1 | /* $Id: CbcHeuristicPivotAndFix.cpp 2094 2014-11-18 11:15:36Z unxusr $ */ |
---|
2 | // Copyright (C) 2008, International Business Machines |
---|
3 | // Corporation and others. All Rights Reserved. |
---|
4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
---|
5 | |
---|
6 | #if defined(_MSC_VER) |
---|
7 | // Turn off compiler warning about long names |
---|
8 | # pragma warning(disable:4786) |
---|
9 | #endif |
---|
10 | #include <cassert> |
---|
11 | #include <cstdlib> |
---|
12 | #include <cmath> |
---|
13 | #include <cfloat> |
---|
14 | #include <vector> |
---|
15 | |
---|
16 | #include "OsiSolverInterface.hpp" |
---|
17 | #include "CbcModel.hpp" |
---|
18 | #include "CbcMessage.hpp" |
---|
19 | #include "CbcHeuristicPivotAndFix.hpp" |
---|
20 | #include "OsiClpSolverInterface.hpp" |
---|
21 | #include "CoinTime.hpp" |
---|
22 | |
---|
23 | //#define FORNOW |
---|
24 | |
---|
25 | // Default Constructor |
---|
26 | CbcHeuristicPivotAndFix::CbcHeuristicPivotAndFix() |
---|
27 | : CbcHeuristic() |
---|
28 | { |
---|
29 | } |
---|
30 | |
---|
31 | // Constructor with model - assumed before cuts |
---|
32 | |
---|
33 | CbcHeuristicPivotAndFix::CbcHeuristicPivotAndFix(CbcModel & model) |
---|
34 | : CbcHeuristic(model) |
---|
35 | { |
---|
36 | } |
---|
37 | |
---|
38 | // Destructor |
---|
39 | CbcHeuristicPivotAndFix::~CbcHeuristicPivotAndFix () |
---|
40 | { |
---|
41 | } |
---|
42 | |
---|
43 | // Clone |
---|
44 | CbcHeuristic * |
---|
45 | CbcHeuristicPivotAndFix::clone() const |
---|
46 | { |
---|
47 | return new CbcHeuristicPivotAndFix(*this); |
---|
48 | } |
---|
49 | // Create C++ lines to get to current state |
---|
50 | void |
---|
51 | CbcHeuristicPivotAndFix::generateCpp( FILE * fp) |
---|
52 | { |
---|
53 | CbcHeuristicPivotAndFix other; |
---|
54 | fprintf(fp, "0#include \"CbcHeuristicPivotAndFix.hpp\"\n"); |
---|
55 | fprintf(fp, "3 CbcHeuristicPivotAndFix heuristicPFX(*cbcModel);\n"); |
---|
56 | CbcHeuristic::generateCpp(fp, "heuristicPFX"); |
---|
57 | fprintf(fp, "3 cbcModel->addHeuristic(&heuristicPFX);\n"); |
---|
58 | } |
---|
59 | |
---|
60 | // Copy constructor |
---|
61 | CbcHeuristicPivotAndFix::CbcHeuristicPivotAndFix(const CbcHeuristicPivotAndFix & rhs) |
---|
62 | : |
---|
63 | CbcHeuristic(rhs) |
---|
64 | { |
---|
65 | } |
---|
66 | |
---|
67 | // Assignment operator |
---|
68 | CbcHeuristicPivotAndFix & |
---|
69 | CbcHeuristicPivotAndFix::operator=( const CbcHeuristicPivotAndFix & rhs) |
---|
70 | { |
---|
71 | if (this != &rhs) { |
---|
72 | CbcHeuristic::operator=(rhs); |
---|
73 | } |
---|
74 | return *this; |
---|
75 | } |
---|
76 | |
---|
77 | // Resets stuff if model changes |
---|
78 | void |
---|
79 | CbcHeuristicPivotAndFix::resetModel(CbcModel * /*model*/) |
---|
80 | { |
---|
81 | //CbcHeuristic::resetModel(model); |
---|
82 | } |
---|
83 | /* |
---|
84 | Comments needed |
---|
85 | Returns 1 if solution, 0 if not */ |
---|
86 | int |
---|
87 | CbcHeuristicPivotAndFix::solution(double & /*solutionValue*/, |
---|
88 | double * /*betterSolution*/) |
---|
89 | { |
---|
90 | |
---|
91 | numCouldRun_++; // Todo: Ask JJHF what this for. |
---|
92 | std::cout << "Entering Pivot-and-Fix Heuristic" << std::endl; |
---|
93 | |
---|
94 | #ifdef HEURISTIC_INFORM |
---|
