
2091#ifdef CLP_RESOLVE
2092    /// Special purpose resolve
2093    int resolveClp(OsiClpSolverInterface * solver, int type);
2094#endif
2095
2096    /** Encapsulates choosing a variable -
2097        anyAction -2, infeasible (-1 round again), 0 done
2098    */
2099    int chooseBranch(CbcNode * & newNode, int numberPassesLeft,
2100                     CbcNode * oldNode, OsiCuts & cuts,
2101                     bool & resolved, CoinWarmStartBasis *lastws,
2102                     const double * lowerBefore, const double * upperBefore,
2103                     OsiSolverBranch * & branches);
2104    int chooseBranch(CbcNode * newNode, int numberPassesLeft, bool & resolved);
2105
2106    /** Return an empty basis object of the specified size
2107
2108      A useful utility when constructing a basis for a subproblem from scratch.
2109      The object returned will be of the requested capacity and appropriate for
2110      the solver attached to the model.
2111    */
2112    CoinWarmStartBasis *getEmptyBasis(int ns = 0, int na = 0) const ;
2113
2114    /** Remove inactive cuts from the model
2115
2116      An OsiSolverInterface is expected to maintain a valid basis, but not a
2117      valid solution, when loose cuts are deleted. Restoring a valid solution
2118      requires calling the solver to reoptimise. If it's certain the solution
2119      will not be required, set allowResolve to false to suppress
2120      reoptimisation.
2121      If saveCuts then slack cuts will be saved
2122      On input current cuts are cuts and newCuts
2123      on exit current cuts will be correct.  Returns number dropped
2124    */
2125    int takeOffCuts(OsiCuts &cuts,
2126                    bool allowResolve, OsiCuts * saveCuts,
2127                    int numberNewCuts = 0, const OsiRowCut ** newCuts = NULL) ;
2128
2129    /** Determine and install the active cuts that need to be added for
2130      the current subproblem
2131
2132      The whole truth is a bit more complicated. The first action is a call to
2133      addCuts1(). addCuts() then sorts through the list, installs the tight
2134      cuts in the model, and does bookkeeping (adjusts reference counts).
2135      The basis returned from addCuts1() is adjusted accordingly.
2136
2137      If it turns out that the node should really be fathomed by bound,
2138      addCuts() simply treats all the cuts as loose as it does the bookkeeping.
2139
2140      canFix true if extra information being passed
2141    */
2142    int addCuts(CbcNode * node, CoinWarmStartBasis *&lastws, bool canFix);
2143
2144    /** Traverse the tree from node to root and prep the model
2145
2146      addCuts1() begins the job of prepping the model to match the current
2147      subproblem. The model is stripped of all cuts, and the search tree is
2148      traversed from node to root to determine the changes required. Appropriate
2149      bounds changes are installed, a list of cuts is collected but not
2150      installed, and an appropriate basis (minus the cuts, but big enough to
2151      accommodate them) is constructed.
2152
2153      Returns true if new problem similar to old
2154
2155      \todo addCuts1() is called in contexts where it's known in advance that
2156        all that's desired is to determine a list of cuts and do the
2157        bookkeeping (adjust the reference counts). The work of installing
2158        bounds and building a basis goes to waste.
2159    */
2160    bool addCuts1(CbcNode * node, CoinWarmStartBasis *&lastws);
2161    /** Returns bounds just before where - initially original bounds.
2162        Also sets downstream nodes (lower if force 1, upper if 2)
2163    */
2164    void previousBounds (CbcNode * node, CbcNodeInfo * where, int iColumn,
2165                         double & lower, double & upper, int force);
2166    /** Set objective value in a node.  This is separated out so that
2167       odd solvers can use.  It may look at extra information in
2168       solverCharacteriscs_ and will also use bound from parent node
2169    */
2170    void setObjectiveValue(CbcNode * thisNode, const CbcNode * parentNode) const;
2171
2172    /** If numberBeforeTrust >0 then we are going to use CbcBranchDynamic.
