1 | /* $Id: CbcBranchLotsize.cpp 2043 2014-07-01 13:03:51Z unxusr $ */ |
---|
2 | // Copyright (C) 2002, International Business Machines |
---|
3 | // Corporation and others. All Rights Reserved. |
---|
4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
---|
5 | |
---|
6 | #if defined(_MSC_VER) |
---|
7 | // Turn off compiler warning about long names |
---|
8 | # pragma warning(disable:4786) |
---|
9 | #endif |
---|
10 | #include <cassert> |
---|
11 | #include <cstdlib> |
---|
12 | #include <cmath> |
---|
13 | #include <cfloat> |
---|
14 | |
---|
15 | #include "OsiSolverInterface.hpp" |
---|
16 | #include "CbcModel.hpp" |
---|
17 | #include "CbcMessage.hpp" |
---|
18 | #include "CbcBranchLotsize.hpp" |
---|
19 | #include "CoinSort.hpp" |
---|
20 | #include "CoinError.hpp" |
---|
21 | |
---|
22 | /* |
---|
23 | CBC_PRINT 1 just does sanity checks - no printing |
---|
24 | Larger values of CBC_PRINT set various printing levels. Larger |
---|
25 | values print more. |
---|
26 | */ |
---|
27 | //#define CBC_PRINT 1 |
---|
28 | // First/last variable to print info on |
---|
29 | #if CBC_PRINT |
---|
30 | // preset does all - change to x,x to just do x |
---|
31 | static int firstPrint = 0; |
---|
32 | static int lastPrint = 1000000; |
---|
33 | static CbcModel * saveModel = NULL; |
---|
34 | #endif |
---|
35 | // Just for debug (CBC_PRINT defined in CbcBranchLotsize.cpp) |
---|
36 | void |
---|
37 | #if CBC_PRINT |
---|
38 | CbcLotsize::printLotsize(double value, bool condition, int type) const |
---|
39 | #else |
---|
40 | CbcLotsize::printLotsize(double , bool , int ) const |
---|
41 | #endif |
---|
42 | { |
---|
43 | #if CBC_PRINT |
---|
44 | if (columnNumber_ >= firstPrint && columnNumber_ <= lastPrint) { |
---|
45 | int printIt = CBC_PRINT - 1; |
---|
46 | // Get details |
---|
47 | OsiSolverInterface * solver = saveModel->solver(); |
---|
48 | double currentLower = solver->getColLower()[columnNumber_]; |
---|
49 | double currentUpper = solver->getColUpper()[columnNumber_]; |
---|
50 | int i; |
---|
51 | // See if in a valid range (with two tolerances) |
---|
52 | bool inRange = false; |
---|
53 | bool inRange2 = false; |
---|
54 | double integerTolerance = |
---|
55 | model_->getDblParam(CbcModel::CbcIntegerTolerance); |
---|
56 | // increase if type 2 |
---|
57 | if (type == 2) { |
---|
58 | integerTolerance *= 100.0; |
---|
59 | type = 0; |
---|
60 | printIt = 2; // always print |
---|
61 | } |
---|
62 | // bounds should match some bound |
---|
63 | int rangeL = -1; |
---|
64 | int rangeU = -1; |
---|
65 | if (rangeType_ == 1) { |
---|
66 | for (i = 0; i < numberRanges_; i++) { |
---|
67 | if (fabs(currentLower - bound_[i]) < 1.0e-12) |
---|
68 | rangeL = i; |
---|
69 | if (fabs(currentUpper - bound_[i]) < 1.0e-12) |
---|
70 | rangeU = i; |
---|
71 | if (fabs(value - bound_[i]) < integerTolerance) |
---|
72 | inRange = true; |
---|
73 | if (fabs(value - bound_[i]) < 1.0e8) |
---|
74 | inRange2 = true; |
---|
75 | } |
---|
76 | } else { |
---|
77 | for (i = 0; i < numberRanges_; i++) { |
---|
78 | if (fabs(currentLower - bound_[2*i]) < 1.0e-12) |
---|
79 | rangeL = i; |
---|
80 | if (fabs(currentUpper - bound_[2*i+1]) < 1.0e-12) |
---|
81 | rangeU = i; |
---|
82 | if (value > bound_[2*i] - integerTolerance && |
---|
83 | value < bound_[2*i+1] + integerTolerance) |
---|
84 | inRange = true; |
---|
85 | if (value > bound_[2*i] - integerTolerance && |
---|
86 | value < bound_[2*i+1] + integerTolerance) |
---|
87 | inRange = true; |
---|
88 | } |
---|
89 | } |
---|
90 | assert (rangeL >= 0 && rangeU >= 0); |
---|
91 | bool abortIt = false; |
---|
92 | switch (type) { |
---|
93 | // returning from findRange (fall through to just check) |
---|
94 | case 0: |
---|
95 | if (printIt) { |
---|
96 | printf("findRange returns %s for column %d and value %g", |
---|
97 | condition ? "true" : "false", columnNumber_, value); |