95 | printf("Entering heuristic %s - nRuns %d numCould %d when %d\n", |
---|
96 | heuristicName(),numRuns_,numCouldRun_,when_); |
---|
97 | #endif |
---|
98 | #ifdef FORNOW |
---|
99 | std::cout << "Lucky you! You're in the Pivot-and-Fix Heuristic" << std::endl; |
---|
100 | // The struct should be moved to member data |
---|
101 | |
---|
102 | |
---|
103 | |
---|
104 | typedef struct { |
---|
105 | int numberSolutions; |
---|
106 | int maximumSolutions; |
---|
107 | int numberColumns; |
---|
108 | double ** solution; |
---|
109 | int * numberUnsatisfied; |
---|
110 | } clpSolution; |
---|
111 | |
---|
112 | double start = CoinCpuTime(); |
---|
113 | |
---|
114 | OsiClpSolverInterface * clpSolverOriginal |
---|
115 | = dynamic_cast<OsiClpSolverInterface *> (model_->solver()); |
---|
116 | assert (clpSolverOriginal); |
---|
117 | OsiClpSolverInterface *clpSolver(clpSolverOriginal); |
---|
118 | |
---|
119 | ClpSimplex * simplex = clpSolver->getModelPtr(); |
---|
120 | |
---|
121 | // Initialize the structure holding the solutions |
---|
122 | clpSolution solutions; |
---|
123 | // Set typeStruct field of ClpTrustedData struct to one. |
---|
124 | // This tells Clp it's "Mahdi!" |
---|
125 | ClpTrustedData trustedSolutions; |
---|
126 | trustedSolutions.typeStruct = 1; |
---|
127 | trustedSolutions.data = &solutions; |
---|
128 | solutions.numberSolutions = 0; |
---|
129 | solutions.maximumSolutions = 0; |
---|
130 | solutions.numberColumns = simplex->numberColumns(); |
---|
131 | solutions.solution = NULL; |
---|
132 | solutions.numberUnsatisfied = NULL; |
---|
133 | simplex->setTrustedUserPointer(&trustedSolutions); |
---|
134 | |
---|
135 | // Solve from all slack to get some points |
---|
136 | simplex->allSlackBasis(); |
---|
137 | simplex->primal(); |
---|
138 | |
---|
139 | // ------------------------------------------------- |
---|
140 | // Get the problem information |
---|
141 | // - get the number of cols and rows |
---|
142 | int numCols = clpSolver->getNumCols(); |
---|
143 | int numRows = clpSolver->getNumRows(); |
---|
144 | |
---|
145 | // - get the right hand side of the rows |
---|
146 | const double * rhs = clpSolver->getRightHandSide(); |
---|
147 | |
---|
148 | // - find the integer variables |
---|
149 | bool * varClassInt = new bool[numCols]; |
---|
150 | int numInt = 0; |
---|
151 | for (int i = 0; i < numCols; i++) { |
---|
152 | if (clpSolver->isContinuous(i)) |
---|
153 | varClassInt[i] = 0; |
---|
154 | else { |
---|
155 | varClassInt[i] = 1; |
---|
156 | numInt++; |
---|
157 | } |
---|
158 | } |
---|
159 | |
---|
160 | // -Get the rows sense |
---|
161 | const char * rowSense; |
---|
162 | rowSense = clpSolver->getRowSense(); |
---|
163 | |
---|
164 | // -Get the objective coefficients |
---|
165 | const double *objCoefficients = clpSolver->getObjCoefficients(); |
---|
166 | double *originalObjCoeff = new double [numCols]; |
---|
167 | for (int i = 0; i < numCols; i++) |
---|
168 | originalObjCoeff[i] = objCoefficients[i]; |
---|
169 | |
---|
170 | // -Get the matrix of the problem |
---|
171 | double ** matrix = new double * [numRows]; |
---|
172 | for (int i = 0; i < numRows; i++) { |
---|
173 | matrix[i] = new double[numCols]; |
---|
174 | for (int j = 0; j < numCols; j++) |
---|
175 | matrix[i][j] = 0; |
---|
176 | } |