2173        Scan and convert CbcSimpleInteger objects
2174    */
2175    void convertToDynamic();
2176    /// Set numberBeforeTrust in all objects
2177    void synchronizeNumberBeforeTrust(int type = 0);
2178    /// Zap integer information in problem (may leave object info)
2179    void zapIntegerInformation(bool leaveObjects = true);
2180    /// Use cliques for pseudocost information - return nonzero if infeasible
2181    int cliquePseudoCosts(int doStatistics);
2182    /// Fill in useful estimates
2183    void pseudoShadow(int type);
2184    /** Return pseudo costs
2185        If not all integers or not pseudo costs - returns all zero
2186        Length of arrays are numberIntegers() and entries
2187        correspond to integerVariable()[i]
2188        User must allocate arrays before call
2189    */
2190    void fillPseudoCosts(double * downCosts, double * upCosts,
2191                         int * priority = NULL,
2192                         int * numberDown = NULL, int * numberUp = NULL,
2193                         int * numberDownInfeasible = NULL,
2194                         int * numberUpInfeasible = NULL) const;
2195    /** Do heuristics at root.
2196        0 - don't delete
2197        1 - delete
2198        2 - just delete - don't even use
2199    */
2200    void doHeuristicsAtRoot(int deleteHeuristicsAfterwards = 0);
2201    /// Adjust heuristics based on model
2202    void adjustHeuristics();
2203    /// Get the hotstart solution
2204    inline const double * hotstartSolution() const {
2205        return hotstartSolution_;
2206    }
2207    /// Get the hotstart priorities
2208    inline const int * hotstartPriorities() const {
2209        return hotstartPriorities_;
2210    }
2211
2212    /// Return the list of cuts initially collected for this subproblem
2213    inline CbcCountRowCut ** addedCuts() const {
2214        return addedCuts_;
2215    }
2216    /// Number of entries in the list returned by #addedCuts()
2217    inline int currentNumberCuts() const {
2218        return currentNumberCuts_;
2219    }
2220    /// Global cuts
2221    inline CbcRowCuts * globalCuts() {
2222        return &globalCuts_;
2223    }
2224    /// Copy and set a pointer to a row cut which will be added instead of normal branching.
2225    void setNextRowCut(const OsiRowCut & cut);
2226    /// Get a pointer to current node (be careful)
2227    inline CbcNode * currentNode() const {
2228        return currentNode_;
2229    }
2230    /// Get a pointer to probing info
2231    inline CglTreeProbingInfo * probingInfo() const {
2232        return probingInfo_;
2233    }
2234    /// Thread specific random number generator
2235    inline CoinThreadRandom * randomNumberGenerator() {
2236        return &randomNumberGenerator_;
2237    }
2238    /// Set the number of iterations done in strong branching.
2239    inline void setNumberStrongIterations(int number) {
2240        numberStrongIterations_ = number;
2241    }
2242    /// Get the number of iterations done in strong branching.
2243    inline int numberStrongIterations() const {
2244        return numberStrongIterations_;
2245    }
2246    /// Get maximum number of iterations (designed to be used in heuristics)
2247    inline int maximumNumberIterations() const {
2248        return maximumNumberIterations_;
2249    }
2250    /// Set maximum number of iterations (designed to be used in heuristics)
2251    inline void setMaximumNumberIterations(int value) {
2252        maximumNumberIterations_ = value;
2253    }
2254# ifdef COIN_HAS_CLP
2255    /// Set depth for fast nodes
2256    inline void setFastNodeDepth(int value) {
2257        fastNodeDepth_ = value;
2258    }
2259    /// Get depth for fast nodes
2260    inline int fastNodeDepth() const {
2261        return fastNodeDepth_;
2262    }
2263    /// Get anything with priority >= this can be treated as continuous
2264    inline int continuousPriority() const {
2265        return continuousPriority_;
2266    }
2267    /// Set anything with priority >= this can be treated as continuous
2268    inline void setContinuousPriority(int value) {
2269        continuousPriority_ = value;
2270    }
2271    inline void incrementExtra(int nodes, int iterations) {
2272        numberExtraNodes_ += nodes;
2273        numberExtraIterations_ += iterations;
2274    }
2275#endif
2276    /// Number of extra iterations
2277    inline int numberExtraIterations() const {
2278        return numberExtraIterations_;
2279    }
2280    /// Increment strong info
2281    void incrementStrongInfo(int numberTimes, int numberIterations,
2282                             int numberFixed, bool ifInfeasible);
2283    /// Return strong info
2284    inline const int * strongInfo() const {
2285        return strongInfo_;
2286    }
2287
2288    /// Return mutable strong info
2289    inline int * mutableStrongInfo() {
2290        return strongInfo_;
2291    }
2292    /// Get stored row cuts for donor/recipient CbcModel
2293    CglStored * storedRowCuts() const {
2294        return storedRowCuts_;
2295    }
2296    /// Set stored row cuts for donor/recipient CbcModel
2297    void setStoredRowCuts(CglStored * cuts) {
2298        storedRowCuts_ = cuts;
2299    }
2300    /// Says whether all dynamic integers
2301    inline bool allDynamic () const {
2302        return ((ownership_&0x40000000) != 0) ;
2303    }
2304    /// Create C++ lines to get to current state
2305    void generateCpp( FILE * fp, int options);
2306    /// Generate an OsiBranchingInformation object
2307    OsiBranchingInformation usefulInformation() const;
2308    /** Warm start object produced by heuristic or strong branching
2309
2310        If get a valid integer solution outside branch and bound then it can take
2311        a reasonable time to solve LP which produces clean solution.  If this object has
2312        any size then it will be used in solve.
