source: trunk/Cbc/src/CbcModel.hpp @ 1725

Last change on this file since 1725 was 1725, checked in by forrest, 9 years ago

more control over message handling

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 97.2 KB
Line 
1/* $Id: CbcModel.hpp 1725 2011-09-12 07:43:22Z forrest $ */
2// Copyright (C) 2002, International Business Machines
3// Corporation and others.  All Rights Reserved.
4// This code is licensed under the terms of the Eclipse Public License (EPL).
5
6#ifndef CbcModel_H
7#define CbcModel_H
8#include <string>
9#include <vector>
10#include "CoinMessageHandler.hpp"
11#include "OsiSolverInterface.hpp"
12#include "OsiBranchingObject.hpp"
13#include "OsiCuts.hpp"
14#include "CoinWarmStartBasis.hpp"
15#include "CbcCompareBase.hpp"
16#include "CbcMessage.hpp"
17#include "CbcEventHandler.hpp"
18#include "ClpDualRowPivot.hpp"
19
20
21class CbcCutGenerator;
22class CbcBaseModel;
23class OsiRowCut;
24class OsiBabSolver;
25class OsiRowCutDebugger;
26class CglCutGenerator;
27class CglStored;
28class CbcCutModifier;
29class CglTreeProbingInfo;
30class CbcHeuristic;
31class OsiObject;
32class CbcThread;
33class CbcTree;
34class CbcStrategy;
35class CbcFeasibilityBase;
36class CbcStatistics;
37class CbcEventHandler ;
38class CglPreProcess;
39# ifdef COIN_HAS_CLP
40class OsiClpSolverInterface;
41class ClpNodeStuff;
42#endif
43// #define CBC_CHECK_BASIS 1
44
45//#############################################################################
46
47/** Simple Branch and bound class
48
49  The initialSolve() method solves the initial LP relaxation of the MIP
50  problem. The branchAndBound() method can then be called to finish using
51  a branch and cut algorithm.
52
53  <h3>Search Tree Traversal</h3>
54
55  Subproblems (aka nodes) requiring additional evaluation are stored using
56  the CbcNode and CbcNodeInfo objects. Ancestry linkage is maintained in the
57  CbcNodeInfo object. Evaluation of a subproblem within branchAndBound()
58  proceeds as follows:
59  <ul>
60    <li> The node representing the most promising parent subproblem is popped
61         from the heap which holds the set of subproblems requiring further
62         evaluation.
63    <li> Using branching instructions stored in the node, and information in
64         its ancestors, the model and solver are adjusted to create the
65         active subproblem.
66    <li> If the parent subproblem will require further evaluation
67         (<i>i.e.</i>, there are branches remaining) its node is pushed back
68         on the heap. Otherwise, the node is deleted.  This may trigger
69         recursive deletion of ancestors.
70    <li> The newly created subproblem is evaluated.
71    <li> If the subproblem requires further evaluation, a node is created.
72         All information needed to recreate the subproblem (branching
73         information, row and column cuts) is placed in the node and the node
74         is added to the set of subproblems awaiting further evaluation.
75  </ul>
76  Note that there is never a node representing the active subproblem; the model
77  and solver represent the active subproblem.
78
79  <h3>Row (Constraint) Cut Handling</h3>
80
81  For a typical subproblem, the sequence of events is as follows:
82  <ul>
83    <li> The subproblem is rebuilt for further evaluation: One result of a
84         call to addCuts() is a traversal of ancestors, leaving a list of all
85         cuts used in the ancestors in #addedCuts_. This list is then scanned
86         to construct a basis that includes only tight cuts. Entries for
87         loose cuts are set to NULL.
88    <li> The subproblem is evaluated: One result of a call to solveWithCuts()
89         is the return of a set of newly generated cuts for the subproblem.
90         #addedCuts_ is also kept up-to-date as old cuts become loose.
91    <li> The subproblem is stored for further processing: A call to
92         CbcNodeInfo::addCuts() adds the newly generated cuts to the
93         CbcNodeInfo object associated with this node.
94  </ul>
95  See CbcCountRowCut for details of the bookkeeping associated with cut
96  management.
97*/
98
99class CbcModel  {
100
101public:
102
103    enum CbcIntParam {
104        /** The maximum number of nodes before terminating */
105        CbcMaxNumNode = 0,
106        /** The maximum number of solutions before terminating */
107        CbcMaxNumSol,
108        /** Fathoming discipline
109
110          Controls objective function comparisons for purposes of fathoming by bound
111          or determining monotonic variables.
112
113          If 1, action is taken only when the current objective is strictly worse
114          than the target. Implementation is handled by adding a small tolerance to
115          the target.
116        */
117        CbcFathomDiscipline,
118        /** Adjusts printout
119            1 does different node message with number unsatisfied on last branch
120        */
121        CbcPrinting,
122        /** Number of branches (may be more than number of nodes as may
123            include strong branching) */
124        CbcNumberBranches,
125        /** Just a marker, so that a static sized array can store parameters. */
126        CbcLastIntParam
127    };
128
129    enum CbcDblParam {
130        /** The maximum amount the value of an integer variable can vary from
131            integer and still be considered feasible. */
132        CbcIntegerTolerance = 0,
133        /** The objective is assumed to worsen by this amount for each
134            integer infeasibility. */
135        CbcInfeasibilityWeight,
136        /** The amount by which to tighten the objective function cutoff when
137            a new solution is discovered. */
138        CbcCutoffIncrement,
139        /** Stop when the gap between the objective value of the best known solution
140          and the best bound on the objective of any solution is less than this.
141
142          This is an absolute value. Conversion from a percentage is left to the
143          client.
144        */
145        CbcAllowableGap,
146        /** Stop when the gap between the objective value of the best known solution
147          and the best bound on the objective of any solution is less than this
148          fraction of of the absolute value of best known solution.
149
150          Code stops if either this test or CbcAllowableGap test succeeds
151        */
152        CbcAllowableFractionGap,
153        /** \brief The maximum number of seconds before terminating.
154               A double should be adequate! */
155        CbcMaximumSeconds,
156        /// Cutoff - stored for speed
157        CbcCurrentCutoff,
158        /// Optimization direction - stored for speed
159        CbcOptimizationDirection,
160        /// Current objective value
161        CbcCurrentObjectiveValue,
162        /// Current minimization objective value
163        CbcCurrentMinimizationObjectiveValue,
164        /** \brief The time at start of model.
165               So that other pieces of code can access */
166        CbcStartSeconds,
167        /** Stop doing heuristics when the gap between the objective value of the
168            best known solution and the best bound on the objective of any solution
169            is less than this.
170
171          This is an absolute value. Conversion from a percentage is left to the
172          client.
173        */
174        CbcHeuristicGap,
175        /** Stop doing heuristics when the gap between the objective value of the
176            best known solution and the best bound on the objective of any solution
177            is less than this fraction of of the absolute value of best known
178            solution.
179
180          Code stops if either this test or CbcAllowableGap test succeeds
181        */
182        CbcHeuristicFractionGap,
183        /// Smallest non-zero change on a branch
184        CbcSmallestChange,
185        /// Sum of non-zero changes on a branch
186        CbcSumChange,
187        /// Largest non-zero change on a branch
188        CbcLargestChange,
189        /// Small non-zero change on a branch to be used as guess
190        CbcSmallChange,
191        /** Just a marker, so that a static sized array can store parameters. */
192        CbcLastDblParam
193    };
194
195    //---------------------------------------------------------------------------
196
197public:
198    ///@name Solve methods
199    //@{
200    /** \brief Solve the initial LP relaxation
201
202      Invoke the solver's %initialSolve() method.
203    */
204    void initialSolve();
205
206    /** \brief Invoke the branch \& cut algorithm
207
208      The method assumes that initialSolve() has been called to solve the
209      LP relaxation. It processes the root node, then proceeds to explore the
210      branch & cut search tree. The search ends when the tree is exhausted or
211      one of several execution limits is reached.
212      If doStatistics is 1 summary statistics are printed
213      if 2 then also the path to best solution (if found by branching)
214      if 3 then also one line per node
215    */
216    void branchAndBound(int doStatistics = 0);
217private:
218
219    /** \brief Evaluate a subproblem using cutting planes and heuristics
220
221      The method invokes a main loop which generates cuts, applies heuristics,
222      and reoptimises using the solver's native %resolve() method.
223      It returns true if the subproblem remains feasible at the end of the
224      evaluation.
225    */
226    bool solveWithCuts(OsiCuts & cuts, int numberTries, CbcNode * node);
227    /** Generate one round of cuts - serial mode
228      returns -
229      0 - normal
230      1 - must keep going
231      2 - set numberTries to zero
232      -1 - infeasible
233    */
234    int serialCuts(OsiCuts & cuts, CbcNode * node, OsiCuts & slackCuts, int lastNumberCuts);
235    /** Generate one round of cuts - parallel mode
236        returns -
237        0 - normal
238        1 - must keep going
239        2 - set numberTries to zero
240        -1 - infeasible
241    */
242    int parallelCuts(CbcBaseModel * master, OsiCuts & cuts, CbcNode * node, OsiCuts & slackCuts, int lastNumberCuts);
243    /** Input one node output N nodes to put on tree and optional solution update
244        This should be able to operate in parallel so is given a solver and is const(ish)
245        However we will need to keep an array of solver_ and bases and more
246        status is 0 for normal, 1 if solution
247        Calling code should always push nodes back on tree
248    */
249    CbcNode ** solveOneNode(int whichSolver, CbcNode * node,
250                            int & numberNodesOutput, int & status) ;
251    /// Update size of whichGenerator
252    void resizeWhichGenerator(int numberNow, int numberAfter);
253public:
254#ifdef CBC_KEEP_DEPRECATED
255    // See if anyone is using these any more!!
256    /** \brief create a clean model from partially fixed problem
257
258      The method creates a new model with given bounds and with no tree.
259    */
260    CbcModel *  cleanModel(const double * lower, const double * upper);
261    /** \brief Invoke the branch \& cut algorithm on partially fixed problem
262
263      The method presolves the given model and does branch and cut. The search
264      ends when the tree is exhausted or maximum nodes is reached.
265
266      If better solution found then it is saved.
267
268      Returns 0 if search completed and solution, 1 if not completed and solution,
269      2 if completed and no solution, 3 if not completed and no solution.
270
271      Normally okay to do cleanModel immediately followed by subBranchandBound
272      (== other form of subBranchAndBound)
273      but may need to get at model for advanced features.
274
275      Deletes model2
276    */
277    int subBranchAndBound(CbcModel * model2,
278                          CbcModel * presolvedModel,
279                          int maximumNodes);
280    /** \brief Invoke the branch \& cut algorithm on partially fixed problem
281
282      The method creates a new model with given bounds, presolves it
283      then proceeds to explore the branch & cut search tree. The search
284      ends when the tree is exhausted or maximum nodes is reached.
285
286      If better solution found then it is saved.
287
288      Returns 0 if search completed and solution, 1 if not completed and solution,
289      2 if completed and no solution, 3 if not completed and no solution.
290
291      This is just subModel immediately followed by other version of
292      subBranchandBound.
293
294    */
295    int subBranchAndBound(const double * lower, const double * upper,
296                          int maximumNodes);
297
298    /** \brief Process root node and return a strengthened model
299
300      The method assumes that initialSolve() has been called to solve the
301      LP relaxation. It processes the root node and then returns a pointer
302      to the strengthened model (or NULL if infeasible)
303    */
304    OsiSolverInterface *  strengthenedModel();
305    /** preProcess problem - replacing solver
306        If makeEquality true then <= cliques converted to ==.
307        Presolve will be done numberPasses times.
308
309        Returns NULL if infeasible
310
311        If makeEquality is 1 add slacks to get cliques,
312        if 2 add slacks to get sos (but only if looks plausible) and keep sos info
313    */
314    CglPreProcess * preProcess( int makeEquality = 0, int numberPasses = 5,
315                                int tuning = 5);
316    /** Does postprocessing - original solver back.
317        User has to delete process */
318    void postProcess(CglPreProcess * process);
319#endif
320    /// Adds an update information object
321    void addUpdateInformation(const CbcObjectUpdateData & data);
322    /** Do one node - broken out for clarity?