---|
177 | const CoinPackedMatrix* matrixByRow = clpSolver->getMatrixByRow(); |
---|
178 | const double * matrixElements = matrixByRow->getElements(); |
---|
179 | const int * matrixIndices = matrixByRow->getIndices(); |
---|
180 | const int * matrixStarts = matrixByRow->getVectorStarts(); |
---|
181 | for (int j = 0; j < numRows; j++) { |
---|
182 | for (int i = matrixStarts[j]; i < matrixStarts[j+1]; i++) { |
---|
183 | matrix[j][matrixIndices[i]] = matrixElements[i]; |
---|
184 | } |
---|
185 | } |
---|
186 | |
---|
187 | // The newObj is the randomly perturbed constraint used to find new |
---|
188 | // corner points |
---|
189 | double * newObj = new double [numCols]; |
---|
190 | |
---|
191 | // Set the random seed |
---|
192 | srand ( time(NULL) + 1); |
---|
193 | int randNum; |
---|
194 | |
---|
195 | // We're going to add a new row to the LP formulation |
---|
196 | // after finding each new solution. |
---|
197 | // Adding a new row requires the new elements and the new indices. |
---|
198 | // The elements are original objective function coefficients. |
---|
199 | // The indicies are the (dense) columns indices stored in addRowIndex. |
---|
200 | // The rhs is the value of the new solution stored in solutionValue. |
---|
201 | int * addRowIndex = new int[numCols]; |
---|
202 | for (int i = 0; i < numCols; i++) |
---|
203 | addRowIndex[i] = i; |
---|
204 | |
---|
205 | // The number of feasible solutions found by the PF heuristic. |
---|
206 | // This controls the return code of the solution() method. |
---|
207 | int numFeasibles = 0; |
---|
208 | |
---|
209 | // Shuffle the rows |
---|
210 | int * index = new int [numRows]; |
---|
211 | for (int i = 0; i < numRows; i++) |
---|
212 | index[i] = i; |
---|
213 | for (int i = 0; i < numRows; i++) { |
---|
214 | int temp = index[i]; |
---|
215 | int randNumTemp = i + (rand() % (numRows - i)); |
---|
216 | index[i] = index[randNumTemp]; |
---|
217 | index[randNumTemp] = temp; |
---|
218 | } |
---|
219 | |
---|
220 | // In the clpSolution struct, we store a lot of column solutions. |
---|
221 | // For each perturb objective, we store the solution from each |
---|
222 | // iteration of the LP solve. |
---|
223 | // For each perturb objective, we look at the collection of |
---|
224 | // solutions to do something extremly intelligent :-) |
---|
225 | // We could (and should..and will :-) wipe out the block of |
---|
226 | // solutions when we're done with them. But for now, we just move on |
---|
227 | // and store the next block of solutions for the next (perturbed) |
---|
228 | // objective. |
---|
229 | // The variable startIndex tells us where the new block begins. |
---|
230 | int startIndex = 0; |
---|
231 | |
---|
232 | // At most "fixThreshold" number of integer variables can be unsatisfied |
---|
233 | // for calling smallBranchAndBound(). |
---|
234 | // The PF Heuristic only fixes fixThreshold number of variables to |
---|
235 | // their integer values. Not more. Not less. The reason is to give |
---|
236 | // the smallBB some opportunity to find better solutions. If we fix |
---|
237 | // everything it might be too many (leading the heuristic to come up |
---|
238 | // with infeasibility rather than a useful result). |
---|
239 | // (This is an important paramater. And it is dynamically set.) |