2313    */
2314    inline void setBestSolutionBasis(const CoinWarmStartBasis & bestSolutionBasis) {
2315        bestSolutionBasis_ = bestSolutionBasis;
2316    }
2317    /// Redo walkback arrays
2318    void redoWalkBack();
2319    //@}
2320
2321//---------------------------------------------------------------------------
2322
2323private:
2324    ///@name Private member data
2325    //@{
2326
2327    /// The solver associated with this model.
2328    OsiSolverInterface * solver_;
2329
2330    /** Ownership of objects and other stuff
2331
2332        0x80000000 model owns solver
2333        0x40000000 all variables CbcDynamicPseudoCost
2334    */
2335    unsigned int ownership_ ;
2336
2337    /// A copy of the solver, taken at the continuous (root) node.
2338    OsiSolverInterface * continuousSolver_;
2339
2340    /// A copy of the solver, taken at constructor or by saveReferenceSolver
2341    OsiSolverInterface * referenceSolver_;
2342
2343    /// Message handler
2344    CoinMessageHandler * handler_;
2345
2346    /** Flag to say if handler_ is the default handler.
2347
2348      The default handler is deleted when the model is deleted. Other
2349      handlers (supplied by the client) will not be deleted.
2350    */
2351    bool defaultHandler_;
2352
2353    /// Cbc messages
2354    CoinMessages messages_;
2355
2356    /// Array for integer parameters
2357    int intParam_[CbcLastIntParam];
2358
2359    /// Array for double parameters
2360    double dblParam_[CbcLastDblParam];
2361
2362    /** Pointer to an empty warm start object
2363
2364      It turns out to be useful to have this available as a base from
2365      which to build custom warm start objects. This is typed as CoinWarmStart
2366      rather than CoinWarmStartBasis to allow for the possibility that a
2367      client might want to apply a solver that doesn't use a basis-based warm
2368      start. See getEmptyBasis for an example of how this field can be used.
2369    */
2370    mutable CoinWarmStart *emptyWarmStart_ ;
2371
2372    /// Best objective
2373    double bestObjective_;
2374    /// Best possible objective
2375    double bestPossibleObjective_;
2376    /// Sum of Changes to objective by first solve
2377    double sumChangeObjective1_;
2378    /// Sum of Changes to objective by subsequent solves
2379    double sumChangeObjective2_;
2380
2381    /// Array holding the incumbent (best) solution.
2382    double * bestSolution_;
2383    /// Arrays holding other solutions.
2384    double ** savedSolutions_;
2385
2386    /** Array holding the current solution.
2387
2388      This array is used more as a temporary.
2389    */
2390    double * currentSolution_;
2391    /** For testing infeasibilities - will point to
2392        currentSolution_ or solver-->getColSolution()
2393    */
2394    mutable const double * testSolution_;
2395    /** Warm start object produced by heuristic or strong branching
2396
2397        If get a valid integer solution outside branch and bound then it can take
2398        a reasonable time to solve LP which produces clean solution.  If this object has
2399        any size then it will be used in solve.