---|
98 | if (printIt > 1) |
---|
99 | printf(" LP bounds %g, %g", currentLower, currentUpper); |
---|
100 | printf("\n"); |
---|
101 | } |
---|
102 | // Should match |
---|
103 | case 1: |
---|
104 | if (inRange != condition) { |
---|
105 | printIt = 2; |
---|
106 | abortIt = true; |
---|
107 | } |
---|
108 | break; |
---|
109 | // |
---|
110 | case 2: |
---|
111 | break; |
---|
112 | // |
---|
113 | case 3: |
---|
114 | break; |
---|
115 | // |
---|
116 | case 4: |
---|
117 | break; |
---|
118 | } |
---|
119 | } |
---|
120 | #endif |
---|
121 | } |
---|
122 | /** Default Constructor |
---|
123 | |
---|
124 | */ |
---|
125 | CbcLotsize::CbcLotsize () |
---|
126 | : CbcObject(), |
---|
127 | columnNumber_(-1), |
---|
128 | rangeType_(0), |
---|
129 | numberRanges_(0), |
---|
130 | largestGap_(0), |
---|
131 | bound_(NULL), |
---|
132 | range_(0) |
---|
133 | { |
---|
134 | } |
---|
135 | |
---|
136 | /** Useful constructor |
---|
137 | |
---|
138 | Loads actual upper & lower bounds for the specified variable. |
---|
139 | */ |
---|
140 | CbcLotsize::CbcLotsize (CbcModel * model, |
---|
141 | int iColumn, int numberPoints, |
---|
142 | const double * points, bool range) |
---|
143 | : CbcObject(model) |
---|
144 | { |
---|
145 | #if CBC_PRINT |
---|
146 | if (!saveModel) |
---|
147 | saveModel = model; |
---|
148 | #endif |
---|
149 | assert (numberPoints > 0); |
---|
150 | columnNumber_ = iColumn ; |
---|
151 | // and set id so can be used for branching |
---|
152 | id_ = iColumn; |
---|
153 | // sort ranges |
---|
154 | int * sort = new int[numberPoints]; |
---|
155 | double * weight = new double [numberPoints]; |
---|
156 | int i; |
---|
157 | if (range) { |
---|
158 | rangeType_ = 2; |
---|
159 | } else { |
---|
160 | rangeType_ = 1; |
---|
161 | } |
---|
162 | for (i = 0; i < numberPoints; i++) { |
---|
163 | sort[i] = i; |
---|
164 | weight[i] = points[i*rangeType_]; |
---|
165 | } |
---|
166 | CoinSort_2(weight, weight + numberPoints, sort); |
---|
167 | numberRanges_ = 1; |
---|
168 | largestGap_ = 0; |
---|
169 | if (rangeType_ == 1) { |
---|
170 | bound_ = new double[numberPoints+1]; |
---|
171 | bound_[0] = weight[0]; |
---|
172 | for (i = 1; i < numberPoints; i++) { |
---|
173 | if (weight[i] != weight[i-1]) |
---|
174 | bound_[numberRanges_++] = weight[i]; |
---|
175 | } |
---|
176 | // and for safety |
---|
177 | bound_[numberRanges_] = bound_[numberRanges_-1]; |
---|
178 | for (i = 1; i < numberRanges_; i++) { |
---|
179 | largestGap_ = CoinMax(largestGap_, bound_[i] - bound_[i-1]); |
---|
180 | } |
---|
181 | } else { |
---|
182 | bound_ = new double[2*numberPoints+2]; |
---|
183 | bound_[0] = points[sort[0] * 2]; |
---|
184 | bound_[1] = points[sort[0] * 2 + 1]; |
---|
185 | double hi = bound_[1]; |
---|
186 | assert (hi >= bound_[0]); |
---|
187 | for (i = 1; i < numberPoints; i++) { |
---|
188 | double thisLo = points[sort[i] * 2]; |
---|
189 | double thisHi = points[sort[i] * 2 + 1]; |
---|
190 | assert (thisHi >= thisLo); |
---|
191 | if (thisLo > hi) { |
---|
192 | bound_[2*numberRanges_] = thisLo; |
---|
193 | bound_[2*numberRanges_+1] = thisHi; |
---|
194 | numberRanges_++; |
---|
195 | hi = thisHi; |
---|
196 | } else { |
---|
197 | //overlap |
---|
198 | hi = CoinMax(hi, thisHi); |
---|
199 | bound_[2*numberRanges_-1] = hi; |
---|
200 | } |
---|
201 | } |
---|
202 | // and for safety |
---|
203 | bound_[2*numberRanges_] = bound_[2*numberRanges_-2]; |
---|
204 | bound_[2*numberRanges_+1] = bound_[2*numberRanges_-1]; |
---|
205 | for (i = 1; i < numberRanges_; i++) { |
---|
206 | largestGap_ = CoinMax(largestGap_, bound_[2*i] - bound_[2*i-1]); |
---|
207 | } |
---|
208 | } |
---|
209 | delete [] sort; |
---|
210 | delete [] weight; |
---|
211 | range_ = 0; |
---|
212 | } |
---|
213 | |
---|
214 | // Copy constructor |
---|
215 | CbcLotsize::CbcLotsize ( const CbcLotsize & rhs) |