---|
240 | double fixThreshold; |
---|
241 | /* |
---|
242 | if(numInt > 400) |
---|
243 | fixThreshold = 17*sqrt(numInt); |
---|
244 | if(numInt<=400 && numInt>100) |
---|
245 | fixThreshold = 5*sqrt(numInt); |
---|
246 | if(numInt<=100) |
---|
247 | fixThreshold = 4*sqrt(numInt); |
---|
248 | */ |
---|
249 | // Initialize fixThreshold based on the number of integer |
---|
250 | // variables |
---|
251 | if (numInt <= 100) |
---|
252 | fixThreshold = .35 * numInt; |
---|
253 | if (numInt > 100 && numInt < 1000) |
---|
254 | fixThreshold = .85 * numInt; |
---|
255 | if (numInt >= 1000) |
---|
256 | fixThreshold = .1 * numInt; |
---|
257 | |
---|
258 | // Whenever the dynamic system for changing fixThreshold |
---|
259 | // kicks in, it changes the parameter by the |
---|
260 | // fixThresholdChange amount. |
---|
261 | // (The 25% should be member data and tuned. Another paper!) |
---|
262 | double fixThresholdChange = 0.25 * fixThreshold; |
---|
263 | |
---|
264 | // maxNode is the maximum number of nodes we allow smallBB to |
---|
265 | // search. It's initialized to 400 and changed dynamically. |
---|
266 | // The 400 should be member data, if we become virtuous. |
---|
267 | int maxNode = 400; |
---|
268 | |
---|
269 | // We control the decision to change maxNode through the boolean |
---|
270 | // variable changeMaxNode. The boolean variable is initialized to |
---|
271 | // true and gets set to false under a condition (and is never true |
---|
272 | // again.) |
---|
273 | // It's flipped off and stays off (in the current incarnation of PF) |
---|
274 | bool changeMaxNode = 1; |
---|
275 | |
---|
276 | // The sumReturnCode is used for the dynamic system that sets |
---|
277 | // fixThreshold and changeMaxNode. |
---|
278 | // |
---|
279 | // We track what's happening in sumReturnCode. There are 8 switches. |
---|
280 | // The first 5 switches corresponds to a return code for smallBB. |
---|
281 | // |
---|
282 | // We want to know how many times we consecutively get the same |
---|
283 | // return code. |
---|
284 | // |
---|
285 | // If "good" return codes are happening often enough, we're happy. |
---|
286 | // |
---|
287 | // If a "bad" returncodes happen consecutively, we want to |
---|
288 | // change something. |
---|
289 | // |
---|
290 | // The switch 5 is the number of times PF didn't call smallBB |
---|
291 | // becuase the number of integer variables that took integer values |
---|
292 | // was less than fixThreshold. |
---|
293 | // |
---|
294 | // The swicth 6 was added for a brilliant idea...to be announced |
---|
295 | // later (another paper!) |
---|
296 | // |
---|
297 | // The switch 7 is the one that changes the max node. Read the |
---|
298 | // code. (Todo: Verbalize the brilliant idea for the masses.) |
---|
299 | // |
---|
300 | int sumReturnCode[8]; |
---|
301 | /* |
---|
302 | sumReturnCode[0] ~ -1 --> problem too big for smallBB |
---|
303 | sumReturnCode[1] ~ 0 --> smallBB not finshed and no soln |
---|
304 | sumReturnCode[2] ~ 1 --> smallBB not finshed and there is a soln |
---|
305 | sumReturnCode[3] ~ 2 --> smallBB finished and no soln |
---|
306 | sumReturnCode[4] ~ 3 --> smallBB finished and there is a soln |
---|
307 | sumReturnCode[5] ~ didn't call smallBranchAndBound too few to fix |