323        also for parallel (when baseModel!=this)
324        Returns 1 if solution found
325        node NULL on return if no branches left
326        newNode NULL if no new node created
327    */
328    int doOneNode(CbcModel * baseModel, CbcNode * & node, CbcNode * & newNode);
329
330public:
331    /** \brief Reoptimise an LP relaxation
332
333      Invoke the solver's %resolve() method.
334      whereFrom -
335      0 - initial continuous
336      1 - resolve on branch (before new cuts)
337      2 - after new cuts
338      3  - obsolete code or something modified problem in unexpected way
339      10 - after strong branching has fixed variables at root
340      11 - after strong branching has fixed variables in tree
341
342      returns 1 feasible, 0 infeasible, -1 feasible but skip cuts
343    */
344    int resolve(CbcNodeInfo * parent, int whereFrom,
345                double * saveSolution = NULL,
346                double * saveLower = NULL,
347                double * saveUpper = NULL);
348    /// Make given rows (L or G) into global cuts and remove from lp
349    void makeGlobalCuts(int numberRows, const int * which);
350    /// Make given cut into a global cut
351    void makeGlobalCut(const OsiRowCut * cut);
352    /// Make given cut into a global cut
353    void makeGlobalCut(const OsiRowCut & cut);
354    /// Make given column cut into a global cut
355    void makeGlobalCut(const OsiColCut * cut);
356    /// Make given column cut into a global cut
357    void makeGlobalCut(const OsiColCut & cut);
358    //@}
359
360    /** \name Presolve methods */
361    //@{
362
363    /** Identify cliques and construct corresponding objects.
364
365        Find cliques with size in the range
366        [\p atLeastThisMany, \p lessThanThis] and construct corresponding
367        CbcClique objects.
368        If \p makeEquality is true then a new model may be returned if
369        modifications had to be made, otherwise \c this is returned.
370        If the problem is infeasible #numberObjects_ is set to -1.
371        A client must use deleteObjects() before a second call to findCliques().
372        If priorities exist, clique priority is set to the default.
373    */
374    CbcModel * findCliques(bool makeEquality, int atLeastThisMany,
375                           int lessThanThis, int defaultValue = 1000);
376
377    /** Do integer presolve, creating a new (presolved) model.
378
379      Returns the new model, or NULL if feasibility is lost.
380      If weak is true then just does a normal presolve
381
382      \todo It remains to work out the cleanest way of getting a solution to
383            the original problem at the end. So this is very preliminary.
384     */
385    CbcModel * integerPresolve(bool weak = false);
386
387    /** Do integer presolve, modifying the current model.
388
389        Returns true if the model remains feasible after presolve.
390    */
391    bool integerPresolveThisModel(OsiSolverInterface * originalSolver, bool weak = false);
392
393
394    /// Put back information into the original model after integer presolve.
395    void originalModel(CbcModel * presolvedModel, bool weak);
396
397    /** \brief For variables involved in VUB constraints, see if we can tighten
398           bounds by solving lp's
399
400        Returns false if feasibility is lost.
401        If CglProbing is available, it will be tried as well to see if it can
402        tighten bounds.
403        This routine is just a front end for tightenVubs(int,const int*,double).
404
405        If <tt>type = -1</tt> all variables are processed (could be very slow).
406        If <tt>type = 0</tt> only variables involved in VUBs are processed.
407        If <tt>type = n > 0</tt>, only the n most expensive VUB variables
408        are processed, where it is assumed that x is at its maximum so delta
409        would have to go to 1 (if x not at bound).
410
411        If \p allowMultipleBinary is true, then a VUB constraint is a row with
412        one continuous variable and any number of binary variables.
413
414        If <tt>useCutoff < 1.0e30</tt>, the original objective is installed as a
415        constraint with \p useCutoff as a bound.
416    */
417    bool tightenVubs(int type, bool allowMultipleBinary = false,
418                     double useCutoff = 1.0e50);
419
420    /** \brief For variables involved in VUB constraints, see if we can tighten
421           bounds by solving lp's
422
423      This version is just handed a list of variables to be processed.
424    */
425    bool tightenVubs(int numberVubs, const int * which,
426                     double useCutoff = 1.0e50);
427    /**
428      Analyze problem to find a minimum change in the objective function.
429    */
430    void analyzeObjective();
431
432    /**
433      Add additional integers.
434    */
435    void AddIntegers();
436
437    /**
438      Save copy of the model.
439    */
440    void saveModel(OsiSolverInterface * saveSolver, double * checkCutoffForRestart, bool * feasible);
441
442    //@}
443
444    /** \name Object manipulation routines
445
446      See OsiObject for an explanation of `object' in the context of CbcModel.
447    */
448    //@{
449
450    /// Get the number of objects
451    inline int numberObjects() const {
452        return numberObjects_;
453    }
454    /// Set the number of objects
455    inline void setNumberObjects(int number) {
456        numberObjects_ = number;
457    }
458
459    /// Get the array of objects
460    inline OsiObject ** objects() const {
461        return object_;
462    }
463
464    /// Get the specified object
465    const inline OsiObject * object(int which) const {
466        return object_[which];
467    }
468    /// Get the specified object
469    inline OsiObject * modifiableObject(int which) const {
470        return object_[which];
471    }
472
473    void setOptionalInteger(int index);
474
475    /// Delete all object information (and just back to integers if true)
476    void deleteObjects(bool findIntegers = true);
477
478    /** Add in object information.
479
480      Objects are cloned; the owner can delete the originals.
481    */
482    void addObjects(int numberObjects, OsiObject ** objects);
483
484    /** Add in object information.
485
486      Objects are cloned; the owner can delete the originals.
487    */
488    void addObjects(int numberObjects, CbcObject ** objects);
489
490    /// Ensure attached objects point to this model.
491    void synchronizeModel() ;
492
493    /** \brief Identify integer variables and create corresponding objects.
494
495      Record integer variables and create an CbcSimpleInteger object for each
496      one.
497      If \p startAgain is true, a new scan is forced, overwriting any existing
498      integer variable information.
499      If type > 0 then 1==PseudoCost, 2 new ones low priority
500    */
501
502    void findIntegers(bool startAgain, int type = 0);
503
504    //@}
505
506    //---------------------------------------------------------------------------
507
508    /**@name Parameter set/get methods
509
510       The set methods return true if the parameter was set to the given value,
511       false if the value of the parameter is out of range.
512
513       The get methods return the value of the parameter.
514
515    */
516    //@{
517    /// Set an integer parameter
518    inline bool setIntParam(CbcIntParam key, int value) {
519        intParam_[key] = value;
520        return true;
521    }
522    /// Set a double parameter
523    inline bool setDblParam(CbcDblParam key, double value) {
524        dblParam_[key] = value;
525        return true;
526    }
527    /// Get an integer parameter
528    inline int getIntParam(CbcIntParam key) const {
529        return intParam_[key];
530    }
531    /// Get a double parameter
532    inline double getDblParam(CbcDblParam key) const {
533        return dblParam_[key];
534    }
535    /*! \brief Set cutoff bound on the objective function.
536
537      When using strict comparison, the bound is adjusted by a tolerance to
538      avoid accidentally cutting off the optimal solution.
539    */
540    void setCutoff(double value) ;
541
542    /// Get the cutoff bound on the objective function - always as minimize
543    inline double getCutoff() const { //double value ;
544        //solver_->getDblParam(OsiDualObjectiveLimit,value) ;
545        //assert( dblParam_[CbcCurrentCutoff]== value * solver_->getObjSense());
546        return dblParam_[CbcCurrentCutoff];
547    }
548
549    /// Set the \link CbcModel::CbcMaxNumNode maximum node limit \endlink
550    inline bool setMaximumNodes( int value) {
551        return setIntParam(CbcMaxNumNode, value);
552    }
553
554    /// Get the \link CbcModel::CbcMaxNumNode maximum node limit \endlink
555    inline int getMaximumNodes() const {
556        return getIntParam(CbcMaxNumNode);
557    }
558
559    /** Set the
560        \link CbcModel::CbcMaxNumSol maximum number of solutions \endlink
561        desired.
562    */
563    inline bool setMaximumSolutions( int value) {
564        return setIntParam(CbcMaxNumSol, value);
565    }
566    /** Get the
567        \link CbcModel::CbcMaxNumSol maximum number of solutions \endlink
568        desired.
569    */
570    inline int getMaximumSolutions() const {
571        return getIntParam(CbcMaxNumSol);
572    }
573    /// Set the printing mode
574    inline bool setPrintingMode( int value) {
575        return setIntParam(CbcPrinting, value);
576    }
577
578    /// Get the printing mode
579    inline int getPrintingMode() const {
580        return getIntParam(CbcPrinting);
581    }
582
583    /** Set the
584        \link CbcModel::CbcMaximumSeconds maximum number of seconds \endlink
585        desired.
586    */
587    inline bool setMaximumSeconds( double value) {
588        return setDblParam(CbcMaximumSeconds, value);
589    }
590    /** Get the
591        \link CbcModel::CbcMaximumSeconds maximum number of seconds \endlink
592        desired.
593    */
594    inline double getMaximumSeconds() const {
595        return getDblParam(CbcMaximumSeconds);
596    }
597    /// Current time since start of branchAndbound
598    double getCurrentSeconds() const ;
599
600    /// Return true if maximum time reached
601    bool maximumSecondsReached() const ;
602
603    /** Set the
604      \link CbcModel::CbcIntegerTolerance integrality tolerance \endlink
605    */
606    inline bool setIntegerTolerance( double value) {
607        return setDblParam(CbcIntegerTolerance, value);
608    }
609    /** Get the
610      \link CbcModel::CbcIntegerTolerance integrality tolerance \endlink
611    */
612    inline double getIntegerTolerance() const {
613        return getDblParam(CbcIntegerTolerance);
614    }
615
616    /** Set the
617        \link CbcModel::CbcInfeasibilityWeight
618          weight per integer infeasibility \endlink
619    */
620    inline bool setInfeasibilityWeight( double value) {
621        return setDblParam(CbcInfeasibilityWeight, value);
622    }
623    /** Get the
624        \link CbcModel::CbcInfeasibilityWeight
625          weight per integer infeasibility \endlink
626    */
627    inline double getInfeasibilityWeight() const {
628        return getDblParam(CbcInfeasibilityWeight);
629    }
630
631    /** Set the \link CbcModel::CbcAllowableGap allowable gap \endlink
632        between the best known solution and the best possible solution.
633    */
634    inline bool setAllowableGap( double value) {
635        return setDblParam(CbcAllowableGap, value);
636    }
637    /** Get the \link CbcModel::CbcAllowableGap allowable gap \endlink
638        between the best known solution and the best possible solution.
639    */
640    inline double getAllowableGap() const {
641        return getDblParam(CbcAllowableGap);
642    }
643
644    /** Set the \link CbcModel::CbcAllowableFractionGap fraction allowable gap \endlink
645        between the best known solution and the best possible solution.
646    */
647    inline bool setAllowableFractionGap( double value) {
648        return setDblParam(CbcAllowableFractionGap, value);
649    }
650    /** Get the \link CbcModel::CbcAllowableFractionGap fraction allowable gap \endlink
651        between the best known solution and the best possible solution.
652    */
653    inline double getAllowableFractionGap() const {
654        return getDblParam(CbcAllowableFractionGap);
655    }
656    /** Set the \link CbcModel::CbcAllowableFractionGap percentage allowable gap \endlink
657        between the best known solution and the best possible solution.
658    */
659    inline bool setAllowablePercentageGap( double value) {
660        return setDblParam(CbcAllowableFractionGap, value*0.01);
661    }
662    /** Get the \link CbcModel::CbcAllowableFractionGap percentage allowable gap \endlink
663        between the best known solution and the best possible solution.
664    */
665    inline double getAllowablePercentageGap() const {
666        return 100.0*getDblParam(CbcAllowableFractionGap);
667    }
668    /** Set the \link CbcModel::CbcHeuristicGap heuristic gap \endlink
669        between the best known solution and the best possible solution.
670    */
671    inline bool setHeuristicGap( double value) {
672        return setDblParam(CbcHeuristicGap, value);
673    }
674    /** Get the \link CbcModel::CbcHeuristicGap heuristic gap \endlink
675        between the best known solution and the best possible solution.
676    */
677    inline double getHeuristicGap() const {
678        return getDblParam(CbcHeuristicGap);
679    }
680
681    /** Set the \link CbcModel::CbcHeuristicFractionGap fraction heuristic gap \endlink
682        between the best known solution and the best possible solution.
683    */
684    inline bool setHeuristicFractionGap( double value) {
685        return setDblParam(CbcHeuristicFractionGap, value);
686    }
687    /** Get the \link CbcModel::CbcHeuristicFractionGap fraction heuristic gap \endlink
688        between the best known solution and the best possible solution.
689    */
690    inline double getHeuristicFractionGap() const {
691        return getDblParam(CbcHeuristicFractionGap);
692    }
693    /** Set the
694        \link CbcModel::CbcCutoffIncrement  \endlink
695        desired.
696    */
697    inline bool setCutoffIncrement( double value) {
698        return setDblParam(CbcCutoffIncrement, value);
699    }
700    /** Get the
701        \link CbcModel::CbcCutoffIncrement  \endlink
702        desired.