---|
216 | : CbcObject(rhs) |
---|
217 | |
---|
218 | { |
---|
219 | columnNumber_ = rhs.columnNumber_; |
---|
220 | rangeType_ = rhs.rangeType_; |
---|
221 | numberRanges_ = rhs.numberRanges_; |
---|
222 | range_ = rhs.range_; |
---|
223 | largestGap_ = rhs.largestGap_; |
---|
224 | if (numberRanges_) { |
---|
225 | assert (rangeType_ > 0 && rangeType_ < 3); |
---|
226 | bound_ = new double [(numberRanges_+1)*rangeType_]; |
---|
227 | memcpy(bound_, rhs.bound_, (numberRanges_ + 1)*rangeType_*sizeof(double)); |
---|
228 | } else { |
---|
229 | bound_ = NULL; |
---|
230 | } |
---|
231 | } |
---|
232 | |
---|
233 | // Clone |
---|
234 | CbcObject * |
---|
235 | CbcLotsize::clone() const |
---|
236 | { |
---|
237 | return new CbcLotsize(*this); |
---|
238 | } |
---|
239 | |
---|
240 | // Assignment operator |
---|
241 | CbcLotsize & |
---|
242 | CbcLotsize::operator=( const CbcLotsize & rhs) |
---|
243 | { |
---|
244 | if (this != &rhs) { |
---|
245 | CbcObject::operator=(rhs); |
---|
246 | columnNumber_ = rhs.columnNumber_; |
---|
247 | rangeType_ = rhs.rangeType_; |
---|
248 | numberRanges_ = rhs.numberRanges_; |
---|
249 | largestGap_ = rhs.largestGap_; |
---|
250 | delete [] bound_; |
---|
251 | range_ = rhs.range_; |
---|
252 | if (numberRanges_) { |
---|
253 | assert (rangeType_ > 0 && rangeType_ < 3); |
---|
254 | bound_ = new double [(numberRanges_+1)*rangeType_]; |
---|
255 | memcpy(bound_, rhs.bound_, (numberRanges_ + 1)*rangeType_*sizeof(double)); |
---|
256 | } else { |
---|
257 | bound_ = NULL; |
---|
258 | } |
---|
259 | } |
---|
260 | return *this; |
---|
261 | } |
---|
262 | |
---|
263 | // Destructor |
---|
264 | CbcLotsize::~CbcLotsize () |
---|
265 | { |
---|
266 | delete [] bound_; |
---|
267 | } |
---|
268 | /* Finds range of interest so value is feasible in range range_ or infeasible |
---|
269 | between hi[range_] and lo[range_+1]. Returns true if feasible. |
---|
270 | */ |
---|
271 | bool |
---|
272 | CbcLotsize::findRange(double value) const |
---|
273 | { |
---|
274 | assert (range_ >= 0 && range_ < numberRanges_ + 1); |
---|
275 | double integerTolerance = |
---|
276 | model_->getDblParam(CbcModel::CbcIntegerTolerance); |
---|
277 | int iLo; |
---|
278 | int iHi; |
---|
279 | double infeasibility = 0.0; |
---|
280 | if (rangeType_ == 1) { |
---|
281 | if (value < bound_[range_] - integerTolerance) { |
---|
282 | iLo = 0; |
---|
283 | iHi = range_ - 1; |
---|
284 | } else if (value < bound_[range_] + integerTolerance) { |
---|
285 | #if CBC_PRINT |
---|
286 | printLotsize(value, true, 0); |
---|
287 | #endif |
---|
288 | return true; |
---|
289 | } else if (value < bound_[range_+1] - integerTolerance) { |
---|
290 | #ifdef CBC_PRINT |
---|
291 | printLotsize(value, false, 0); |
---|
292 | #endif |
---|
293 | return false; |
---|
294 | } else { |
---|
295 | iLo = range_ + 1; |
---|
296 | iHi = numberRanges_ - 1; |
---|
297 | } |
---|
298 | // check lo and hi |
---|
299 | bool found = false; |
---|
300 | if (value > bound_[iLo] - integerTolerance && value < bound_[iLo+1] + integerTolerance) { |
---|
301 | range_ = iLo; |
---|
302 | found = true; |
---|
303 | } else if (value > bound_[iHi] - integerTolerance && value < bound_[iHi+1] + integerTolerance) { |
---|
304 | range_ = iHi; |
---|
305 | found = true; |
---|
306 | } else { |
---|
307 | range_ = (iLo + iHi) >> 1; |
---|
308 | } |
---|
309 | //points |
---|
310 | while (!found) { |
---|
311 | if (value < bound_[range_]) { |
---|
312 | if (value >= bound_[range_-1]) { |
---|
313 | // found |
---|
314 | range_--; |
---|
315 | break; |
---|
316 | } else { |
---|
317 | iHi = range_; |
---|
318 | } |
---|
319 | } else { |
---|
320 | if (value < bound_[range_+1]) { |
---|
321 | // found |
---|
322 | break; |
---|
323 | } else { |
---|
324 | iLo = range_; |
---|
325 | } |
---|
326 | } |
---|
327 | range_ = (iLo + iHi) >> 1; |