2400    */
2401    CoinWarmStartBasis bestSolutionBasis_ ;
2402    /// Global cuts
2403    CbcRowCuts globalCuts_;
2404    /// Global conflict cuts
2405    CbcRowCuts * globalConflictCuts_;
2406
2407    /// Minimum degradation in objective value to continue cut generation
2408    double minimumDrop_;
2409    /// Number of solutions
2410    int numberSolutions_;
2411    /// Number of saved solutions
2412    int numberSavedSolutions_;
2413    /// Maximum number of saved solutions
2414    int maximumSavedSolutions_;
2415    /** State of search
2416        0 - no solution
2417        1 - only heuristic solutions
2418        2 - branched to a solution
2419        3 - no solution but many nodes
2420    */
2421    int stateOfSearch_;
2422    /// At which depths to do cuts
2423    int whenCuts_;
2424    /// Hotstart solution
2425    double * hotstartSolution_;
2426    /// Hotstart priorities
2427    int * hotstartPriorities_;
2428    /// Number of heuristic solutions
2429    int numberHeuristicSolutions_;
2430    /// Cumulative number of nodes
2431    int numberNodes_;
2432    /** Cumulative number of nodes for statistics.
2433        Must fix to match up
2434    */
2435    int numberNodes2_;
2436    /// Cumulative number of iterations
2437    int numberIterations_;
2438    /// Cumulative number of solves
2439    int numberSolves_;
2440    /// Status of problem - 0 finished, 1 stopped, 2 difficulties
2441    int status_;
2442    /** Secondary status of problem
2443        -1 unset (status_ will also be -1)
2444        0 search completed with solution
2445        1 linear relaxation not feasible (or worse than cutoff)
2446        2 stopped on gap
2447        3 stopped on nodes
2448        4 stopped on time
2449        5 stopped on user event
2450        6 stopped on solutions
2451     */
2452    int secondaryStatus_;
2453    /// Number of integers in problem
2454    int numberIntegers_;
2455    /// Number of rows at continuous
2456    int numberRowsAtContinuous_;
2457    /// Maximum number of cuts
2458    int maximumNumberCuts_;
2459    /** Current phase (so heuristics etc etc can find out).
2460        0 - initial solve
2461        1 - solve with cuts at root
2462        2 - solve with cuts
2463        3 - other e.g. strong branching
2464        4 - trying to validate a solution
2465        5 - at end of search
2466    */
2467    int phase_;
2468
2469    /// Number of entries in #addedCuts_
2470    int currentNumberCuts_;
2471
2472    /** Current limit on search tree depth
2473
2474      The allocated size of #walkback_. Increased as needed.
2475    */
2476    int maximumDepth_;
2477    /** Array used to assemble the path between a node and the search tree root
2478
2479      The array is resized when necessary. #maximumDepth_  is the current
2480      allocated size.
2481    */
2482    CbcNodeInfo ** walkback_;
2483    CbcNodeInfo ** lastNodeInfo_;
2484    const OsiRowCut ** lastCut_;
2485    int lastDepth_;
2486    int lastNumberCuts2_;
2487    int maximumCuts_;
2488    int * lastNumberCuts_;
2489
2490    /** The list of cuts initially collected for this subproblem
2491
2492      When the subproblem at this node is rebuilt, a set of cuts is collected
2493      for inclusion in the constraint system. If any of these cuts are
2494      subsequently removed because they have become loose, the corresponding
2495      entry is set to NULL.
2496    */
2497    CbcCountRowCut ** addedCuts_;
2498
2499    /** A pointer to a row cut which will be added instead of normal branching.