703    */
704    inline double getCutoffIncrement() const {
705        return getDblParam(CbcCutoffIncrement);
706    }
707    /// See if can stop on gap
708    bool canStopOnGap() const;
709
710    /** Pass in target solution and optional priorities.
711        If priorities then >0 means only branch if incorrect
712        while <0 means branch even if correct. +1 or -1 are
713        highest priority */
714    void setHotstartSolution(const double * solution, const int * priorities = NULL) ;
715
716    /// Set the minimum drop to continue cuts
717    inline void setMinimumDrop(double value) {
718        minimumDrop_ = value;
719    }
720    /// Get the minimum drop to continue cuts
721    inline double getMinimumDrop() const {
722        return minimumDrop_;
723    }
724
725    /** Set the maximum number of cut passes at root node (default 20)
726        Minimum drop can also be used for fine tuning */
727    inline void setMaximumCutPassesAtRoot(int value) {
728        maximumCutPassesAtRoot_ = value;
729    }
730    /** Get the maximum number of cut passes at root node */
731    inline int getMaximumCutPassesAtRoot() const {
732        return maximumCutPassesAtRoot_;
733    }
734
735    /** Set the maximum number of cut passes at other nodes (default 10)
736        Minimum drop can also be used for fine tuning */
737    inline void setMaximumCutPasses(int value) {
738        maximumCutPasses_ = value;
739    }
740    /** Get the maximum number of cut passes at other nodes (default 10) */
741    inline int getMaximumCutPasses() const {
742        return maximumCutPasses_;
743    }
744    /** Get current cut pass number in this round of cuts.
745        (1 is first pass) */
746    inline int getCurrentPassNumber() const {
747        return currentPassNumber_;
748    }
749
750    /** Set the maximum number of candidates to be evaluated for strong
751      branching.
752
753      A value of 0 disables strong branching.
754    */
755    void setNumberStrong(int number);
756    /** Get the maximum number of candidates to be evaluated for strong
757      branching.
758    */
759    inline int numberStrong() const {
760        return numberStrong_;
761    }
762    /** Set global preferred way to branch
763        -1 down, +1 up, 0 no preference */
764    inline void setPreferredWay(int value) {
765        preferredWay_ = value;
766    }
767    /** Get the preferred way to branch (default 0) */
768    inline int getPreferredWay() const {
769        return preferredWay_;
770    }
771    /// Get at which depths to do cuts
772    inline int whenCuts() const {
773        return whenCuts_;
774    }
775    /// Set at which depths to do cuts
776    inline void setWhenCuts(int value) {
777        whenCuts_ = value;
778    }
779    /** Return true if we want to do cuts
780        If allowForTopOfTree zero then just does on multiples of depth
781        if 1 then allows for doing at top of tree
782        if 2 then says if cuts allowed anywhere apart from root
783    */
784    bool doCutsNow(int allowForTopOfTree) const;
785
786    /** Set the number of branches before pseudo costs believed
787        in dynamic strong branching.
788
789      A value of 0 disables dynamic strong branching.
790    */
791    void setNumberBeforeTrust(int number);
792    /** get the number of branches before pseudo costs believed
793        in dynamic strong branching. */
794    inline int numberBeforeTrust() const {
795        return numberBeforeTrust_;
796    }
797    /** Set the number of variables for which to compute penalties
798        in dynamic strong branching.
799
800      A value of 0 disables penalties.
801    */
802    void setNumberPenalties(int number);
803    /** get the number of variables for which to compute penalties
804        in dynamic strong branching. */
805    inline int numberPenalties() const {
806        return numberPenalties_;
807    }
808    /// Number of analyze iterations to do
809    inline void setNumberAnalyzeIterations(int number) {
810        numberAnalyzeIterations_ = number;
811    }
812    inline int numberAnalyzeIterations() const {
813        return numberAnalyzeIterations_;
814    }
815    /** Get scale factor to make penalties match strong.
816        Should/will be computed */
817    inline double penaltyScaleFactor() const {
818        return penaltyScaleFactor_;
819    }
820    /** Set scale factor to make penalties match strong.
821        Should/will be computed */
822    void setPenaltyScaleFactor(double value);
823    /** Problem type as set by user or found by analysis.  This will be extended
824        0 - not known
825        1 - Set partitioning <=
826        2 - Set partitioning ==
827        3 - Set covering
828        4 - all +- 1 or all +1 and odd
829    */
830    void inline setProblemType(int number) {
831        problemType_ = number;
832    }
833    inline int problemType() const {
834        return problemType_;
835    }
836    /// Current depth
837    inline int currentDepth() const {
838        return currentDepth_;
839    }
840
841    /// Set how often to scan global cuts
842    void setHowOftenGlobalScan(int number);
843    /// Get how often to scan global cuts
844    inline int howOftenGlobalScan() const {
845        return howOftenGlobalScan_;
846    }
847    /// Original columns as created by integerPresolve or preprocessing
848    inline int * originalColumns() const {
849        return originalColumns_;
850    }
851    /// Set original columns as created by preprocessing
852    void setOriginalColumns(const int * originalColumns) ;
853
854    /** Set the print frequency.
855
856      Controls the number of nodes evaluated between status prints.
857      If <tt>number <=0</tt> the print frequency is set to 100 nodes for large
858      problems, 1000 for small problems.
859      Print frequency has very slight overhead if small.
860    */
861    inline void setPrintFrequency(int number) {
862        printFrequency_ = number;
863    }
864    /// Get the print frequency
865    inline int printFrequency() const {
866        return printFrequency_;
867    }
868    //@}
869
870    //---------------------------------------------------------------------------
871    ///@name Methods returning info on how the solution process terminated
872    //@{
873    /// Are there a numerical difficulties?
874    bool isAbandoned() const;
875    /// Is optimality proven?
876    bool isProvenOptimal() const;
877    /// Is  infeasiblity proven (or none better than cutoff)?
878    bool isProvenInfeasible() const;
879    /// Was continuous solution unbounded
880    bool isContinuousUnbounded() const;
881    /// Was continuous solution unbounded
882    bool isProvenDualInfeasible() const;
883    /// Node limit reached?
884    bool isNodeLimitReached() const;
885    /// Time limit reached?
886    bool isSecondsLimitReached() const;
887    /// Solution limit reached?
888    bool isSolutionLimitReached() const;
889    /// Get how many iterations it took to solve the problem.
890    inline int getIterationCount() const {
891        return numberIterations_;
892    }
893    /// Increment how many iterations it took to solve the problem.
894    inline void incrementIterationCount(int value) {
895        numberIterations_ += value;
896    }
897    /// Get how many Nodes it took to solve the problem.
898    inline int getNodeCount() const {
899        return numberNodes_;
900    }
901    /// Increment how many nodes it took to solve the problem.
902    inline void incrementNodeCount(int value) {
903        numberNodes_ += value;
904    }
905    /** Final status of problem
906        Some of these can be found out by is...... functions
907        -1 before branchAndBound
908        0 finished - check isProvenOptimal or isProvenInfeasible to see if solution found
909        (or check value of best solution)
910        1 stopped - on maxnodes, maxsols, maxtime
911        2 difficulties so run was abandoned
912        (5 event user programmed event occurred)
913    */
914    inline int status() const {
915        return status_;
916    }
917    inline void setProblemStatus(int value) {
918        status_ = value;
919    }
920    /** Secondary status of problem
921        -1 unset (status_ will also be -1)
922        0 search completed with solution
923        1 linear relaxation not feasible (or worse than cutoff)
924        2 stopped on gap
925        3 stopped on nodes
926        4 stopped on time
927        5 stopped on user event
928        6 stopped on solutions
929        7 linear relaxation unbounded
930    */
931    inline int secondaryStatus() const {
932        return secondaryStatus_;
933    }
934    inline void setSecondaryStatus(int value) {
935        secondaryStatus_ = value;
936    }
937    /// Are there numerical difficulties (for initialSolve) ?
938    bool isInitialSolveAbandoned() const ;
939    /// Is optimality proven (for initialSolve) ?
940    bool isInitialSolveProvenOptimal() const ;
941    /// Is primal infeasiblity proven (for initialSolve) ?
942    bool isInitialSolveProvenPrimalInfeasible() const ;
943    /// Is dual infeasiblity proven (for initialSolve) ?
944    bool isInitialSolveProvenDualInfeasible() const ;
945
946    //@}
947
948    //---------------------------------------------------------------------------
949    /**@name Problem information methods
950
951       These methods call the solver's query routines to return
952       information about the problem referred to by the current object.
953       Querying a problem that has no data associated with it result in
954       zeros for the number of rows and columns, and NULL pointers from
955       the methods that return vectors.
956
957       Const pointers returned from any data-query method are valid as
958       long as the data is unchanged and the solver is not called.
959    */
960    //@{
961    /// Number of rows in continuous (root) problem.
962    inline int numberRowsAtContinuous() const {
963        return numberRowsAtContinuous_;
964    }
965
966    /// Get number of columns
967    inline int getNumCols() const {
968        return solver_->getNumCols();
969    }
970
971    /// Get number of rows
972    inline int getNumRows() const {
973        return solver_->getNumRows();
974    }
975
976    /// Get number of nonzero elements
977    inline CoinBigIndex getNumElements() const {
978        return solver_->getNumElements();
979    }
980
981    /// Number of integers in problem
982    inline int numberIntegers() const {
983        return numberIntegers_;
984    }
985    // Integer variables
986    inline const int * integerVariable() const {
987        return integerVariable_;
988    }
989    /// Whether or not integer
990    inline char integerType(int i) const {
991        assert (integerInfo_);
992        assert (integerInfo_[i] == 0 || integerInfo_[i] == 1);
993        return integerInfo_[i];
994    }
995    /// Whether or not integer
996    inline const char * integerType() const {
997        return integerInfo_;
998    }
999
1000    /// Get pointer to array[getNumCols()] of column lower bounds
1001    inline const double * getColLower() const {
1002        return solver_->getColLower();
1003    }
1004
1005    /// Get pointer to array[getNumCols()] of column upper bounds
1006    inline const double * getColUpper() const {
1007        return solver_->getColUpper();
1008    }
1009
1010    /** Get pointer to array[getNumRows()] of row constraint senses.
1011        <ul>
1012        <li>'L': <= constraint
1013        <li>'E': =  constraint
1014        <li>'G': >= constraint
1015        <li>'R': ranged constraint
1016        <li>'N': free constraint
1017        </ul>
1018    */
1019    inline const char * getRowSense() const {
1020        return solver_->getRowSense();
1021    }
1022
1023    /** Get pointer to array[getNumRows()] of rows right-hand sides
1024        <ul>
1025        <li> if rowsense()[i] == 'L' then rhs()[i] == rowupper()[i]
1026        <li> if rowsense()[i] == 'G' then rhs()[i] == rowlower()[i]
1027        <li> if rowsense()[i] == 'R' then rhs()[i] == rowupper()[i]
1028        <li> if rowsense()[i] == 'N' then rhs()[i] == 0.0
1029        </ul>
1030    */
1031    inline const double * getRightHandSide() const {
1032        return solver_->getRightHandSide();
1033    }
1034
1035    /** Get pointer to array[getNumRows()] of row ranges.
1036        <ul>
1037        <li> if rowsense()[i] == 'R' then
1038        rowrange()[i] == rowupper()[i] - rowlower()[i]
1039        <li> if rowsense()[i] != 'R' then
1040        rowrange()[i] is 0.0
1041        </ul>
1042    */
1043    inline const double * getRowRange() const {
1044        return solver_->getRowRange();
1045    }
1046
1047    /// Get pointer to array[getNumRows()] of row lower bounds
1048    inline const double * getRowLower() const {
1049        return solver_->getRowLower();
1050    }
1051
1052    /// Get pointer to array[getNumRows()] of row upper bounds
1053    inline const double * getRowUpper() const {
1054        return solver_->getRowUpper();
1055    }
1056
1057    /// Get pointer to array[getNumCols()] of objective function coefficients
1058    inline const double * getObjCoefficients() const {
1059        return solver_->getObjCoefficients();
1060    }
1061
1062    /// Get objective function sense (1 for min (default), -1 for max)
1063    inline double getObjSense() const {
1064        //assert (dblParam_[CbcOptimizationDirection]== solver_->getObjSense());
1065        return dblParam_[CbcOptimizationDirection];
1066    }
1067
1068    /// Return true if variable is continuous
1069    inline bool isContinuous(int colIndex) const {
1070        return solver_->isContinuous(colIndex);
1071    }
1072
1073    /// Return true if variable is binary
1074    inline bool isBinary(int colIndex) const {
1075        return solver_->isBinary(colIndex);
1076    }
1077
1078    /** Return true if column is integer.
1079        Note: This function returns true if the the column
1080        is binary or a general integer.