---|
328 | } |
---|
329 | if (value - bound_[range_] <= bound_[range_+1] - value) { |
---|
330 | infeasibility = value - bound_[range_]; |
---|
331 | } else { |
---|
332 | infeasibility = bound_[range_+1] - value; |
---|
333 | if (infeasibility < integerTolerance) |
---|
334 | range_++; |
---|
335 | } |
---|
336 | #ifdef CBC_PRINT |
---|
337 | printLotsize(value, (infeasibility < integerTolerance), 0); |
---|
338 | #endif |
---|
339 | return (infeasibility < integerTolerance); |
---|
340 | } else { |
---|
341 | // ranges |
---|
342 | if (value < bound_[2*range_] - integerTolerance) { |
---|
343 | iLo = 0; |
---|
344 | iHi = range_ - 1; |
---|
345 | } else if (value < bound_[2*range_+1] + integerTolerance) { |
---|
346 | #ifdef CBC_PRINT |
---|
347 | printLotsize(value, true, 0); |
---|
348 | #endif |
---|
349 | return true; |
---|
350 | } else if (value < bound_[2*range_+2] - integerTolerance) { |
---|
351 | #ifdef CBC_PRINT |
---|
352 | printLotsize(value, false, 0); |
---|
353 | #endif |
---|
354 | return false; |
---|
355 | } else { |
---|
356 | iLo = range_ + 1; |
---|
357 | iHi = numberRanges_ - 1; |
---|
358 | } |
---|
359 | // check lo and hi |
---|
360 | bool found = false; |
---|
361 | if (value > bound_[2*iLo] - integerTolerance && value < bound_[2*iLo+2] - integerTolerance) { |
---|
362 | range_ = iLo; |
---|
363 | found = true; |
---|
364 | } else if (value >= bound_[2*iHi] - integerTolerance) { |
---|
365 | range_ = iHi; |
---|
366 | found = true; |
---|
367 | } else { |
---|
368 | range_ = (iLo + iHi) >> 1; |
---|
369 | } |
---|
370 | //points |
---|
371 | while (!found) { |
---|
372 | if (value < bound_[2*range_]) { |
---|
373 | if (value >= bound_[2*range_-2]) { |
---|
374 | // found |
---|
375 | range_--; |
---|
376 | break; |
---|
377 | } else { |
---|
378 | iHi = range_; |
---|
379 | } |
---|
380 | } else { |
---|
381 | if (value < bound_[2*range_+2]) { |
---|
382 | // found |
---|
383 | break; |
---|
384 | } else { |
---|
385 | iLo = range_; |
---|
386 | } |
---|
387 | } |
---|
388 | range_ = (iLo + iHi) >> 1; |
---|
389 | } |
---|
390 | if (value >= bound_[2*range_] - integerTolerance && value <= bound_[2*range_+1] + integerTolerance) |
---|
391 | infeasibility = 0.0; |
---|
392 | else if (value - bound_[2*range_+1] < bound_[2*range_+2] - value) { |
---|
393 | infeasibility = value - bound_[2*range_+1]; |
---|
394 | } else { |
---|
395 | infeasibility = bound_[2*range_+2] - value; |
---|
396 | } |
---|
397 | #ifdef CBC_PRINT |
---|
398 | printLotsize(value, (infeasibility < integerTolerance), 0); |
---|
399 | #endif |
---|
400 | return (infeasibility < integerTolerance); |
---|
401 | } |
---|
402 | } |
---|
403 | /* Returns floor and ceiling |
---|
404 | */ |
---|
405 | void |
---|
406 | CbcLotsize::floorCeiling(double & floorLotsize, double & ceilingLotsize, double value, |
---|
407 | double /*tolerance*/) const |
---|
408 | { |
---|
409 | bool feasible = findRange(value); |
---|
410 | if (rangeType_ == 1) { |
---|
411 | floorLotsize = bound_[range_]; |
---|
412 | ceilingLotsize = bound_[range_+1]; |
---|
413 | // may be able to adjust |
---|
414 | if (feasible && fabs(value - floorLotsize) > fabs(value - ceilingLotsize)) { |
---|
415 | floorLotsize = bound_[range_+1]; |
---|
416 | ceilingLotsize = bound_[range_+2]; |
---|
417 | } |
---|
418 | } else { |
---|
419 | // ranges |
---|
420 | assert (value >= bound_[2*range_+1]); |
---|
421 | floorLotsize = bound_[2*range_+1]; |
---|
422 | ceilingLotsize = bound_[2*range_+2]; |
---|
423 | } |
---|
424 | } |
---|
425 | double |
---|
426 | CbcLotsize::infeasibility(const OsiBranchingInformation * /*info*/, |
---|
427 | int &preferredWay) const |
---|
428 | { |
---|
429 | OsiSolverInterface * solver = model_->solver(); |
---|
430 | const double * solution = model_->testSolution(); |
---|
431 | const double * lower = solver->getColLower(); |