---|
308 | sumReturnCode[6] ~ didn't call smallBranchAndBound too many unsatisfied |
---|
309 | sumReturnCode[7] ~ the same as sumReturnCode[1] but becomes zero just if the returnCode is not 0 |
---|
310 | */ |
---|
311 | |
---|
312 | for (int i = 0; i < 8; i++) |
---|
313 | sumReturnCode[i] = 0; |
---|
314 | int * colIndex = new int[numCols]; |
---|
315 | for (int i = 0; i < numCols; i++) |
---|
316 | colIndex[i] = i; |
---|
317 | double cutoff = COIN_DBL_MAX; |
---|
318 | bool didMiniBB; |
---|
319 | |
---|
320 | // Main loop |
---|
321 | for (int i = 0; i < numRows; i++) { |
---|
322 | // track the number of mini-bb for the dynamic threshold setting |
---|
323 | didMiniBB = 0; |
---|
324 | |
---|
325 | for (int k = startIndex; k < solutions.numberSolutions; k++) |
---|
326 | //if the point has 0 unsatisfied variables; make sure it is |
---|
327 | //feasible. Check integer feasiblity and constraints. |
---|
328 | if (solutions.numberUnsatisfied[k] == 0) { |
---|
329 | double feasibility = 1; |
---|
330 | //check integer feasibility |
---|
331 | for (int icol = 0; icol < numCols; icol++) { |
---|
332 | double closest = floor(solutions.solution[k][icol] + 0.5); |
---|
333 | if (varClassInt[icol] && (fabs(solutions.solution[k][icol] - closest) > 1e-6)) { |
---|
334 | feasibility = 0; |
---|
335 | break; |
---|
336 | } |
---|
337 | } |
---|
338 | //check if the solution satisfies the constraints |
---|
339 | for (int irow = 0; irow < numRows; irow++) { |
---|
340 | double lhs = 0; |
---|
341 | for (int j = 0; j < numCols; j++) |
---|
342 | lhs += matrix[irow][j] * solutions.solution[k][j]; |
---|
343 | if (rowSense[irow] == 'L' && lhs > rhs[irow] + 1e-6) { |
---|
344 | feasibility = 0; |
---|
345 | break; |
---|
346 | } |
---|
347 | if (rowSense[irow] == 'G' && lhs < rhs[irow] - 1e-6) { |
---|
348 | feasibility = 0; |
---|
349 | break; |
---|
350 | } |
---|
351 | if (rowSense[irow] == 'E' && (lhs - rhs[irow] > 1e-6 || lhs - rhs[irow] < -1e-6)) { |
---|
352 | feasibility = 0; |
---|
353 | break; |
---|
354 | } |
---|
355 | } |
---|
356 | |
---|
357 | //if feasible, find the objective value and set the cutoff |
---|
358 | // for the smallBB and add a new constraint to the LP |
---|
359 | // (and update the best solution found so far for the |
---|
360 | // return arguments) |
---|
361 | if (feasibility) { |
---|
362 | double objectiveValue = 0; |
---|
363 | for (int j = 0; j < numCols; j++) |
---|
364 | objectiveValue += solutions.solution[k][j] * originalObjCoeff[j]; |
---|
365 | cutoff = objectiveValue; |
---|
366 | clpSolver->addRow(numCols, addRowIndex, originalObjCoeff, -COIN_DBL_MAX, cutoff); |
---|
367 | |
---|
368 | // Todo: pick up the best solution in the block (not |
---|
369 | // the last). |
---|
370 | solutionValue = objectiveValue; |
---|
371 | for (int m = 0; m < numCols; m++) |
---|
372 | betterSolution[m] = solutions.solution[k][m]; |
---|
373 | numFeasibles++; |
---|
374 | } |
---|
375 | } |
---|
376 | |
---|
377 | // Go through the block of solution and decide if to call smallBB |
---|
378 | for (int k = startIndex; k < solutions.numberSolutions; k++) { |
---|
379 | if (solutions.numberUnsatisfied[k] <= fixThreshold) { |
---|
380 | // get new copy |
---|
381 | OsiSolverInterface * newSolver; |