1081    */
1082    inline bool isInteger(int colIndex) const {
1083        return solver_->isInteger(colIndex);
1084    }
1085
1086    /// Return true if variable is general integer
1087    inline bool isIntegerNonBinary(int colIndex) const {
1088        return solver_->isIntegerNonBinary(colIndex);
1089    }
1090
1091    /// Return true if variable is binary and not fixed at either bound
1092    inline bool isFreeBinary(int colIndex) const {
1093        return solver_->isFreeBinary(colIndex) ;
1094    }
1095
1096    /// Get pointer to row-wise copy of matrix
1097    inline const CoinPackedMatrix * getMatrixByRow() const {
1098        return solver_->getMatrixByRow();
1099    }
1100
1101    /// Get pointer to column-wise copy of matrix
1102    inline const CoinPackedMatrix * getMatrixByCol() const {
1103        return solver_->getMatrixByCol();
1104    }
1105
1106    /// Get solver's value for infinity
1107    inline double getInfinity() const {
1108        return solver_->getInfinity();
1109    }
1110    /// Get pointer to array[getNumCols()] (for speed) of column lower bounds
1111    inline const double * getCbcColLower() const {
1112        return cbcColLower_;
1113    }
1114    /// Get pointer to array[getNumCols()] (for speed) of column upper bounds
1115    inline const double * getCbcColUpper() const {
1116        return cbcColUpper_;
1117    }
1118    /// Get pointer to array[getNumRows()] (for speed) of row lower bounds
1119    inline const double * getCbcRowLower() const {
1120        return cbcRowLower_;
1121    }
1122    /// Get pointer to array[getNumRows()] (for speed) of row upper bounds
1123    inline const double * getCbcRowUpper() const {
1124        return cbcRowUpper_;
1125    }
1126    /// Get pointer to array[getNumCols()] (for speed) of primal solution vector
1127    inline const double * getCbcColSolution() const {
1128        return cbcColSolution_;
1129    }
1130    /// Get pointer to array[getNumRows()] (for speed) of dual prices
1131    inline const double * getCbcRowPrice() const {
1132        return cbcRowPrice_;
1133    }
1134    /// Get a pointer to array[getNumCols()] (for speed) of reduced costs
1135    inline const double * getCbcReducedCost() const {
1136        return cbcReducedCost_;
1137    }
1138    /// Get pointer to array[getNumRows()] (for speed) of row activity levels.
1139    inline const double * getCbcRowActivity() const {
1140        return cbcRowActivity_;
1141    }
1142    //@}
1143
1144
1145    /**@name Methods related to querying the solution */
1146    //@{
1147    /// Holds solution at continuous (after cuts if branchAndBound called)
1148    inline double * continuousSolution() const {
1149        return continuousSolution_;
1150    }
1151    /** Array marked whenever a solution is found if non-zero.
1152        Code marks if heuristic returns better so heuristic
1153        need only mark if it wants to on solutions which
1154        are worse than current */
1155    inline int * usedInSolution() const {
1156        return usedInSolution_;
1157    }
1158    /// Increases usedInSolution for nonzeros
1159    void incrementUsed(const double * solution);
1160    /// Record a new incumbent solution and update objectiveValue
1161    void setBestSolution(CBC_Message how,
1162                         double & objectiveValue, const double *solution,
1163                         int fixVariables = 0);
1164    /// Just update objectiveValue
1165    void setBestObjectiveValue( double objectiveValue);
1166    /// Deals with event handler and solution
1167    CbcEventHandler::CbcAction dealWithEventHandler(CbcEventHandler::CbcEvent event,
1168            double objValue,
1169            const double * solution);
1170
1171    /** Call this to really test if a valid solution can be feasible
1172        Solution is number columns in size.
1173        If fixVariables true then bounds of continuous solver updated.
1174        Returns objective value (worse than cutoff if not feasible)
1175        Previously computed objective value is now passed in (in case user does not do solve)
1176    */
1177    double checkSolution(double cutoff, double * solution,
1178                         int fixVariables, double originalObjValue);
1179    /** Test the current solution for feasiblility.
1180
1181      Scan all objects for indications of infeasibility. This is broken down
1182      into simple integer infeasibility (\p numberIntegerInfeasibilities)
1183      and all other reports of infeasibility (\p numberObjectInfeasibilities).
1184    */
1185    bool feasibleSolution(int & numberIntegerInfeasibilities,
1186                          int & numberObjectInfeasibilities) const;
1187
1188    /** Solution to the most recent lp relaxation.
1189
1190      The solver's solution to the most recent lp relaxation.
1191    */
1192
1193    inline double * currentSolution() const {
1194        return currentSolution_;
1195    }
1196    /** For testing infeasibilities - will point to
1197        currentSolution_ or solver-->getColSolution()
1198    */
1199    inline const double * testSolution() const {
1200        return testSolution_;
1201    }
1202    inline void setTestSolution(const double * solution) {
1203        testSolution_ = solution;
1204    }
1205    /// Make sure region there and optionally copy solution
1206    void reserveCurrentSolution(const double * solution = NULL);
1207
1208    /// Get pointer to array[getNumCols()] of primal solution vector
1209    inline const double * getColSolution() const {
1210        return solver_->getColSolution();
1211    }
1212
1213    /// Get pointer to array[getNumRows()] of dual prices
1214    inline const double * getRowPrice() const {
1215        return solver_->getRowPrice();
1216    }
1217
1218    /// Get a pointer to array[getNumCols()] of reduced costs
1219    inline const double * getReducedCost() const {
1220        return solver_->getReducedCost();
1221    }
1222
1223    /// Get pointer to array[getNumRows()] of row activity levels.
1224    inline const double * getRowActivity() const {
1225        return solver_->getRowActivity();
1226    }
1227
1228    /// Get current objective function value
1229    inline double getCurrentObjValue() const {
1230        return dblParam_[CbcCurrentObjectiveValue];
1231    }
1232    /// Get current minimization objective function value
1233    inline double getCurrentMinimizationObjValue() const {
1234        return dblParam_[CbcCurrentMinimizationObjectiveValue];
1235    }
1236
1237    /// Get best objective function value as minimization
1238    inline double getMinimizationObjValue() const {
1239        return bestObjective_;
1240    }
1241    /// Set best objective function value as minimization
1242    inline void setMinimizationObjValue(double value) {
1243        bestObjective_ = value;
1244    }
1245
1246    /// Get best objective function value
1247    inline double getObjValue() const {
1248        return bestObjective_ * solver_->getObjSense() ;
1249    }
1250    /** Get best possible objective function value.
1251        This is better of best possible left on tree
1252        and best solution found.
1253        If called from within branch and cut may be optimistic.
1254    */
1255    double getBestPossibleObjValue() const;
1256    /// Set best objective function value
1257    inline void setObjValue(double value) {
1258        bestObjective_ = value * solver_->getObjSense() ;
1259    }
1260    /// Get solver objective function value (as minimization)
1261    inline double getSolverObjValue() const {
1262        return solver_->getObjValue() * solver_->getObjSense() ;
1263    }
1264
1265    /** The best solution to the integer programming problem.
1266
1267      The best solution to the integer programming problem found during
1268      the search. If no solution is found, the method returns null.
1269    */
1270
1271    inline double * bestSolution() const {
1272        return bestSolution_;
1273    }
1274    /** User callable setBestSolution.
1275        If check false does not check valid
1276        If true then sees if feasible and warns if objective value
1277        worse than given (so just set to COIN_DBL_MAX if you don't care).
1278        If check true then does not save solution if not feasible
1279    */
1280    void setBestSolution(const double * solution, int numberColumns,
1281                         double objectiveValue, bool check = false);
1282
1283    /// Get number of solutions
1284    inline int getSolutionCount() const {
1285        return numberSolutions_;
1286    }
1287
1288    /// Set number of solutions (so heuristics will be different)
1289    inline void setSolutionCount(int value) {
1290        numberSolutions_ = value;
1291    }
1292    /// Number of saved solutions (including best)
1293    int numberSavedSolutions() const;
1294    /// Maximum number of extra saved solutions
1295    inline int maximumSavedSolutions() const {
1296        return maximumSavedSolutions_;
1297    }
1298    /// Set maximum number of extra saved solutions
1299    void setMaximumSavedSolutions(int value);
1300    /// Return a saved solution (0==best) - NULL if off end
1301    const double * savedSolution(int which) const;
1302    /// Return a saved solution objective (0==best) - COIN_DBL_MAX if off end
1303    double savedSolutionObjective(int which) const;
1304
1305    /** Current phase (so heuristics etc etc can find out).
1306        0 - initial solve
1307        1 - solve with cuts at root
1308        2 - solve with cuts
1309        3 - other e.g. strong branching
1310        4 - trying to validate a solution
1311        5 - at end of search
1312    */
1313    inline int phase() const {
1314        return phase_;
1315    }
1316
1317    /// Get number of heuristic solutions
1318    inline int getNumberHeuristicSolutions() const {
1319        return numberHeuristicSolutions_;
1320    }
1321    /// Set number of heuristic solutions
1322    inline void setNumberHeuristicSolutions(int value) {
1323        numberHeuristicSolutions_ = value;
1324    }
1325
1326    /// Set objective function sense (1 for min (default), -1 for max,)
1327    inline void setObjSense(double s) {
1328        dblParam_[CbcOptimizationDirection] = s;
1329        solver_->setObjSense(s);
1330    }
1331
1332    /// Value of objective at continuous
1333    inline double getContinuousObjective() const {
1334        return originalContinuousObjective_;
1335    }
1336    inline void setContinuousObjective(double value) {
1337        originalContinuousObjective_ = value;
1338    }
1339    /// Number of infeasibilities at continuous
1340    inline int getContinuousInfeasibilities() const {
1341        return continuousInfeasibilities_;
1342    }
1343    inline void setContinuousInfeasibilities(int value) {
1344        continuousInfeasibilities_ = value;
1345    }
1346    /// Value of objective after root node cuts added
1347    inline double rootObjectiveAfterCuts() const {
1348        return continuousObjective_;
1349    }
1350    /// Sum of Changes to objective by first solve
1351    inline double sumChangeObjective() const {
1352        return sumChangeObjective1_;
1353    }
1354    /** Number of times global cuts violated.  When global cut pool then this
1355        should be kept for each cut and type of cut */
1356    inline int numberGlobalViolations() const {
1357        return numberGlobalViolations_;
1358    }
1359    inline void clearNumberGlobalViolations() {
1360        numberGlobalViolations_ = 0;
1361    }
1362    /// Whether to force a resolve after takeOffCuts
1363    inline bool resolveAfterTakeOffCuts() const {
1364        return resolveAfterTakeOffCuts_;
1365    }
1366    inline void setResolveAfterTakeOffCuts(bool yesNo) {
1367        resolveAfterTakeOffCuts_ = yesNo;
1368    }
1369    /// Maximum number of rows
1370    inline int maximumRows() const {
1371        return maximumRows_;
1372    }
1373    /// Work basis for temporary use
1374    inline CoinWarmStartBasis & workingBasis() {
1375        return workingBasis_;
1376    }
1377    /// Get number of "iterations" to stop after
1378    inline int getStopNumberIterations() const {
1379        return stopNumberIterations_;
1380    }
1381    /// Set number of "iterations" to stop after
1382    inline void setStopNumberIterations(int value) {
1383        stopNumberIterations_ = value;
1384    }
1385    //@}
1386
1387    /** \name Node selection */
1388    //@{
1389    // Comparison functions (which may be overridden by inheritance)
1390    inline CbcCompareBase * nodeComparison() const {
1391        return nodeCompare_;
1392    }
1393    void setNodeComparison(CbcCompareBase * compare);
1394    void setNodeComparison(CbcCompareBase & compare);
1395    //@}
1396
1397    /** \name Problem feasibility checking */
1398    //@{
1399    // Feasibility functions (which may be overridden by inheritance)
1400    inline CbcFeasibilityBase * problemFeasibility() const {
1401        return problemFeasibility_;
1402    }
1403    void setProblemFeasibility(CbcFeasibilityBase * feasibility);
1404    void setProblemFeasibility(CbcFeasibilityBase & feasibility);
1405    //@}
1406
1407    /** \name Tree methods and subtree methods */
1408    //@{
1409    /// Tree method e.g. heap (which may be overridden by inheritance)
1410    inline CbcTree * tree() const {
1411        return tree_;
1412    }
1413    /// For modifying tree handling (original is cloned)
1414    void passInTreeHandler(CbcTree & tree);
1415    /** For passing in an CbcModel to do a sub Tree (with derived tree handlers).
1416        Passed in model must exist for duration of branch and bound
1417    */
1418    void passInSubTreeModel(CbcModel & model);
1419    /** For retrieving a copy of subtree model with given OsiSolver.