---|
432 | const double * upper = solver->getColUpper(); |
---|
433 | double value = solution[columnNumber_]; |
---|
434 | value = CoinMax(value, lower[columnNumber_]); |
---|
435 | value = CoinMin(value, upper[columnNumber_]); |
---|
436 | double integerTolerance = |
---|
437 | model_->getDblParam(CbcModel::CbcIntegerTolerance); |
---|
438 | /*printf("%d %g %g %g %g\n",columnNumber_,value,lower[columnNumber_], |
---|
439 | solution[columnNumber_],upper[columnNumber_]);*/ |
---|
440 | assert (value >= bound_[0] - integerTolerance |
---|
441 | && value <= bound_[rangeType_*numberRanges_-1] + integerTolerance); |
---|
442 | double infeasibility = 0.0; |
---|
443 | bool feasible = findRange(value); |
---|
444 | if (!feasible) { |
---|
445 | if (rangeType_ == 1) { |
---|
446 | if (value - bound_[range_] < bound_[range_+1] - value) { |
---|
447 | preferredWay = -1; |
---|
448 | infeasibility = value - bound_[range_]; |
---|
449 | } else { |
---|
450 | preferredWay = 1; |
---|
451 | infeasibility = bound_[range_+1] - value; |
---|
452 | } |
---|
453 | } else { |
---|
454 | // ranges |
---|
455 | if (value - bound_[2*range_+1] < bound_[2*range_+2] - value) { |
---|
456 | preferredWay = -1; |
---|
457 | infeasibility = value - bound_[2*range_+1]; |
---|
458 | } else { |
---|
459 | preferredWay = 1; |
---|
460 | infeasibility = bound_[2*range_+2] - value; |
---|
461 | } |
---|
462 | } |
---|
463 | } else { |
---|
464 | // always satisfied |
---|
465 | preferredWay = -1; |
---|
466 | } |
---|
467 | if (infeasibility < integerTolerance) |
---|
468 | infeasibility = 0.0; |
---|
469 | else |
---|
470 | infeasibility /= largestGap_; |
---|
471 | #ifdef CBC_PRINT |
---|
472 | printLotsize(value, infeasibility, 1); |
---|
473 | #endif |
---|
474 | return infeasibility; |
---|
475 | } |
---|
476 | /* Column number if single column object -1 otherwise, |
---|
477 | so returns >= 0 |
---|
478 | Used by heuristics |
---|
479 | */ |
---|
480 | int |
---|
481 | CbcLotsize::columnNumber() const |
---|
482 | { |
---|
483 | return columnNumber_; |
---|
484 | } |
---|
485 | // This looks at solution and sets bounds to contain solution |
---|
486 | /** More precisely: it first forces the variable within the existing |
---|
487 | bounds, and then tightens the bounds to make sure the variable is feasible |
---|
488 | */ |
---|
489 | void |
---|
490 | CbcLotsize::feasibleRegion() |
---|
491 | { |
---|
492 | OsiSolverInterface * solver = model_->solver(); |
---|
493 | const double * lower = solver->getColLower(); |
---|
494 | const double * upper = solver->getColUpper(); |
---|
495 | const double * solution = model_->testSolution(); |
---|
496 | double value = solution[columnNumber_]; |
---|
497 | value = CoinMax(value, lower[columnNumber_]); |
---|
498 | value = CoinMin(value, upper[columnNumber_]); |
---|
499 | findRange(value); |
---|
500 | double nearest; |
---|
501 | if (rangeType_ == 1) { |
---|
502 | nearest = bound_[range_]; |
---|
503 | solver->setColLower(columnNumber_, nearest); |
---|
504 | solver->setColUpper(columnNumber_, nearest); |
---|
505 | } else { |
---|
506 | // ranges |
---|
507 | solver->setColLower(columnNumber_, CoinMax(bound_[2*range_], |
---|
508 | lower[columnNumber_])); |
---|
509 | solver->setColUpper(columnNumber_, CoinMin(bound_[2*range_+1], |
---|
510 | upper[columnNumber_])); |
---|
511 | if (value > bound_[2*range_+1]) |
---|
512 | nearest = bound_[2*range_+1]; |
---|
513 | else if (value < bound_[2*range_]) |
---|
514 | nearest = bound_[2*range_]; |
---|
515 | else |
---|
516 | nearest = value; |
---|
517 | } |
---|
518 | #ifdef CBC_PRINT |
---|
519 | // print details |
---|
520 | printLotsize(value, true, 2); |
---|
521 | #endif |
---|
522 | // Scaling may have moved it a bit |
---|
523 | // Lotsizing variables could be a lot larger |
---|
524 | #ifndef NDEBUG |
---|
525 | double integerTolerance = |