2500        After use it should be set to NULL.
2501    */
2502    OsiRowCut * nextRowCut_;
2503
2504    /// Current node so can be used elsewhere
2505    CbcNode * currentNode_;
2506
2507    /// Indices of integer variables
2508    int * integerVariable_;
2509    /// Whether of not integer
2510    char * integerInfo_;
2511    /// Holds solution at continuous (after cuts)
2512    double * continuousSolution_;
2513    /// Array marked whenever a solution is found if non-zero
2514    int * usedInSolution_;
2515    /**
2516        Special options
2517        0 bit (1) - check if cuts valid (if on debugger list)
2518        1 bit (2) - use current basis to check integer solution (rather than all slack)
2519        2 bit (4) - don't check integer solution (by solving LP)
2520        3 bit (8) - fast analyze
2521        4 bit (16) - non-linear model - so no well defined CoinPackedMatrix
2522        5 bit (32) - keep names
2523        6 bit (64) - try for dominated columns
2524        7 bit (128) - SOS type 1 but all declared integer
2525        8 bit (256) - Set to say solution just found, unset by doing cuts
2526        9 bit (512) - Try reduced model after 100 nodes
2527        10 bit (1024) - Switch on some heuristics even if seems unlikely
2528        11 bit (2048) - Mark as in small branch and bound
2529        12 bit (4096) - Funny cuts so do slow way (in some places)
2530        13 bit (8192) - Funny cuts so do slow way (in other places)
2531        14 bit (16384) - Use Cplex! for fathoming
2532        15 bit (32768) - Try reduced model after 0 nodes
2533        16 bit (65536) - Original model had integer bounds
2534        17 bit (131072) - Perturbation switched off
2535        18 bit (262144) - donor CbcModel
2536        19 bit (524288) - recipient CbcModel
2537    */
2538    int specialOptions_;
2539    /** More special options
2540        at present bottom 6 bits used for shadow price mode
2541        1024 for experimental hotstart
2542        2048,4096 breaking out of cuts
2543        8192 slowly increase minimum drop
2544        16384 gomory
2545        32768 more heuristics in sub trees
2546        65536 no cuts in preprocessing
2547        131072 Time limits elapsed
2548        18 bit (262144) - Perturb fathom nodes
2549        19 bit (524288) - No limit on fathom nodes
2550        20 bit (1048576) - Reduce sum of infeasibilities before cuts
2551        21 bit (2097152) - Reduce sum of infeasibilities after cuts
2552    */
2553    int moreSpecialOptions_;
2554    /// User node comparison function
2555    CbcCompareBase * nodeCompare_;
2556    /// User feasibility function (see CbcFeasibleBase.hpp)
2557    CbcFeasibilityBase * problemFeasibility_;
2558    /// Tree
2559    CbcTree * tree_;
2560    /// Pointer to top of tree
2561    CbcFullNodeInfo * topOfTree_;
2562    /// A pointer to model to be used for subtrees
2563    CbcModel * subTreeModel_;
2564    /// A pointer to model from CbcHeuristic
2565    CbcModel * heuristicModel_;
2566    /// Number of times any subtree stopped on nodes, time etc
2567    int numberStoppedSubTrees_;
2568    /// Variable selection function
2569    CbcBranchDecision * branchingMethod_;
2570    /// Cut modifier function
2571    CbcCutModifier * cutModifier_;
2572    /// Strategy
2573    CbcStrategy * strategy_;
2574    /// Parent model
2575    CbcModel * parentModel_;
2576    /** Whether to automatically do presolve before branch and bound.
2577        0 - no
2578        1 - ordinary presolve
2579        2 - integer presolve (dodgy)
2580    */
2581    /// Pointer to array[getNumCols()] (for speed) of column lower bounds
2582    const double * cbcColLower_;
2583    /// Pointer to array[getNumCols()] (for speed) of column upper bounds
2584    const double * cbcColUpper_;
2585    /// Pointer to array[getNumRows()] (for speed) of row lower bounds
2586    const double * cbcRowLower_;
2587    /// Pointer to array[getNumRows()] (for speed) of row upper bounds
2588    const double * cbcRowUpper_;
2589    /// Pointer to array[getNumCols()] (for speed) of primal solution vector
2590    const double * cbcColSolution_;
2591    /// Pointer to array[getNumRows()] (for speed) of dual prices
2592    const double * cbcRowPrice_;
2593    /// Get a pointer to array[getNumCols()] (for speed) of reduced costs
2594    const double * cbcReducedCost_;
2595    /// Pointer to array[getNumRows()] (for speed) of row activity levels.
2596    const double * cbcRowActivity_;
2597    /// Pointer to user-defined data structure
2598    void * appData_;
2599    /// Presolve for CbcTreeLocal
2600    int presolve_;
2601    /** Maximum number of candidates to consider for strong branching.
2602      To disable strong branching, set this to 0.
2603    */
2604    int numberStrong_;
2605    /** \brief The number of branches before pseudo costs believed
2606           in dynamic strong branching.
2607
2608      A value of 0 is  off.
2609    */
2610    int numberBeforeTrust_;
2611    /** \brief The number of variables for which to compute penalties
2612           in dynamic strong branching.
2613    */
2614    int numberPenalties_;
2615    /// For threads - stop after this many "iterations"
2616    int stopNumberIterations_;
2617    /** Scale factor to make penalties match strong.