1420        If no subtree model will use self (up to user to reset cutoff etc).
1421        If solver NULL uses current
1422    */
1423    CbcModel * subTreeModel(OsiSolverInterface * solver = NULL) const;
1424    /// Returns number of times any subtree stopped on nodes, time etc
1425    inline int numberStoppedSubTrees() const {
1426        return numberStoppedSubTrees_;
1427    }
1428    /// Says a sub tree was stopped
1429    inline void incrementSubTreeStopped() {
1430        numberStoppedSubTrees_++;
1431    }
1432    /** Whether to automatically do presolve before branch and bound (subTrees).
1433        0 - no
1434        1 - ordinary presolve
1435        2 - integer presolve (dodgy)
1436    */
1437    inline int typePresolve() const {
1438        return presolve_;
1439    }
1440    inline void setTypePresolve(int value) {
1441        presolve_ = value;
1442    }
1443
1444    //@}
1445
1446    /** \name Branching Decisions
1447
1448      See the CbcBranchDecision class for additional information.
1449    */
1450    //@{
1451
1452    /// Get the current branching decision method.
1453    inline CbcBranchDecision * branchingMethod() const {
1454        return branchingMethod_;
1455    }
1456    /// Set the branching decision method.
1457    inline void setBranchingMethod(CbcBranchDecision * method) {
1458        delete branchingMethod_;
1459        branchingMethod_ = method->clone();
1460    }
1461    /** Set the branching method
1462
1463      \overload
1464    */
1465    inline void setBranchingMethod(CbcBranchDecision & method) {
1466        delete branchingMethod_;
1467        branchingMethod_ = method.clone();
1468    }
1469    /// Get the current cut modifier method
1470    inline CbcCutModifier * cutModifier() const {
1471        return cutModifier_;
1472    }
1473    /// Set the cut modifier method
1474    void setCutModifier(CbcCutModifier * modifier);
1475    /** Set the cut modifier method
1476
1477      \overload
1478    */
1479    void setCutModifier(CbcCutModifier & modifier);
1480    //@}
1481
1482    /** \name Row (constraint) and Column (variable) cut generation */
1483    //@{
1484
1485    /** State of search
1486        0 - no solution
1487        1 - only heuristic solutions
1488        2 - branched to a solution
1489        3 - no solution but many nodes
1490    */
1491    inline int stateOfSearch() const {
1492        return stateOfSearch_;
1493    }
1494    inline void setStateOfSearch(int state) {
1495        stateOfSearch_ = state;
1496    }
1497    /// Strategy worked out - mainly at root node for use by CbcNode
1498    inline int searchStrategy() const {
1499        return searchStrategy_;
1500    }
1501    /// Set strategy worked out - mainly at root node for use by CbcNode
1502    inline void setSearchStrategy(int value) {
1503        searchStrategy_ = value;
1504    }
1505
1506    /// Get the number of cut generators
1507    inline int numberCutGenerators() const {
1508        return numberCutGenerators_;
1509    }
1510    /// Get the list of cut generators
1511    inline CbcCutGenerator ** cutGenerators() const {
1512        return generator_;
1513    }
1514    ///Get the specified cut generator
1515    inline CbcCutGenerator * cutGenerator(int i) const {
1516        return generator_[i];
1517    }
1518    ///Get the specified cut generator before any changes
1519    inline CbcCutGenerator * virginCutGenerator(int i) const {
1520        return virginGenerator_[i];
1521    }
1522    /** Add one generator - up to user to delete generators.
1523        howoften affects how generator is used. 0 or 1 means always,
1524        >1 means every that number of nodes.  Negative values have same
1525        meaning as positive but they may be switched off (-> -100) by code if
1526        not many cuts generated at continuous.  -99 is just done at root.
1527        Name is just for printout.
1528        If depth >0 overrides how often generator is called (if howOften==-1 or >0).
1529    */
1530    void addCutGenerator(CglCutGenerator * generator,
1531                         int howOften = 1, const char * name = NULL,
1532                         bool normal = true, bool atSolution = false,
1533                         bool infeasible = false, int howOftenInSub = -100,
1534                         int whatDepth = -1, int whatDepthInSub = -1);
1535//@}
1536    /** \name Strategy and sub models
1537
1538      See the CbcStrategy class for additional information.
1539    */
1540    //@{
1541
1542    /// Get the current strategy
1543    inline CbcStrategy * strategy() const {
1544        return strategy_;
1545    }
1546    /// Set the strategy. Clones
1547    void setStrategy(CbcStrategy & strategy);
1548    /// Set the strategy. assigns
1549    inline void setStrategy(CbcStrategy * strategy) {
1550        strategy_ = strategy;
1551    }
1552    /// Get the current parent model
1553    inline CbcModel * parentModel() const {
1554        return parentModel_;
1555    }
1556    /// Set the parent model
1557    inline void setParentModel(CbcModel & parentModel) {
1558        parentModel_ = &parentModel;
1559    }
1560    //@}
1561
1562
1563    /** \name Heuristics and priorities */
1564    //@{
1565    /*! \brief Add one heuristic - up to user to delete
1566
1567      The name is just used for print messages.
1568    */
1569    void addHeuristic(CbcHeuristic * generator, const char *name = NULL,
1570                      int before = -1);
1571    ///Get the specified heuristic
1572    inline CbcHeuristic * heuristic(int i) const {
1573        return heuristic_[i];
1574    }
1575    /// Get the number of heuristics
1576    inline int numberHeuristics() const {
1577        return numberHeuristics_;
1578    }
1579    /// Pointer to heuristic solver which found last solution (or NULL)
1580    inline CbcHeuristic * lastHeuristic() const {
1581        return lastHeuristic_;
1582    }
1583    /// set last heuristic which found a solution
1584    inline void setLastHeuristic(CbcHeuristic * last) {
1585        lastHeuristic_ = last;
1586    }
1587
1588    /** Pass in branching priorities.
1589
1590        If ifClique then priorities are on cliques otherwise priorities are
1591        on integer variables.
1592        Other type (if exists set to default)
1593        1 is highest priority. (well actually -INT_MAX is but that's ugly)
1594        If hotstart > 0 then branches are created to force
1595        the variable to the value given by best solution.  This enables a
1596        sort of hot start.  The node choice should be greatest depth
1597        and hotstart should normally be switched off after a solution.
1598
1599        If ifNotSimpleIntegers true then appended to normal integers
1600
1601        This is now deprecated except for simple usage.  If user
1602        creates Cbcobjects then set priority in them
1603
1604        \internal Added for Kurt Spielberg.
1605    */
1606    void passInPriorities(const int * priorities, bool ifNotSimpleIntegers);
1607
1608    /// Returns priority level for an object (or 1000 if no priorities exist)
1609    inline int priority(int sequence) const {
1610        return object_[sequence]->priority();
1611    }
1612
1613    /*! \brief Set an event handler
1614
1615      A clone of the handler passed as a parameter is stored in CbcModel.
1616    */
1617    void passInEventHandler(const CbcEventHandler *eventHandler) ;
1618
1619    /*! \brief Retrieve a pointer to the event handler */
1620    inline CbcEventHandler* getEventHandler() const {
1621        return (eventHandler_) ;
1622    }
1623
1624    //@}
1625
1626    /**@name Setting/Accessing application data */
1627    //@{
1628    /** Set application data.
1629
1630    This is a pointer that the application can store into and
1631    retrieve from the solver interface.
1632    This field is available for the application to optionally
1633    define and use.
1634    */
1635    void setApplicationData (void * appData);
1636
1637    /// Get application data
1638    void * getApplicationData() const;
1639    /**
1640        For advanced applications you may wish to modify the behavior of Cbc
1641        e.g. if the solver is a NLP solver then you may not have an exact
1642        optimum solution at each step.  Information could be built into
1643        OsiSolverInterface but this is an alternative so that that interface
1644        does not have to be changed.  If something similar is useful to
1645        enough solvers then it could be migrated
1646        You can also pass in by using solver->setAuxiliaryInfo.
1647        You should do that if solver is odd - if solver is normal simplex
1648        then use this.
1649        NOTE - characteristics are not cloned
1650    */
1651    void passInSolverCharacteristics(OsiBabSolver * solverCharacteristics);
1652    /// Get solver characteristics
1653    inline const OsiBabSolver * solverCharacteristics() const {
1654        return solverCharacteristics_;
1655    }
1656    //@}
1657
1658    //---------------------------------------------------------------------------
1659
1660    /**@name Message handling etc */
1661    //@{
1662    /// Pass in Message handler (not deleted at end)
1663    void passInMessageHandler(CoinMessageHandler * handler);
1664    /// Set language
1665    void newLanguage(CoinMessages::Language language);
1666    inline void setLanguage(CoinMessages::Language language) {
1667        newLanguage(language);
1668    }
1669    /// Return handler
1670    inline CoinMessageHandler * messageHandler() const {
1671        return handler_;
1672    }
1673    /// Return messages
1674    inline CoinMessages & messages() {
1675        return messages_;
1676    }
1677    /// Return pointer to messages
1678    inline CoinMessages * messagesPointer() {
1679        return &messages_;
1680    }
1681    /// Set log level
1682    void setLogLevel(int value);
1683    /// Get log level
1684    inline int logLevel() const {
1685        return handler_->logLevel();
1686    }
1687    /** Set flag to say if handler_ is the default handler.
1688
1689      The default handler is deleted when the model is deleted. Other
1690      handlers (supplied by the client) will not be deleted.
1691    */
1692    inline void setDefaultHandler(bool yesNo) {
1693        defaultHandler_ = yesNo;
1694    }
1695    //@}
1696    //---------------------------------------------------------------------------
1697    ///@name Specialized
1698    //@{
1699
1700    /**
1701        Set special options
1702        0 bit (1) - check if cuts valid (if on debugger list)
1703        1 bit (2) - use current basis to check integer solution (rather than all slack)
1704        2 bit (4) - don't check integer solution (by solving LP)
1705        3 bit (8) - fast analyze
1706        4 bit (16) - non-linear model - so no well defined CoinPackedMatrix
1707        5 bit (32) - keep names
1708        6 bit (64) - try for dominated columns
1709        7 bit (128) - SOS type 1 but all declared integer
1710        8 bit (256) - Set to say solution just found, unset by doing cuts
1711        9 bit (512) - Try reduced model after 100 nodes
1712        10 bit (1024) - Switch on some heuristics even if seems unlikely
1713        11 bit (2048) - Mark as in small branch and bound
1714        12 bit (4096) - Funny cuts so do slow way (in some places)
1715        13 bit (8192) - Funny cuts so do slow way (in other places)
1716        14 bit (16384) - Use Cplex! for fathoming
1717        15 bit (32768) - Try reduced model after 0 nodes
1718        16 bit (65536) - Original model had integer bounds
1719        17 bit (131072) - Perturbation switched off
1720        18 bit (262144) - donor CbcModel
1721        19 bit (524288) - recipient CbcModel
1722        20 bit (1048576) - waiting for sub model to return
1723    */
1724    inline void setSpecialOptions(int value) {
1725        specialOptions_ = value;
1726    }
1727    /// Get special options
1728    inline int specialOptions() const {
1729        return specialOptions_;
1730    }
1731    /// Says if normal solver i.e. has well defined CoinPackedMatrix
1732    inline bool normalSolver() const {
1733        return (specialOptions_&16) == 0;
1734    }
1735    /** Says if model is sitting there waiting for mini branch and bound to finish
1736        This is because an event handler may only have access to parent model in
1737        mini branch and bound
1738    */
1739    inline bool waitingForMiniBranchAndBound() const {
1740        return (specialOptions_&1048576) != 0;
1741    }
1742    /** Set more special options
1743        at present bottom 6 bits used for shadow price mode
1744        1024 for experimental hotstart
1745        2048,4096 breaking out of cuts
1746        8192 slowly increase minimum drop
1747        16384 gomory
1748        32768 more heuristics in sub trees
1749        65536 no cuts in preprocessing
1750        131072 Time limits elapsed
1751        18 bit (262144) - Perturb fathom nodes
1752        19 bit (524288) - No limit on fathom nodes
1753        20 bit (1048576) - Reduce sum of infeasibilities before cuts
1754        21 bit (2097152) - Reduce sum of infeasibilities after cuts
1755    */
1756    inline void setMoreSpecialOptions(int value) {
1757        moreSpecialOptions_ = value;
1758    }
1759    /// Get more special options
1760    inline int moreSpecialOptions() const {
1761        return moreSpecialOptions_;
1762    }
1763  /// Set time method
1764    inline void setUseElapsedTime(bool yesNo) {
1765        if (yesNo)
1766          moreSpecialOptions_ |= 131072;
1767        else
1768          moreSpecialOptions_ &= ~131072;
1769    }
1770    /// Get time method
1771    inline bool useElapsedTime() const {
1772        return (moreSpecialOptions_&131072)!=0;
1773    }
1774    /// Go to dantzig pivot selection if easy problem (clp only)
1775#ifdef COIN_HAS_CLP
1776    void goToDantzig(int numberNodes, ClpDualRowPivot *& savePivotMethod);
1777#endif
1778    /// Now we may not own objects - just point to solver's objects
1779    inline bool ownObjects() const {
1780        return ownObjects_;
1781    }
1782    /// Check original model before it gets messed up
1783    void checkModel();
1784    //@}
1785    //---------------------------------------------------------------------------
1786
1787    ///@name Constructors and destructors etc
1788    //@{
1789    /// Default Constructor
1790    CbcModel();
1791
1792    /// Constructor from solver
1793    CbcModel(const OsiSolverInterface &);
1794
1795    /** Assign a solver to the model (model assumes ownership)
1796
1797      On return, \p solver will be NULL.
1798      If deleteSolver then current solver deleted (if model owned)
1799
1800      \note Parameter settings in the outgoing solver are not inherited by
1801        the incoming solver.