---|
526 | model_->getDblParam(CbcModel::CbcIntegerTolerance); |
---|
527 | assert (fabs(value - nearest) <= (100.0 + 10.0*fabs(nearest))*integerTolerance); |
---|
528 | #endif |
---|
529 | } |
---|
530 | CbcBranchingObject * |
---|
531 | CbcLotsize::createCbcBranch(OsiSolverInterface * solver, const OsiBranchingInformation * /*info*/, int way) |
---|
532 | { |
---|
533 | //OsiSolverInterface * solver = model_->solver(); |
---|
534 | const double * solution = model_->testSolution(); |
---|
535 | const double * lower = solver->getColLower(); |
---|
536 | const double * upper = solver->getColUpper(); |
---|
537 | double value = solution[columnNumber_]; |
---|
538 | value = CoinMax(value, lower[columnNumber_]); |
---|
539 | value = CoinMin(value, upper[columnNumber_]); |
---|
540 | assert (!findRange(value)); |
---|
541 | return new CbcLotsizeBranchingObject(model_, columnNumber_, way, |
---|
542 | value, this); |
---|
543 | } |
---|
544 | |
---|
545 | |
---|
546 | /* Given valid solution (i.e. satisfied) and reduced costs etc |
---|
547 | returns a branching object which would give a new feasible |
---|
548 | point in direction reduced cost says would be cheaper. |
---|
549 | If no feasible point returns null |
---|
550 | */ |
---|
551 | CbcBranchingObject * |
---|
552 | CbcLotsize::preferredNewFeasible() const |
---|
553 | { |
---|
554 | OsiSolverInterface * solver = model_->solver(); |
---|
555 | |
---|
556 | assert (findRange(model_->testSolution()[columnNumber_])); |
---|
557 | double dj = solver->getObjSense() * solver->getReducedCost()[columnNumber_]; |
---|
558 | CbcLotsizeBranchingObject * object = NULL; |
---|
559 | double lo, up; |
---|
560 | if (dj >= 0.0) { |
---|
561 | // can we go down |
---|
562 | if (range_) { |
---|
563 | // yes |
---|
564 | if (rangeType_ == 1) { |
---|
565 | lo = bound_[range_-1]; |
---|
566 | up = bound_[range_-1]; |
---|
567 | } else { |
---|
568 | lo = bound_[2*range_-2]; |
---|
569 | up = bound_[2*range_-1]; |
---|
570 | } |
---|
571 | object = new CbcLotsizeBranchingObject(model_, columnNumber_, -1, |
---|
572 | lo, up); |
---|
573 | } |
---|
574 | } else { |
---|
575 | // can we go up |
---|
576 | if (range_ < numberRanges_ - 1) { |
---|
577 | // yes |
---|
578 | if (rangeType_ == 1) { |
---|
579 | lo = bound_[range_+1]; |
---|
580 | up = bound_[range_+1]; |
---|
581 | } else { |
---|
582 | lo = bound_[2*range_+2]; |
---|
583 | up = bound_[2*range_+3]; |
---|
584 | } |
---|
585 | object = new CbcLotsizeBranchingObject(model_, columnNumber_, -1, |
---|
586 | lo, up); |
---|
587 | } |
---|
588 | } |
---|
589 | return object; |
---|
590 | } |
---|
591 | |
---|
592 | /* Given valid solution (i.e. satisfied) and reduced costs etc |
---|
593 | returns a branching object which would give a new feasible |
---|
594 | point in direction opposite to one reduced cost says would be cheaper. |
---|
595 | If no feasible point returns null |
---|
596 | */ |
---|
597 | CbcBranchingObject * |
---|
598 | CbcLotsize::notPreferredNewFeasible() const |
---|
599 | { |
---|
600 | OsiSolverInterface * solver = model_->solver(); |
---|
601 | |
---|
602 | #ifndef NDEBUG |
---|
603 | double value = model_->testSolution()[columnNumber_]; |
---|
604 | double nearest = floor(value + 0.5); |
---|
605 | double integerTolerance = |
---|
606 | model_->getDblParam(CbcModel::CbcIntegerTolerance); |
---|
607 | // Scaling may have moved it a bit |
---|
608 | // Lotsizing variables could be a lot larger |
---|
609 | assert (fabs(value - nearest) <= (10.0 + 10.0*fabs(nearest))*integerTolerance); |
---|
610 | #endif |
---|
611 | double dj = solver->getObjSense() * solver->getReducedCost()[columnNumber_]; |
---|
612 | CbcLotsizeBranchingObject * object = NULL; |
---|
613 | double lo, up; |
---|
614 | if (dj <= 0.0) { |
---|
615 | // can we go down |
---|
616 | if (range_) { |
---|
617 | // yes |
---|