2618        Should/will be computed */
2619    double penaltyScaleFactor_;
2620    /// Number of analyze iterations to do
2621    int numberAnalyzeIterations_;
2622    /// Arrays with analysis results
2623    double * analyzeResults_;
2624    /// Number of nodes infeasible by normal branching (before cuts)
2625    int numberInfeasibleNodes_;
2626    /** Problem type as set by user or found by analysis.  This will be extended
2627        0 - not known
2628        1 - Set partitioning <=
2629        2 - Set partitioning ==
2630        3 - Set covering
2631    */
2632    int problemType_;
2633    /// Print frequency
2634    int printFrequency_;
2635    /// Number of cut generators
2636    int numberCutGenerators_;
2637    // Cut generators
2638    CbcCutGenerator ** generator_;
2639    // Cut generators before any changes
2640    CbcCutGenerator ** virginGenerator_;
2641    /// Number of heuristics
2642    int numberHeuristics_;
2643    /// Heuristic solvers
2644    CbcHeuristic ** heuristic_;
2645    /// Pointer to heuristic solver which found last solution (or NULL)
2646    CbcHeuristic * lastHeuristic_;
2647    /// Depth for fast nodes
2648    int fastNodeDepth_;
2649    /*! Pointer to the event handler */
2650# ifdef CBC_ONLY_CLP
2651    ClpEventHandler *eventHandler_ ;
2652# else
2653    CbcEventHandler *eventHandler_ ;
2654# endif
2655
2656    /// Total number of objects
2657    int numberObjects_;
2658
2659    /** \brief Integer and Clique and ... information
2660
2661      \note The code assumes that the first objects on the list will be
2662        SimpleInteger objects for each integer variable, followed by
2663        Clique objects. Portions of the code that understand Clique objects
2664        will fail if they do not immediately follow the SimpleIntegers.
2665        Large chunks of the code will fail if the first objects are not
2666        SimpleInteger. As of 2003.08, SimpleIntegers and Cliques are the only
2667        objects.
2668    */
2669    OsiObject ** object_;
2670    /// Now we may not own objects - just point to solver's objects
2671    bool ownObjects_;
2672
2673    /// Original columns as created by integerPresolve or preprocessing
2674    int * originalColumns_;
2675    /// How often to scan global cuts
2676    int howOftenGlobalScan_;
2677    /** Number of times global cuts violated.  When global cut pool then this
2678        should be kept for each cut and type of cut */
2679    int numberGlobalViolations_;
2680    /// Number of extra iterations in fast lp
2681    int numberExtraIterations_;
2682    /// Number of extra nodes in fast lp
2683    int numberExtraNodes_;
2684    /** Value of objective at continuous
2685        (Well actually after initial round of cuts)
2686    */
2687    double continuousObjective_;
2688    /** Value of objective before root node cuts added
2689    */
2690    double originalContinuousObjective_;
2691    /// Number of infeasibilities at continuous
2692    int continuousInfeasibilities_;
2693    /// Maximum number of cut passes at root
2694    int maximumCutPassesAtRoot_;
2695    /// Maximum number of cut passes
2696    int maximumCutPasses_;
2697    /// Preferred way of branching
2698    int preferredWay_;
2699    /// Current cut pass number
2700    int currentPassNumber_;
2701    /// Maximum number of cuts (for whichGenerator_)
2702    int maximumWhich_;
2703    /// Maximum number of rows
2704    int maximumRows_;
2705    /// Random seed
2706    int randomSeed_;
2707    /// Multiple root tries
2708    int multipleRootTries_;
2709    /// Current depth
2710    int currentDepth_;
2711    /// Thread specific random number generator
2712    mutable CoinThreadRandom randomNumberGenerator_;
2713    /// Work basis for temporary use
2714    CoinWarmStartBasis workingBasis_;
2715    /// Which cut generator generated this cut
2716    int * whichGenerator_;
2717    /// Maximum number of statistics
2718    int maximumStatistics_;
2719    /// statistics
2720    CbcStatistics ** statistics_;
2721    /// Maximum depth reached
2722    int maximumDepthActual_;
2723    /// Number of reduced cost fixings
2724    double numberDJFixed_;
2725    /// Probing info
2726    CglTreeProbingInfo * probingInfo_;
2727    /// Number of fixed by analyze at root
2728    int numberFixedAtRoot_;
2729    /// Number fixed by analyze so far
2730    int numberFixedNow_;
2731    /// Whether stopping on gap
2732    bool stoppedOnGap_;
2733    /// Whether event happened
2734    mutable bool eventHappened_;
2735    /// Number of long strong goes
2736    int numberLongStrong_;
2737    /// Number of old active cuts
2738    int numberOldActiveCuts_;
2739    /// Number of new cuts
2740    int numberNewCuts_;
2741    /// Strategy worked out - mainly at root node
2742    int searchStrategy_;
2743    /** Strategy for strong branching
2744        0 - normal
2745        when to do all fractional
2746        1 - root node
2747        2 - depth less than modifier
2748        4 - if objective == best possible
2749        6 - as 2+4
2750        when to do all including satisfied
2751        10 - root node etc.