1802    */
1803    void assignSolver(OsiSolverInterface *&solver, bool deleteSolver = true);
1804
1805    /** \brief Set ownership of solver
1806
1807      A parameter of false tells CbcModel it does not own the solver and
1808      should not delete it. Once you claim ownership of the solver, you're
1809      responsible for eventually deleting it. Note that CbcModel clones
1810      solvers with abandon.  Unless you have a deep understanding of the
1811      workings of CbcModel, the only time you want to claim ownership is when
1812      you're about to delete the CbcModel object but want the solver to
1813      continue to exist (as, for example, when branchAndBound has finished
1814      and you want to hang on to the answer).
1815    */
1816    inline void setModelOwnsSolver (bool ourSolver) {
1817        ownership_ = ourSolver ? (ownership_ | 0x80000000) : (ownership_ & (~0x80000000)) ;
1818    }
1819
1820    /*! \brief Get ownership of solver
1821
1822      A return value of true means that CbcModel owns the solver and will
1823      take responsibility for deleting it when that becomes necessary.
1824    */
1825    inline bool modelOwnsSolver () {
1826        return ((ownership_&0x80000000) != 0) ;
1827    }
1828
1829    /** Copy constructor .
1830      If cloneHandler is true then message handler is cloned
1831    */
1832    CbcModel(const CbcModel & rhs, bool cloneHandler = false);
1833
1834    /// Assignment operator
1835    CbcModel & operator=(const CbcModel& rhs);
1836
1837    /// Destructor
1838    ~CbcModel ();
1839
1840    /// Returns solver - has current state
1841    inline OsiSolverInterface * solver() const {
1842        return solver_;
1843    }
1844
1845    /// Returns current solver - sets new one
1846    inline OsiSolverInterface * swapSolver(OsiSolverInterface * solver) {
1847        OsiSolverInterface * returnSolver = solver_;
1848        solver_ = solver;
1849        return returnSolver;
1850    }
1851
1852    /// Returns solver with continuous state
1853    inline OsiSolverInterface * continuousSolver() const {
1854        return continuousSolver_;
1855    }
1856
1857    /// Create solver with continuous state
1858    inline void createContinuousSolver() {
1859        continuousSolver_ = solver_->clone();
1860    }
1861    /// Clear solver with continuous state
1862    inline void clearContinuousSolver() {
1863        delete continuousSolver_;
1864        continuousSolver_ = NULL;
1865    }
1866
1867    /// A copy of the solver, taken at constructor or by saveReferenceSolver
1868    inline OsiSolverInterface * referenceSolver() const {
1869        return referenceSolver_;
1870    }
1871
1872    /// Save a copy of the current solver so can be reset to
1873    void saveReferenceSolver();
1874
1875    /** Uses a copy of reference solver to be current solver.
1876        Because of possible mismatches all exotic integer information is loat
1877        (apart from normal information in OsiSolverInterface)
1878        so SOS etc and priorities will have to be redone
1879    */
1880    void resetToReferenceSolver();
1881
1882    /// Clears out as much as possible (except solver)
1883    void gutsOfDestructor();
1884    /** Clears out enough to reset CbcModel as if no branch and bound done
1885     */
1886    void gutsOfDestructor2();
1887    /** Clears out enough to reset CbcModel cutoff etc
1888     */
1889    void resetModel();
1890    /** Most of copy constructor
1891        mode - 0 copy but don't delete before
1892               1 copy and delete before
1893           2 copy and delete before (but use virgin generators)
1894    */
1895    void gutsOfCopy(const CbcModel & rhs, int mode = 0);
1896    /// Move status, nodes etc etc across
1897    void moveInfo(const CbcModel & rhs);
1898    //@}
1899
1900    ///@name Multithreading
1901    //@{
1902    /// Indicates whether Cbc library has been compiled with multithreading support
1903    static bool haveMultiThreadSupport();
1904    /// Get pointer to masterthread
1905    CbcThread * masterThread() const {
1906        return masterThread_;
1907    }
1908    /// Get pointer to walkback
1909    CbcNodeInfo ** walkback() const {
1910        return walkback_;
1911    }
1912    /// Get number of threads
1913    inline int getNumberThreads() const {
1914        return numberThreads_;
1915    }
1916    /// Set number of threads
1917    inline void setNumberThreads(int value) {
1918        numberThreads_ = value;
1919    }
1920    /// Get thread mode
1921    inline int getThreadMode() const {
1922        return threadMode_;
1923    }
1924    /** Set thread mode
1925        always use numberThreads for branching
1926        1 set then deterministic
1927        2 set then use numberThreads for root cuts
1928        4 set then use numberThreads in root mini branch and bound
1929        8 set and numberThreads - do heuristics numberThreads at a time
1930        8 set and numberThreads==0 do all heuristics at once
1931        default is 0
1932    */
1933    inline void setThreadMode(int value) {
1934        threadMode_ = value;
1935    }
1936    /** Return
1937        -2 if deterministic threaded and main thread
1938        -1 if deterministic threaded and serial thread
1939        0 if serial
1940        1 if opportunistic threaded
1941    */
1942    inline int parallelMode() const {
1943        if (!numberThreads_) {
1944            if ((threadMode_&1) == 0)
1945                return 0;
1946            else
1947                return -1;
1948            return 0;
1949        } else {
1950            if ((threadMode_&1) == 0)
1951                return 1;
1952            else
1953                return -2;
1954        }
1955    }
1956    /// From here to end of section - code in CbcThread.cpp until class changed
1957    /// Returns true if locked
1958    bool isLocked() const;
1959#ifdef CBC_THREAD
1960    /**
1961       Locks a thread if parallel so that stuff like cut pool
1962       can be updated and/or used.
1963    */
1964    void lockThread();
1965    /**
1966       Unlocks a thread if parallel to say cut pool stuff not needed
1967    */
1968    void unlockThread();
1969#else
1970    inline void lockThread() {}
1971    inline void unlockThread() {}
1972#endif
1973    /** Set information in a child
1974        -3 pass pointer to child thread info
1975        -2 just stop
1976        -1 delete simple child stuff
1977        0 delete opportunistic child stuff
1978        1 delete deterministic child stuff
1979    */
1980    void setInfoInChild(int type, CbcThread * info);
1981    /** Move/copy information from one model to another
1982        -1 - initialization
1983        0 - from base model
1984        1 - to base model (and reset)
1985        2 - add in final statistics etc (and reset so can do clean destruction)
1986    */
1987    void moveToModel(CbcModel * baseModel, int mode);
1988    /// Split up nodes
1989    int splitModel(int numberModels, CbcModel ** model,
1990                   int numberNodes);
1991    /// Start threads
1992    void startSplitModel(int numberIterations);
1993    /// Merge models
1994    void mergeModels(int numberModel, CbcModel ** model,
1995                     int numberNodes);
1996    //@}
1997
1998    ///@name semi-private i.e. users should not use
1999    //@{
2000    /// Get how many Nodes it took to solve the problem.
2001    int getNodeCount2() const {
2002        return numberNodes2_;
2003    }
2004    /// Set pointers for speed
2005    void setPointers(const OsiSolverInterface * solver);
2006    /** Perform reduced cost fixing
2007
2008      Fixes integer variables at their current value based on reduced cost
2009      penalties.  Returns number fixed
2010    */
2011    int reducedCostFix() ;
2012    /** Makes all handlers same.  If makeDefault 1 then makes top level
2013        default and rest point to that.  If 2 then each is copy
2014    */
2015    void synchronizeHandlers(int makeDefault);
2016    /// Save a solution to saved list
2017    void saveExtraSolution(const double * solution, double objectiveValue);
2018    /// Save a solution to best and move current to saved
2019    void saveBestSolution(const double * solution, double objectiveValue);
2020    /// Delete best and saved solutions
2021    void deleteSolutions();
2022    /// Encapsulates solver resolve
2023    int resolve(OsiSolverInterface * solver);
2024#ifdef CLP_RESOLVE
2025    /// Special purpose resolve
2026    int resolveClp(OsiClpSolverInterface * solver, int type);
2027#endif
2028
2029    /** Encapsulates choosing a variable -
2030        anyAction -2, infeasible (-1 round again), 0 done
2031    */
2032    int chooseBranch(CbcNode * & newNode, int numberPassesLeft,
2033                     CbcNode * oldNode, OsiCuts & cuts,
2034                     bool & resolved, CoinWarmStartBasis *lastws,
2035                     const double * lowerBefore, const double * upperBefore,
2036                     OsiSolverBranch * & branches);
2037    int chooseBranch(CbcNode * newNode, int numberPassesLeft, bool & resolved);
2038
2039    /** Return an empty basis object of the specified size
2040
2041      A useful utility when constructing a basis for a subproblem from scratch.
2042      The object returned will be of the requested capacity and appropriate for
2043      the solver attached to the model.
2044    */
2045    CoinWarmStartBasis *getEmptyBasis(int ns = 0, int na = 0) const ;
2046
2047    /** Remove inactive cuts from the model
2048
2049      An OsiSolverInterface is expected to maintain a valid basis, but not a
2050      valid solution, when loose cuts are deleted. Restoring a valid solution
2051      requires calling the solver to reoptimise. If it's certain the solution
2052      will not be required, set allowResolve to false to suppress
2053      reoptimisation.
2054      If saveCuts then slack cuts will be saved
2055      On input current cuts are cuts and newCuts
2056      on exit current cuts will be correct.  Returns number dropped
2057    */
2058    int takeOffCuts(OsiCuts &cuts,
2059                    bool allowResolve, OsiCuts * saveCuts,
2060                    int numberNewCuts = 0, const OsiRowCut ** newCuts = NULL) ;
2061
2062    /** Determine and install the active cuts that need to be added for
2063      the current subproblem
2064
2065      The whole truth is a bit more complicated. The first action is a call to
2066      addCuts1(). addCuts() then sorts through the list, installs the tight
2067      cuts in the model, and does bookkeeping (adjusts reference counts).
2068      The basis returned from addCuts1() is adjusted accordingly.
2069
2070      If it turns out that the node should really be fathomed by bound,
2071      addCuts() simply treats all the cuts as loose as it does the bookkeeping.
2072
2073      canFix true if extra information being passed
2074    */
2075    int addCuts(CbcNode * node, CoinWarmStartBasis *&lastws, bool canFix);
2076
2077    /** Traverse the tree from node to root and prep the model
2078
2079      addCuts1() begins the job of prepping the model to match the current
2080      subproblem. The model is stripped of all cuts, and the search tree is
2081      traversed from node to root to determine the changes required. Appropriate
2082      bounds changes are installed, a list of cuts is collected but not
2083      installed, and an appropriate basis (minus the cuts, but big enough to
2084      accommodate them) is constructed.
2085
2086      Returns true if new problem similar to old
2087
2088      \todo addCuts1() is called in contexts where it's known in advance that
2089        all that's desired is to determine a list of cuts and do the
2090        bookkeeping (adjust the reference counts). The work of installing
2091        bounds and building a basis goes to waste.
2092    */
2093    bool addCuts1(CbcNode * node, CoinWarmStartBasis *&lastws);
2094    /** Returns bounds just before where - initially original bounds.
2095        Also sets downstream nodes (lower if force 1, upper if 2)
2096    */
2097    void previousBounds (CbcNode * node, CbcNodeInfo * where, int iColumn,
2098                         double & lower, double & upper, int force);
2099    /** Set objective value in a node.  This is separated out so that
2100       odd solvers can use.  It may look at extra information in
2101       solverCharacteriscs_ and will also use bound from parent node
2102    */
2103    void setObjectiveValue(CbcNode * thisNode, const CbcNode * parentNode) const;
2104
2105    /** If numberBeforeTrust >0 then we are going to use CbcBranchDynamic.