618 | if (rangeType_ == 1) { |
---|
619 | lo = bound_[range_-1]; |
---|
620 | up = bound_[range_-1]; |
---|
621 | } else { |
---|
622 | lo = bound_[2*range_-2]; |
---|
623 | up = bound_[2*range_-1]; |
---|
624 | } |
---|
625 | object = new CbcLotsizeBranchingObject(model_, columnNumber_, -1, |
---|
626 | lo, up); |
---|
627 | } |
---|
628 | } else { |
---|
629 | // can we go up |
---|
630 | if (range_ < numberRanges_ - 1) { |
---|
631 | // yes |
---|
632 | if (rangeType_ == 1) { |
---|
633 | lo = bound_[range_+1]; |
---|
634 | up = bound_[range_+1]; |
---|
635 | } else { |
---|
636 | lo = bound_[2*range_+2]; |
---|
637 | up = bound_[2*range_+3]; |
---|
638 | } |
---|
639 | object = new CbcLotsizeBranchingObject(model_, columnNumber_, -1, |
---|
640 | lo, up); |
---|
641 | } |
---|
642 | } |
---|
643 | return object; |
---|
644 | } |
---|
645 | |
---|
646 | /* |
---|
647 | Bounds may be tightened, so it may be good to be able to refresh the local |
---|
648 | copy of the original bounds. |
---|
649 | */ |
---|
650 | void |
---|
651 | CbcLotsize::resetBounds(const OsiSolverInterface * /*solver*/) |
---|
652 | { |
---|
653 | } |
---|
654 | |
---|
655 | // Default Constructor |
---|
656 | CbcLotsizeBranchingObject::CbcLotsizeBranchingObject() |
---|
657 | : CbcBranchingObject() |
---|
658 | { |
---|
659 | down_[0] = 0.0; |
---|
660 | down_[1] = 0.0; |
---|
661 | up_[0] = 0.0; |
---|
662 | up_[1] = 0.0; |
---|
663 | } |
---|
664 | |
---|
665 | // Useful constructor |
---|
666 | CbcLotsizeBranchingObject::CbcLotsizeBranchingObject (CbcModel * model, |
---|
667 | int variable, int way , double value, |
---|
668 | const CbcLotsize * lotsize) |
---|
669 | : CbcBranchingObject(model, variable, way, value) |
---|
670 | { |
---|
671 | int iColumn = lotsize->modelSequence(); |
---|
672 | assert (variable == iColumn); |
---|
673 | down_[0] = model_->solver()->getColLower()[iColumn]; |
---|
674 | double integerTolerance = |
---|
675 | model_->getDblParam(CbcModel::CbcIntegerTolerance); |
---|
676 | lotsize->floorCeiling(down_[1], up_[0], value, integerTolerance); |
---|
677 | up_[1] = model->getColUpper()[iColumn]; |
---|
678 | } |
---|
679 | // Useful constructor for fixing |
---|
680 | CbcLotsizeBranchingObject::CbcLotsizeBranchingObject (CbcModel * model, |
---|
681 | int variable, int way, |
---|
682 | double lowerValue, |
---|
683 | double upperValue) |
---|
684 | : CbcBranchingObject(model, variable, way, lowerValue) |
---|
685 | { |
---|
686 | setNumberBranchesLeft(1); |
---|
687 | down_[0] = lowerValue; |
---|
688 | down_[1] = upperValue; |
---|
689 | up_[0] = lowerValue; |
---|
690 | up_[1] = upperValue; |
---|
691 | } |
---|
692 | |
---|
693 | |
---|
694 | // Copy constructor |
---|
695 | CbcLotsizeBranchingObject::CbcLotsizeBranchingObject ( const CbcLotsizeBranchingObject & rhs) : CbcBranchingObject(rhs) |
---|
696 | { |
---|
697 | down_[0] = rhs.down_[0]; |
---|
698 | down_[1] = rhs.down_[1]; |
---|
699 | up_[0] = rhs.up_[0]; |
---|
700 | up_[1] = rhs.up_[1]; |
---|
701 | } |
---|
702 | |
---|
703 | // Assignment operator |
---|
704 | CbcLotsizeBranchingObject & |
---|
705 | CbcLotsizeBranchingObject::operator=( const CbcLotsizeBranchingObject & rhs) |
---|
706 | { |
---|
707 | if (this != &rhs) { |
---|
708 | CbcBranchingObject::operator=(rhs); |
---|
709 | down_[0] = rhs.down_[0]; |
---|
710 | down_[1] = rhs.down_[1]; |
---|
711 | up_[0] = rhs.up_[0]; |
---|
712 | up_[1] = rhs.up_[1]; |
---|
713 | } |
---|
714 | return *this; |
---|
715 | } |
---|
716 | CbcBranchingObject * |
---|
717 | CbcLotsizeBranchingObject::clone() const |
---|
718 | { |
---|
719 | return (new CbcLotsizeBranchingObject(*this)); |
---|
720 | } |
---|
721 | |
---|
722 | |
---|
723 | // Destructor |
---|
724 | CbcLotsizeBranchingObject::~CbcLotsizeBranchingObject () |
---|
725 | { |
---|
726 | } |
---|
727 | |
---|
728 | /* |
---|