---|
382 | newSolver = new OsiClpSolverInterface(*clpSolver); |
---|
383 | newSolver->setObjSense(1); |
---|
384 | newSolver->setObjective(originalObjCoeff); |
---|
385 | int numberColumns = newSolver->getNumCols(); |
---|
386 | int numFixed = 0; |
---|
387 | |
---|
388 | // Fix the first fixThreshold number of integer vars |
---|
389 | // that are satisfied |
---|
390 | for (int iColumn = 0 ; iColumn < numberColumns ; iColumn++) { |
---|
391 | if (newSolver->isInteger(iColumn)) { |
---|
392 | double value = solutions.solution[k][iColumn]; |
---|
393 | double intValue = floor(value + 0.5); |
---|
394 | if (fabs(value - intValue) < 1.0e-5) { |
---|
395 | newSolver->setColLower(iColumn, intValue); |
---|
396 | newSolver->setColUpper(iColumn, intValue); |
---|
397 | numFixed++; |
---|
398 | if (numFixed > numInt - fixThreshold) |
---|
399 | break; |
---|
400 | } |
---|
401 | } |
---|
402 | } |
---|
403 | COIN_DETAIL_PRINT(printf("numFixed: %d\n", numFixed)); |
---|
404 | COIN_DETAIL_PRINT(printf("fixThreshold: %f\n", fixThreshold)); |
---|
405 | COIN_DETAIL_PRINT(printf("numInt: %d\n", numInt)); |
---|
406 | double *newSolution = new double[numCols]; |
---|
407 | double newSolutionValue; |
---|
408 | |
---|
409 | // Call smallBB on the modified problem |
---|
410 | int returnCode = smallBranchAndBound(newSolver, maxNode, newSolution, |
---|
411 | newSolutionValue, cutoff, "mini"); |
---|
412 | |
---|
413 | // If smallBB found a solution, update the better |
---|
414 | // solution and solutionValue (we gave smallBB our |
---|
415 | // cutoff, so it only finds improving solutions) |
---|
416 | if (returnCode == 1 || returnCode == 3) { |
---|
417 | numFeasibles ++; |
---|
418 | solutionValue = newSolutionValue; |
---|
419 | for (int m = 0; m < numCols; m++) |
---|
420 | betterSolution[m] = newSolution[m]; |
---|
421 | COIN_DETAIL_PRINT(printf("cutoff: %f\n", newSolutionValue)); |
---|
422 | COIN_DETAIL_PRINT(printf("time: %.2lf\n", CoinCpuTime() - start)); |
---|
423 | } |
---|
424 | didMiniBB = 1; |
---|
425 | COIN_DETAIL_PRINT(printf("returnCode: %d\n", returnCode)); |
---|
426 | |
---|
427 | //Update sumReturnCode array |
---|
428 | for (int iRC = 0; iRC < 6; iRC++) { |
---|
429 | if (iRC == returnCode + 1) |
---|
430 | sumReturnCode[iRC]++; |
---|
431 | else |
---|
432 | sumReturnCode[iRC] = 0; |
---|
433 | } |
---|
434 | if (returnCode != 0) |
---|
435 | sumReturnCode[7] = 0; |
---|
436 | else |
---|
437 | sumReturnCode[7]++; |
---|
438 | if (returnCode == 1 || returnCode == 3) { |
---|
439 | cutoff = newSolutionValue; |
---|
440 | clpSolver->addRow(numCols, addRowIndex, originalObjCoeff, -COIN_DBL_MAX, cutoff); |
---|
441 | COIN_DETAIL_PRINT(printf("******************\n\n*****************\n")); |
---|
442 | } |
---|
443 | break; |
---|
444 | } |
---|
445 | } |
---|
446 | |
---|
447 | if (!didMiniBB && solutions.numberSolutions - startIndex > 0) { |
---|
448 | sumReturnCode[5]++; |
---|
449 | for (int iRC = 0; iRC < 5; iRC++) |
---|
450 | sumReturnCode[iRC] = 0; |
---|
451 | } |
---|
452 | |
---|
453 | //Change "fixThreshold" if needed |
---|
454 | // using the data we've recorded in sumReturnCode |
---|
455 | if (sumReturnCode[1] >= 3) |
---|
456 | fixThreshold -= fixThresholdChange; |
---|
457 | if (sumReturnCode[7] >= 3 && changeMaxNode) { |