2106        Scan and convert CbcSimpleInteger objects
2107    */
2108    void convertToDynamic();
2109    /// Set numberBeforeTrust in all objects
2110    void synchronizeNumberBeforeTrust(int type = 0);
2111    /// Zap integer information in problem (may leave object info)
2112    void zapIntegerInformation(bool leaveObjects = true);
2113    /// Use cliques for pseudocost information - return nonzero if infeasible
2114    int cliquePseudoCosts(int doStatistics);
2115    /// Fill in useful estimates
2116    void pseudoShadow(int type);
2117    /** Return pseudo costs
2118        If not all integers or not pseudo costs - returns all zero
2119        Length of arrays are numberIntegers() and entries
2120        correspond to integerVariable()[i]
2121        User must allocate arrays before call
2122    */
2123    void fillPseudoCosts(double * downCosts, double * upCosts,
2124                         int * priority = NULL,
2125                         int * numberDown = NULL, int * numberUp = NULL,
2126                         int * numberDownInfeasible = NULL,
2127                         int * numberUpInfeasible = NULL) const;
2128    /** Do heuristics at root.
2129        0 - don't delete
2130        1 - delete
2131        2 - just delete - don't even use
2132    */
2133    void doHeuristicsAtRoot(int deleteHeuristicsAfterwards = 0);
2134    /// Adjust heuristics based on model
2135    void adjustHeuristics();
2136    /// Get the hotstart solution
2137    inline const double * hotstartSolution() const {
2138        return hotstartSolution_;
2139    }
2140    /// Get the hotstart priorities
2141    inline const int * hotstartPriorities() const {
2142        return hotstartPriorities_;
2143    }
2144
2145    /// Return the list of cuts initially collected for this subproblem
2146    inline CbcCountRowCut ** addedCuts() const {
2147        return addedCuts_;
2148    }
2149    /// Number of entries in the list returned by #addedCuts()
2150    inline int currentNumberCuts() const {
2151        return currentNumberCuts_;
2152    }
2153    /// Global cuts
2154    inline OsiCuts * globalCuts() {
2155        return &globalCuts_;
2156    }
2157    /// Copy and set a pointer to a row cut which will be added instead of normal branching.
2158    void setNextRowCut(const OsiRowCut & cut);
2159    /// Get a pointer to current node (be careful)
2160    inline CbcNode * currentNode() const {
2161        return currentNode_;
2162    }
2163    /// Get a pointer to probing info
2164    inline CglTreeProbingInfo * probingInfo() const {
2165        return probingInfo_;
2166    }
2167    /// Thread specific random number generator
2168    inline CoinThreadRandom * randomNumberGenerator() {
2169        return &randomNumberGenerator_;
2170    }
2171    /// Set the number of iterations done in strong branching.
2172    inline void setNumberStrongIterations(int number) {
2173        numberStrongIterations_ = number;
2174    }
2175    /// Get the number of iterations done in strong branching.
2176    inline int numberStrongIterations() const {
2177        return numberStrongIterations_;
2178    }
2179    /// Get maximum number of iterations (designed to be used in heuristics)
2180    inline int maximumNumberIterations() const {
2181        return maximumNumberIterations_;
2182    }
2183    /// Set maximum number of iterations (designed to be used in heuristics)
2184    inline void setMaximumNumberIterations(int value) {
2185        maximumNumberIterations_ = value;
2186    }
2187# ifdef COIN_HAS_CLP
2188    /// Set depth for fast nodes
2189    inline void setFastNodeDepth(int value) {
2190        fastNodeDepth_ = value;
2191    }
2192    /// Get depth for fast nodes
2193    inline int fastNodeDepth() const {
2194        return fastNodeDepth_;
2195    }
2196    /// Get anything with priority >= this can be treated as continuous
2197    inline int continuousPriority() const {
2198        return continuousPriority_;
2199    }
2200    /// Set anything with priority >= this can be treated as continuous
2201    inline void setContinuousPriority(int value) {
2202        continuousPriority_ = value;
2203    }
2204    inline void incrementExtra(int nodes, int iterations) {
2205        numberExtraNodes_ += nodes;
2206        numberExtraIterations_ += iterations;
2207    }
2208#endif
2209    /// Number of extra iterations
2210    inline int numberExtraIterations() const {
2211        return numberExtraIterations_;
2212    }
2213    /// Increment strong info
2214    void incrementStrongInfo(int numberTimes, int numberIterations,
2215                             int numberFixed, bool ifInfeasible);
2216    /// Return strong info
2217    inline const int * strongInfo() const {
2218        return strongInfo_;
2219    }
2220
2221    /// Return mutable strong info
2222    inline int * mutableStrongInfo() {
2223        return strongInfo_;
2224    }
2225    /// Get stored row cuts for donor/recipient CbcModel
2226    CglStored * storedRowCuts() const {
2227        return storedRowCuts_;
2228    }
2229    /// Set stored row cuts for donor/recipient CbcModel
2230    void setStoredRowCuts(CglStored * cuts) {
2231        storedRowCuts_ = cuts;
2232    }
2233    /// Says whether all dynamic integers
2234    inline bool allDynamic () const {
2235        return ((ownership_&0x40000000) != 0) ;
2236    }
2237    /// Create C++ lines to get to current state
2238    void generateCpp( FILE * fp, int options);
2239    /// Generate an OsiBranchingInformation object
2240    OsiBranchingInformation usefulInformation() const;
2241    /** Warm start object produced by heuristic or strong branching
2242
2243        If get a valid integer solution outside branch and bound then it can take
2244        a reasonable time to solve LP which produces clean solution.  If this object has
2245        any size then it will be used in solve.
2246    */
2247    inline void setBestSolutionBasis(const CoinWarmStartBasis & bestSolutionBasis) {
2248        bestSolutionBasis_ = bestSolutionBasis;
2249    }
2250    /// Redo walkback arrays
2251    void redoWalkBack();
2252    //@}
2253
2254//---------------------------------------------------------------------------
2255
2256private:
2257    ///@name Private member data
2258    //@{
2259
2260    /// The solver associated with this model.
2261    OsiSolverInterface * solver_;
2262
2263    /** Ownership of objects and other stuff
2264
2265        0x80000000 model owns solver
2266        0x40000000 all variables CbcDynamicPseudoCost
2267    */
2268    unsigned int ownership_ ;
2269
2270    /// A copy of the solver, taken at the continuous (root) node.
2271    OsiSolverInterface * continuousSolver_;
2272
2273    /// A copy of the solver, taken at constructor or by saveReferenceSolver
2274    OsiSolverInterface * referenceSolver_;
2275
2276    /// Message handler
2277    CoinMessageHandler * handler_;
2278
2279    /** Flag to say if handler_ is the default handler.
2280
2281      The default handler is deleted when the model is deleted. Other
2282      handlers (supplied by the client) will not be deleted.
2283    */
2284    bool defaultHandler_;
2285
2286    /// Cbc messages
2287    CoinMessages messages_;
2288
2289    /// Array for integer parameters
2290    int intParam_[CbcLastIntParam];
2291
2292    /// Array for double parameters
2293    double dblParam_[CbcLastDblParam];
2294
2295    /** Pointer to an empty warm start object
2296
2297      It turns out to be useful to have this available as a base from
2298      which to build custom warm start objects. This is typed as CoinWarmStart
2299      rather than CoinWarmStartBasis to allow for the possibility that a
2300      client might want to apply a solver that doesn't use a basis-based warm
2301      start. See getEmptyBasis for an example of how this field can be used.
2302    */
2303    mutable CoinWarmStart *emptyWarmStart_ ;
2304
2305    /// Best objective
2306    double bestObjective_;
2307    /// Best possible objective
2308    double bestPossibleObjective_;
2309    /// Sum of Changes to objective by first solve
2310    double sumChangeObjective1_;
2311    /// Sum of Changes to objective by subsequent solves
2312    double sumChangeObjective2_;
2313
2314    /// Array holding the incumbent (best) solution.
2315    double * bestSolution_;
2316    /// Arrays holding other solutions.
2317    double ** savedSolutions_;
2318
2319    /** Array holding the current solution.
2320
2321      This array is used more as a temporary.
2322    */
2323    double * currentSolution_;
2324    /** For testing infeasibilities - will point to
2325        currentSolution_ or solver-->getColSolution()
2326    */
2327    mutable const double * testSolution_;
2328    /** Warm start object produced by heuristic or strong branching
2329
2330        If get a valid integer solution outside branch and bound then it can take
2331        a reasonable time to solve LP which produces clean solution.  If this object has
2332        any size then it will be used in solve.
2333    */
2334    CoinWarmStartBasis bestSolutionBasis_ ;
2335    /// Global cuts
2336    OsiCuts globalCuts_;
2337
2338    /// Minimum degradation in objective value to continue cut generation
2339    double minimumDrop_;
2340    /// Number of solutions
2341    int numberSolutions_;
2342    /// Number of saved solutions
2343    int numberSavedSolutions_;
2344    /// Maximum number of saved solutions
2345    int maximumSavedSolutions_;
2346    /** State of search
2347        0 - no solution
2348        1 - only heuristic solutions
2349        2 - branched to a solution
2350        3 - no solution but many nodes
2351    */
2352    int stateOfSearch_;
2353    /// At which depths to do cuts
2354    int whenCuts_;
2355    /// Hotstart solution
2356    double * hotstartSolution_;
2357    /// Hotstart priorities
2358    int * hotstartPriorities_;
2359    /// Number of heuristic solutions
2360    int numberHeuristicSolutions_;
2361    /// Cumulative number of nodes
2362    int numberNodes_;
2363    /** Cumulative number of nodes for statistics.
2364        Must fix to match up
2365    */
2366    int numberNodes2_;
2367    /// Cumulative number of iterations
2368    int numberIterations_;
2369    /// Cumulative number of solves
2370    int numberSolves_;
2371    /// Status of problem - 0 finished, 1 stopped, 2 difficulties
2372    int status_;
2373    /** Secondary status of problem
2374        -1 unset (status_ will also be -1)
2375        0 search completed with solution
2376        1 linear relaxation not feasible (or worse than cutoff)
2377        2 stopped on gap
2378        3 stopped on nodes
2379        4 stopped on time
2380        5 stopped on user event
2381        6 stopped on solutions
2382     */
2383    int secondaryStatus_;
2384    /// Number of integers in problem
2385    int numberIntegers_;
2386    /// Number of rows at continuous
2387    int numberRowsAtContinuous_;
2388    /// Maximum number of cuts
2389    int maximumNumberCuts_;
2390    /** Current phase (so heuristics etc etc can find out).
2391        0 - initial solve
2392        1 - solve with cuts at root
2393        2 - solve with cuts
2394        3 - other e.g. strong branching
2395        4 - trying to validate a solution
2396        5 - at end of search
2397    */
2398    int phase_;
2399
2400    /// Number of entries in #addedCuts_
2401    int currentNumberCuts_;
2402
2403    /** Current limit on search tree depth
2404
2405      The allocated size of #walkback_. Increased as needed.
2406    */
2407    int maximumDepth_;
2408    /** Array used to assemble the path between a node and the search tree root
2409
2410      The array is resized when necessary. #maximumDepth_  is the current
2411      allocated size.
2412    */
2413    CbcNodeInfo ** walkback_;
2414    CbcNodeInfo ** lastNodeInfo_;
2415    const OsiRowCut ** lastCut_;
2416    int lastDepth_;
2417    int lastNumberCuts2_;
2418    int maximumCuts_;
2419    int * lastNumberCuts_;
2420
2421    /** The list of cuts initially collected for this subproblem
2422
2423      When the subproblem at this node is rebuilt, a set of cuts is collected
2424      for inclusion in the constraint system. If any of these cuts are
2425      subsequently removed because they have become loose, the corresponding
2426      entry is set to NULL.
2427    */
2428    CbcCountRowCut ** addedCuts_;
2429
2430    /** A pointer to a row cut which will be added instead of normal branching.