729 | Perform a branch by adjusting the bounds of the specified variable. Note |
---|
730 | that each arm of the branch advances the object to the next arm by |
---|
731 | advancing the value of way_. |
---|
732 | |
---|
733 | Providing new values for the variable's lower and upper bounds for each |
---|
734 | branching direction gives a little bit of additional flexibility and will |
---|
735 | be easily extensible to multi-way branching. |
---|
736 | */ |
---|
737 | double |
---|
738 | CbcLotsizeBranchingObject::branch() |
---|
739 | { |
---|
740 | decrementNumberBranchesLeft(); |
---|
741 | int iColumn = variable_; |
---|
742 | if (way_ < 0) { |
---|
743 | #ifndef NDEBUG |
---|
744 | { double olb, oub ; |
---|
745 | olb = model_->solver()->getColLower()[iColumn] ; |
---|
746 | oub = model_->solver()->getColUpper()[iColumn] ; |
---|
747 | #ifdef CBC_DEBUG |
---|
748 | printf("branching down on var %d: [%g,%g] => [%g,%g]\n", |
---|
749 | iColumn, olb, oub, down_[0], down_[1]) ; |
---|
750 | #endif |
---|
751 | assert (olb<down_[0]+1.0e-7&&oub>down_[1]-1.0e-7); |
---|
752 | } |
---|
753 | #endif |
---|
754 | model_->solver()->setColLower(iColumn, down_[0]); |
---|
755 | model_->solver()->setColUpper(iColumn, down_[1]); |
---|
756 | way_ = 1; |
---|
757 | } else { |
---|
758 | #ifndef NDEBUG |
---|
759 | { double olb, oub ; |
---|
760 | olb = model_->solver()->getColLower()[iColumn] ; |
---|
761 | oub = model_->solver()->getColUpper()[iColumn] ; |
---|
762 | #ifdef CBC_DEBUG |
---|
763 | printf("branching up on var %d: [%g,%g] => [%g,%g]\n", |
---|
764 | iColumn, olb, oub, up_[0], up_[1]) ; |
---|
765 | #endif |
---|
766 | assert (olb<up_[0]+1.0e-7&&oub>up_[1]-1.0e-7); |
---|
767 | } |
---|
768 | #endif |
---|
769 | model_->solver()->setColLower(iColumn, up_[0]); |
---|
770 | model_->solver()->setColUpper(iColumn, up_[1]); |
---|
771 | way_ = -1; // Swap direction |
---|
772 | } |
---|
773 | return 0.0; |
---|
774 | } |
---|
775 | // Print |
---|
776 | void |
---|
777 | CbcLotsizeBranchingObject::print() |
---|
778 | { |
---|
779 | int iColumn = variable_; |
---|
780 | if (way_ < 0) { |
---|
781 | { |
---|
782 | double olb, oub ; |
---|
783 | olb = model_->solver()->getColLower()[iColumn] ; |
---|
784 | oub = model_->solver()->getColUpper()[iColumn] ; |
---|
785 | printf("branching down on var %d: [%g,%g] => [%g,%g]\n", |
---|
786 | iColumn, olb, oub, down_[0], down_[1]) ; |
---|
787 | } |
---|
788 | } else { |
---|
789 | { |
---|
790 | double olb, oub ; |
---|
791 | olb = model_->solver()->getColLower()[iColumn] ; |
---|
792 | oub = model_->solver()->getColUpper()[iColumn] ; |
---|
793 | printf("branching up on var %d: [%g,%g] => [%g,%g]\n", |
---|
794 | iColumn, olb, oub, up_[0], up_[1]) ; |
---|
795 | } |
---|
796 | } |
---|
797 | } |
---|
798 | |
---|
799 | /** Compare the \c this with \c brObj. \c this and \c brObj must be os the |
---|
800 | same type and must have the same original object, but they may have |
---|
801 | different feasible regions. |
---|
802 | Return the appropriate CbcRangeCompare value (first argument being the |
---|
803 | sub/superset if that's the case). In case of overlap (and if \c |
---|
804 | replaceIfOverlap is true) replace the current branching object with one |
---|
805 | whose feasible region is the overlap. |
---|
806 | */ |
---|
807 | CbcRangeCompare |
---|
808 | CbcLotsizeBranchingObject::compareBranchingObject |
---|
809 | (const CbcBranchingObject* brObj, const bool replaceIfOverlap) |
---|
810 | { |
---|
811 | const CbcLotsizeBranchingObject* br = |
---|
812 | dynamic_cast<const CbcLotsizeBranchingObject*>(brObj); |
---|
813 | assert(br); |
---|
814 | double* thisBd = way_ == -1 ? down_ : up_; |
---|
815 | const double* otherBd = br->way_ == -1 ? br->down_ : br->up_; |
---|
816 | return CbcCompareRanges(thisBd, otherBd, replaceIfOverlap); |
---|
817 | } |
---|
818 | |
---|