---|
458 | maxNode *= 5; |
---|
459 | changeMaxNode = 0; |
---|
460 | } |
---|
461 | if (sumReturnCode[3] >= 3 && fixThreshold < 0.95 * numInt) |
---|
462 | fixThreshold += fixThresholdChange; |
---|
463 | if (sumReturnCode[5] >= 4) |
---|
464 | fixThreshold += fixThresholdChange; |
---|
465 | if (sumReturnCode[0] > 3) |
---|
466 | fixThreshold -= fixThresholdChange; |
---|
467 | |
---|
468 | startIndex = solutions.numberSolutions; |
---|
469 | |
---|
470 | //Check if the maximum iterations limit is reached |
---|
471 | // rlh: Ask John how this is working with the change to trustedUserPtr. |
---|
472 | if (solutions.numberSolutions > 20000) |
---|
473 | break; |
---|
474 | |
---|
475 | // The first time in this loop PF solves orig LP. |
---|
476 | |
---|
477 | //Generate the random objective function |
---|
478 | randNum = rand() % 10 + 1; |
---|
479 | randNum = fmod(randNum, 2); |
---|
480 | for (int j = 0; j < numCols; j++) { |
---|
481 | if (randNum == 1) |
---|
482 | if (fabs(matrix[index[i]][j]) < 1e-6) |
---|
483 | newObj[j] = 0.1; |
---|
484 | else |
---|
485 | newObj[j] = matrix[index[i]][j] * 1.1; |
---|
486 | else if (fabs(matrix[index[i]][j]) < 1e-6) |
---|
487 | newObj[j] = -0.1; |
---|
488 | else |
---|
489 | newObj[j] = matrix[index[i]][j] * 0.9; |
---|
490 | } |
---|
491 | clpSolver->setObjective(newObj); |
---|
492 | if (rowSense[i] == 'L') |
---|
493 | clpSolver->setObjSense(-1); |
---|
494 | else |
---|
495 | // Todo #1: We don't need to solve the LPs to optimality. |
---|
496 | // We just need corner points. |
---|
497 | // There's a problem in stopping Clp that needs to be looked |
---|
498 | // into. So for now, we solve optimality. |
---|
499 | clpSolver->setObjSense(1); |
---|
500 | // simplex->setMaximumIterations(100); |
---|
501 | clpSolver->getModelPtr()->primal(1); |
---|
502 | // simplex->setMaximumIterations(100000); |
---|
503 | #ifdef COIN_DETAIL |
---|
504 | printf("cutoff: %f\n", cutoff); |
---|
505 | printf("time: %.2f\n", CoinCpuTime() - start); |
---|
506 | for (int iRC = 0; iRC < 8; iRC++) |
---|
507 | printf("%d ", sumReturnCode[iRC]); |
---|
508 | printf("\nfixThreshold: %f\n", fixThreshold); |
---|
509 | printf("numInt: %d\n", numInt); |
---|
510 | printf("\n---------------------------------------------------------------- %d\n", i); |
---|
511 | #endif |
---|
512 | |
---|
513 | //temp: |
---|
514 | if (i > 3) break; |
---|
515 | |
---|
516 | } |
---|
517 | |
---|
518 | COIN_DETAIL_PRINT(printf("Best Feasible Found: %f\n", cutoff)); |
---|
519 | COIN_DETAIL_PRINT(printf("Total time: %.2f\n", CoinCpuTime() - start)); |
---|
520 | |
---|
521 | if (numFeasibles == 0) { |
---|
522 | return 0; |
---|
523 | } |
---|
524 | |
---|
525 | |
---|
526 | |
---|
527 | // We found something better |
---|
528 | std::cout << "See you soon! You're leaving the Pivot-and-Fix Heuristic" << std::endl; |
---|
529 | std::cout << std::endl; |
---|
530 | |
---|
531 | return 1; |
---|
532 | #endif |
---|
533 | |
---|
534 | return 0; |
---|
535 | |
---|
536 | } |
---|
537 | |
---|
538 | |
---|
539 | |
---|
540 | |
---|
541 | // update model |
---|
542 | void CbcHeuristicPivotAndFix::setModel(CbcModel * ) |
---|
543 | { |
---|
544 | // probably same as resetModel |
---|
545 | } |
---|
546 | |
---|
547 | |
---|