2431        After use it should be set to NULL.
2432    */
2433    OsiRowCut * nextRowCut_;
2434
2435    /// Current node so can be used elsewhere
2436    CbcNode * currentNode_;
2437
2438    /// Indices of integer variables
2439    int * integerVariable_;
2440    /// Whether of not integer
2441    char * integerInfo_;
2442    /// Holds solution at continuous (after cuts)
2443    double * continuousSolution_;
2444    /// Array marked whenever a solution is found if non-zero
2445    int * usedInSolution_;
2446    /**
2447        Special options
2448        0 bit (1) - check if cuts valid (if on debugger list)
2449        1 bit (2) - use current basis to check integer solution (rather than all slack)
2450        2 bit (4) - don't check integer solution (by solving LP)
2451        3 bit (8) - fast analyze
2452        4 bit (16) - non-linear model - so no well defined CoinPackedMatrix
2453        5 bit (32) - keep names
2454        6 bit (64) - try for dominated columns
2455        7 bit (128) - SOS type 1 but all declared integer
2456        8 bit (256) - Set to say solution just found, unset by doing cuts
2457        9 bit (512) - Try reduced model after 100 nodes
2458        10 bit (1024) - Switch on some heuristics even if seems unlikely
2459        11 bit (2048) - Mark as in small branch and bound
2460        12 bit (4096) - Funny cuts so do slow way (in some places)
2461        13 bit (8192) - Funny cuts so do slow way (in other places)
2462        14 bit (16384) - Use Cplex! for fathoming
2463        15 bit (32768) - Try reduced model after 0 nodes
2464        16 bit (65536) - Original model had integer bounds
2465        17 bit (131072) - Perturbation switched off
2466        18 bit (262144) - donor CbcModel
2467        19 bit (524288) - recipient CbcModel
2468    */
2469    int specialOptions_;
2470    /** More special options
2471        at present bottom 6 bits used for shadow price mode
2472        1024 for experimental hotstart
2473        2048,4096 breaking out of cuts
2474        8192 slowly increase minimum drop
2475        16384 gomory
2476        32768 more heuristics in sub trees
2477        65536 no cuts in preprocessing
2478        131072 Time limits elapsed
2479        18 bit (262144) - Perturb fathom nodes
2480        19 bit (524288) - No limit on fathom nodes
2481        20 bit (1048576) - Reduce sum of infeasibilities before cuts
2482        21 bit (2097152) - Reduce sum of infeasibilities after cuts
2483    */
2484    int moreSpecialOptions_;
2485    /// User node comparison function
2486    CbcCompareBase * nodeCompare_;
2487    /// User feasibility function (see CbcFeasibleBase.hpp)
2488    CbcFeasibilityBase * problemFeasibility_;
2489    /// Tree
2490    CbcTree * tree_;
2491    /// A pointer to model to be used for subtrees
2492    CbcModel * subTreeModel_;
2493    /// Number of times any subtree stopped on nodes, time etc
2494    int numberStoppedSubTrees_;
2495    /// Variable selection function
2496    CbcBranchDecision * branchingMethod_;
2497    /// Cut modifier function
2498    CbcCutModifier * cutModifier_;
2499    /// Strategy
2500    CbcStrategy * strategy_;
2501    /// Parent model
2502    CbcModel * parentModel_;
2503    /** Whether to automatically do presolve before branch and bound.
2504        0 - no
2505        1 - ordinary presolve
2506        2 - integer presolve (dodgy)
2507    */
2508    /// Pointer to array[getNumCols()] (for speed) of column lower bounds
2509    const double * cbcColLower_;
2510    /// Pointer to array[getNumCols()] (for speed) of column upper bounds
2511    const double * cbcColUpper_;
2512    /// Pointer to array[getNumRows()] (for speed) of row lower bounds
2513    const double * cbcRowLower_;
2514    /// Pointer to array[getNumRows()] (for speed) of row upper bounds
2515    const double * cbcRowUpper_;
2516    /// Pointer to array[getNumCols()] (for speed) of primal solution vector
2517    const double * cbcColSolution_;
2518    /// Pointer to array[getNumRows()] (for speed) of dual prices
2519    const double * cbcRowPrice_;
2520    /// Get a pointer to array[getNumCols()] (for speed) of reduced costs
2521    const double * cbcReducedCost_;
2522    /// Pointer to array[getNumRows()] (for speed) of row activity levels.
2523    const double * cbcRowActivity_;
2524    /// Pointer to user-defined data structure
2525    void * appData_;
2526    /// Presolve for CbcTreeLocal
2527    int presolve_;
2528    /** Maximum number of candidates to consider for strong branching.
2529      To disable strong branching, set this to 0.
2530    */
2531    int numberStrong_;
2532    /** \brief The number of branches before pseudo costs believed
2533           in dynamic strong branching.
2534
2535      A value of 0 is  off.
2536    */
2537    int numberBeforeTrust_;
2538    /** \brief The number of variables for which to compute penalties
2539           in dynamic strong branching.
2540    */
2541    int numberPenalties_;
2542    /// For threads - stop after this many "iterations"
2543    int stopNumberIterations_;
2544    /** Scale factor to make penalties match strong.
2545        Should/will be computed */
2546    double penaltyScaleFactor_;
2547    /// Number of analyze iterations to do
2548    int numberAnalyzeIterations_;
2549    /// Arrays with analysis results
2550    double * analyzeResults_;
2551    /// Number of nodes infeasible by normal branching (before cuts)
2552    int numberInfeasibleNodes_;
2553    /** Problem type as set by user or found by analysis.  This will be extended
2554        0 - not known
2555        1 - Set partitioning <=
2556        2 - Set partitioning ==
2557        3 - Set covering
2558    */
2559    int problemType_;
2560    /// Print frequency
2561    int printFrequency_;
2562    /// Number of cut generators
2563    int numberCutGenerators_;
2564    // Cut generators
2565    CbcCutGenerator ** generator_;
2566    // Cut generators before any changes
2567    CbcCutGenerator ** virginGenerator_;
2568    /// Number of heuristics
2569    int numberHeuristics_;
2570    /// Heuristic solvers
2571    CbcHeuristic ** heuristic_;
2572    /// Pointer to heuristic solver which found last solution (or NULL)
2573    CbcHeuristic * lastHeuristic_;
2574    /// Depth for fast nodes
2575    int fastNodeDepth_;
2576    /*! Pointer to the event handler */
2577# ifdef CBC_ONLY_CLP
2578    ClpEventHandler *eventHandler_ ;
2579# else
2580    CbcEventHandler *eventHandler_ ;
2581# endif
2582
2583    /// Total number of objects
2584    int numberObjects_;
2585
2586    /** \brief Integer and Clique and ... information
2587
2588      \note The code assumes that the first objects on the list will be
2589        SimpleInteger objects for each integer variable, followed by
2590        Clique objects. Portions of the code that understand Clique objects
2591        will fail if they do not immediately follow the SimpleIntegers.
2592        Large chunks of the code will fail if the first objects are not
2593        SimpleInteger. As of 2003.08, SimpleIntegers and Cliques are the only
2594        objects.
2595    */
2596    OsiObject ** object_;
2597    /// Now we may not own objects - just point to solver's objects
2598    bool ownObjects_;
2599
2600    /// Original columns as created by integerPresolve or preprocessing
2601    int * originalColumns_;
2602    /// How often to scan global cuts
2603    int howOftenGlobalScan_;
2604    /** Number of times global cuts violated.  When global cut pool then this
2605        should be kept for each cut and type of cut */
2606    int numberGlobalViolations_;
2607    /// Number of extra iterations in fast lp
2608    int numberExtraIterations_;
2609    /// Number of extra nodes in fast lp
2610    int numberExtraNodes_;
2611    /** Value of objective at continuous
2612        (Well actually after initial round of cuts)
2613    */
2614    double continuousObjective_;
2615    /** Value of objective before root node cuts added
2616    */
2617    double originalContinuousObjective_;
2618    /// Number of infeasibilities at continuous
2619    int continuousInfeasibilities_;
2620    /// Maximum number of cut passes at root
2621    int maximumCutPassesAtRoot_;
2622    /// Maximum number of cut passes
2623    int maximumCutPasses_;
2624    /// Preferred way of branching
2625    int preferredWay_;
2626    /// Current cut pass number
2627    int currentPassNumber_;
2628    /// Maximum number of cuts (for whichGenerator_)
2629    int maximumWhich_;
2630    /// Maximum number of rows
2631    int maximumRows_;
2632    /// Current depth
2633    int currentDepth_;
2634    /// Thread specific random number generator
2635    mutable CoinThreadRandom randomNumberGenerator_;
2636    /// Work basis for temporary use
2637    CoinWarmStartBasis workingBasis_;
2638    /// Which cut generator generated this cut
2639    int * whichGenerator_;
2640    /// Maximum number of statistics
2641    int maximumStatistics_;
2642    /// statistics
2643    CbcStatistics ** statistics_;
2644    /// Maximum depth reached
2645    int maximumDepthActual_;
2646    /// Number of reduced cost fixings
2647    double numberDJFixed_;
2648    /// Probing info
2649    CglTreeProbingInfo * probingInfo_;
2650    /// Number of fixed by analyze at root
2651    int numberFixedAtRoot_;
2652    /// Number fixed by analyze so far
2653    int numberFixedNow_;
2654    /// Whether stopping on gap
2655    bool stoppedOnGap_;
2656    /// Whether event happened
2657    mutable bool eventHappened_;
2658    /// Number of long strong goes
2659    int numberLongStrong_;
2660    /// Number of old active cuts
2661    int numberOldActiveCuts_;
2662    /// Number of new cuts
2663    int numberNewCuts_;
2664    /// Strategy worked out - mainly at root node
2665    int searchStrategy_;
2666    /// Number of iterations in strong branching
2667    int numberStrongIterations_;
2668    /** 0 - number times strong branching done, 1 - number fixed, 2 - number infeasible
2669        Second group of three is a snapshot at node [6] */
2670    int strongInfo_[7];
2671    /**
2672        For advanced applications you may wish to modify the behavior of Cbc
2673        e.g. if the solver is a NLP solver then you may not have an exact
2674        optimum solution at each step.  This gives characteristics - just for one BAB.
2675        For actually saving/restoring a solution you need the actual solver one.
2676    */
2677    OsiBabSolver * solverCharacteristics_;
2678    /// Whether to force a resolve after takeOffCuts
2679    bool resolveAfterTakeOffCuts_;
2680    /// Maximum number of iterations (designed to be used in heuristics)
2681    int maximumNumberIterations_;
2682    /// Anything with priority >= this can be treated as continuous
2683    int continuousPriority_;
2684    /// Number of outstanding update information items
2685    int numberUpdateItems_;
2686    /// Maximum number of outstanding update information items
2687    int maximumNumberUpdateItems_;
2688    /// Update items
2689    CbcObjectUpdateData * updateItems_;
2690    /// Stored row cuts for donor/recipient CbcModel
2691    CglStored * storedRowCuts_;
2692    /**
2693       Parallel
2694       0 - off
2695       1 - testing
2696       2-99 threads
2697       other special meanings
2698    */
2699    int numberThreads_;
2700    /** thread mode
2701        always use numberThreads for branching
2702        1 set then deterministic
2703        2 set then use numberThreads for root cuts
2704        4 set then use numberThreads in root mini branch and bound
2705        default is 0
2706    */
2707    int threadMode_;
2708    /// Thread stuff for master
2709    CbcBaseModel * master_;
2710    /// Pointer to masterthread
2711    CbcThread * masterThread_;
2712//@}
2713};
2714/// So we can use osiObject or CbcObject during transition
2715void getIntegerInformation(const OsiObject * object, double & originalLower,
2716                           double & originalUpper) ;
2717// So we can call from other programs
2718// Real main program
2719class OsiClpSolverInterface;
2720int CbcMain (int argc, const char *argv[], OsiClpSolverInterface & solver, CbcModel ** babSolver);
2721int CbcMain (int argc, const char *argv[], CbcModel & babSolver);
2722// four ways of calling
2723int callCbc(const char * input2, OsiClpSolverInterface& solver1);
2724int callCbc(const char * input2);
2725int callCbc(const std::string input2, OsiClpSolverInterface& solver1);
2726int callCbc(const std::string input2) ;
2727// When we want to load up CbcModel with options first
2728void CbcMain0 (CbcModel & babSolver);
2729int CbcMain1 (int argc, const char *argv[], CbcModel & babSolver);
2730// two ways of calling
2731int callCbc(const char * input2, CbcModel & babSolver);
2732int callCbc(const std::string input2, CbcModel & babSolver);
2733// And when CbcMain0 already called to initialize
2734int callCbc1(const char * input2, CbcModel & babSolver);
2735int callCbc1(const std::string input2, CbcModel & babSolver);
2736// And when CbcMain0 already called to initialize (with call back) (see CbcMain1 for whereFrom)
2737int callCbc1(const char * input2, CbcModel & babSolver, int (CbcModel * currentSolver, int whereFrom));
2738int callCbc1(const std::string input2, CbcModel & babSolver, int (CbcModel * currentSolver, int whereFrom));
2739int CbcMain1 (int argc, const char *argv[], CbcModel & babSolver, int (CbcModel * currentSolver, int whereFrom));
2740// For uniform setting of cut and heuristic options
2741void setCutAndHeuristicOptions(CbcModel & model);
2742#endif
2743
Note: See TracBrowser for help on using the repository browser.