2752        If >=100 then do when depth <= strategy/100 (otherwise 5)
2753     */
2754    int strongStrategy_;
2755    /// Number of iterations in strong branching
2756    int numberStrongIterations_;
2757    /** 0 - number times strong branching done, 1 - number fixed, 2 - number infeasible
2758        Second group of three is a snapshot at node [6] */
2759    int strongInfo_[7];
2760    /**
2761        For advanced applications you may wish to modify the behavior of Cbc
2762        e.g. if the solver is a NLP solver then you may not have an exact
2763        optimum solution at each step.  This gives characteristics - just for one BAB.
2764        For actually saving/restoring a solution you need the actual solver one.
2765    */
2766    OsiBabSolver * solverCharacteristics_;
2767    /// Whether to force a resolve after takeOffCuts
2768    bool resolveAfterTakeOffCuts_;
2769    /// Maximum number of iterations (designed to be used in heuristics)
2770    int maximumNumberIterations_;
2771    /// Anything with priority >= this can be treated as continuous
2772    int continuousPriority_;
2773    /// Number of outstanding update information items
2774    int numberUpdateItems_;
2775    /// Maximum number of outstanding update information items
2776    int maximumNumberUpdateItems_;
2777    /// Update items
2778    CbcObjectUpdateData * updateItems_;
2779    /// Stored row cuts for donor/recipient CbcModel
2780    CglStored * storedRowCuts_;
2781    /**
2782       Parallel
2783       0 - off
2784       1 - testing
2785       2-99 threads
2786       other special meanings
2787    */
2788    int numberThreads_;
2789    /** thread mode
2790        always use numberThreads for branching
2791        1 set then deterministic
2792        2 set then use numberThreads for root cuts
2793        4 set then use numberThreads in root mini branch and bound
2794        default is 0
2795    */
2796    int threadMode_;
2797    /// Thread stuff for master
2798    CbcBaseModel * master_;
2799    /// Pointer to masterthread
2800    CbcThread * masterThread_;
2801//@}
2802};
2803/// So we can use osiObject or CbcObject during transition
2804void getIntegerInformation(const OsiObject * object, double & originalLower,
2805                           double & originalUpper) ;
2806// So we can call from other programs
2807// Real main program
2808class OsiClpSolverInterface;
2809int CbcMain (int argc, const char *argv[], OsiClpSolverInterface & solver, CbcModel ** babSolver);
2810int CbcMain (int argc, const char *argv[], CbcModel & babSolver);
2811// four ways of calling
2812int callCbc(const char * input2, OsiClpSolverInterface& solver1);
2813int callCbc(const char * input2);
2814int callCbc(const std::string input2, OsiClpSolverInterface& solver1);
2815int callCbc(const std::string input2) ;
2816// When we want to load up CbcModel with options first
2817void CbcMain0 (CbcModel & babSolver);
2818int CbcMain1 (int argc, const char *argv[], CbcModel & babSolver);
2819// two ways of calling
2820int callCbc(const char * input2, CbcModel & babSolver);
2821int callCbc(const std::string input2, CbcModel & babSolver);
2822// And when CbcMain0 already called to initialize
2823int callCbc1(const char * input2, CbcModel & babSolver);
2824int callCbc1(const std::string input2, CbcModel & babSolver);
2825// And when CbcMain0 already called to initialize (with call back) (see CbcMain1 for whereFrom)
2826int callCbc1(const char * input2, CbcModel & babSolver, int (CbcModel * currentSolver, int whereFrom));
2827int callCbc1(const std::string input2, CbcModel & babSolver, int (CbcModel * currentSolver, int whereFrom));
2828int CbcMain1 (int argc, const char *argv[], CbcModel & babSolver, int (CbcModel * currentSolver, int whereFrom));
2829// For uniform setting of cut and heuristic options
2830void setCutAndHeuristicOptions(CbcModel & model);
2831#endif
2832
Note: See TracBrowser for help on using the repository browser.