source: stable/2.7/Cbc/src/CbcModel.hpp @ 1972

Last change on this file since 1972 was 1972, checked in by stefan, 6 years ago

merge r1971 from trunk: change for pietro to clone cbcmodel in cbcthreads instead of copy

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 97.6 KB
Line 
1/* $Id: CbcModel.hpp 1972 2013-10-19 15:59:10Z stefan $ */
2// Copyright (C) 2002, International Business Machines
3// Corporation and others.  All Rights Reserved.
4// This code is licensed under the terms of the Eclipse Public License (EPL).
5
6#ifndef CbcModel_H
7#define CbcModel_H
8#include <string>
9#include <vector>
10#include "CoinMessageHandler.hpp"
11#include "OsiSolverInterface.hpp"
12#include "OsiBranchingObject.hpp"
13#include "OsiCuts.hpp"
14#include "CoinWarmStartBasis.hpp"
15#include "CbcCompareBase.hpp"
16#include "CbcMessage.hpp"
17#include "CbcEventHandler.hpp"
18#include "ClpDualRowPivot.hpp"
19
20
21class CbcCutGenerator;
22class CbcBaseModel;
23class OsiRowCut;
24class OsiBabSolver;
25class OsiRowCutDebugger;
26class CglCutGenerator;
27class CglStored;
28class CbcCutModifier;
29class CglTreeProbingInfo;
30class CbcHeuristic;
31class OsiObject;
32class CbcThread;
33class CbcTree;
34class CbcStrategy;
35class CbcFeasibilityBase;
36class CbcStatistics;
37class CbcEventHandler ;
38class CglPreProcess;
39# ifdef COIN_HAS_CLP
40class OsiClpSolverInterface;
41class ClpNodeStuff;
42#endif
43// #define CBC_CHECK_BASIS 1
44
45//#############################################################################
46
47/** Simple Branch and bound class
48
49  The initialSolve() method solves the initial LP relaxation of the MIP
50  problem. The branchAndBound() method can then be called to finish using
51  a branch and cut algorithm.
52
53  <h3>Search Tree Traversal</h3>
54
55  Subproblems (aka nodes) requiring additional evaluation are stored using
56  the CbcNode and CbcNodeInfo objects. Ancestry linkage is maintained in the
57  CbcNodeInfo object. Evaluation of a subproblem within branchAndBound()
58  proceeds as follows:
59  <ul>
60    <li> The node representing the most promising parent subproblem is popped
61         from the heap which holds the set of subproblems requiring further
62         evaluation.
63    <li> Using branching instructions stored in the node, and information in
64         its ancestors, the model and solver are adjusted to create the
65         active subproblem.
66    <li> If the parent subproblem will require further evaluation
67         (<i>i.e.</i>, there are branches remaining) its node is pushed back
68         on the heap. Otherwise, the node is deleted.  This may trigger
69         recursive deletion of ancestors.
70    <li> The newly created subproblem is evaluated.
71    <li> If the subproblem requires further evaluation, a node is created.
72         All information needed to recreate the subproblem (branching
73         information, row and column cuts) is placed in the node and the node
74         is added to the set of subproblems awaiting further evaluation.
75  </ul>
76  Note that there is never a node representing the active subproblem; the model
77  and solver represent the active subproblem.
78
79  <h3>Row (Constraint) Cut Handling</h3>
80
81  For a typical subproblem, the sequence of events is as follows:
82  <ul>
83    <li> The subproblem is rebuilt for further evaluation: One result of a
84         call to addCuts() is a traversal of ancestors, leaving a list of all
85         cuts used in the ancestors in #addedCuts_. This list is then scanned
86         to construct a basis that includes only tight cuts. Entries for
87         loose cuts are set to NULL.
88    <li> The subproblem is evaluated: One result of a call to solveWithCuts()
89         is the return of a set of newly generated cuts for the subproblem.
90         #addedCuts_ is also kept up-to-date as old cuts become loose.
91    <li> The subproblem is stored for further processing: A call to
92         CbcNodeInfo::addCuts() adds the newly generated cuts to the
93         CbcNodeInfo object associated with this node.
94  </ul>
95  See CbcCountRowCut for details of the bookkeeping associated with cut
96  management.
97*/
98
99class CbcModel  {
100
101public:
102
103    enum CbcIntParam {
104        /** The maximum number of nodes before terminating */
105        CbcMaxNumNode = 0,
106        /** The maximum number of solutions before terminating */
107        CbcMaxNumSol,
108        /** Fathoming discipline
109
110          Controls objective function comparisons for purposes of fathoming by bound
111          or determining monotonic variables.
112
113          If 1, action is taken only when the current objective is strictly worse
114          than the target. Implementation is handled by adding a small tolerance to
115          the target.
116        */
117        CbcFathomDiscipline,
118        /** Adjusts printout
119            1 does different node message with number unsatisfied on last branch
120        */
121        CbcPrinting,
122        /** Number of branches (may be more than number of nodes as may
123            include strong branching) */
124        CbcNumberBranches,
125        /** Just a marker, so that a static sized array can store parameters. */
126        CbcLastIntParam
127    };
128
129    enum CbcDblParam {
130        /** The maximum amount the value of an integer variable can vary from
131            integer and still be considered feasible. */
132        CbcIntegerTolerance = 0,
133        /** The objective is assumed to worsen by this amount for each
134            integer infeasibility. */
135        CbcInfeasibilityWeight,
136        /** The amount by which to tighten the objective function cutoff when
137            a new solution is discovered. */
138        CbcCutoffIncrement,
139        /** Stop when the gap between the objective value of the best known solution
140          and the best bound on the objective of any solution is less than this.
141
142          This is an absolute value. Conversion from a percentage is left to the
143          client.
144        */
145        CbcAllowableGap,
146        /** Stop when the gap between the objective value of the best known solution
147          and the best bound on the objective of any solution is less than this
148          fraction of of the absolute value of best known solution.
149
150          Code stops if either this test or CbcAllowableGap test succeeds
151        */
152        CbcAllowableFractionGap,
153        /** \brief The maximum number of seconds before terminating.
154               A double should be adequate! */
155        CbcMaximumSeconds,
156        /// Cutoff - stored for speed
157        CbcCurrentCutoff,
158        /// Optimization direction - stored for speed
159        CbcOptimizationDirection,
160        /// Current objective value
161        CbcCurrentObjectiveValue,
162        /// Current minimization objective value
163        CbcCurrentMinimizationObjectiveValue,
164        /** \brief The time at start of model.
165               So that other pieces of code can access */
166        CbcStartSeconds,
167        /** Stop doing heuristics when the gap between the objective value of the
168            best known solution and the best bound on the objective of any solution
169            is less than this.
170
171          This is an absolute value. Conversion from a percentage is left to the
172          client.
173        */
174        CbcHeuristicGap,
175        /** Stop doing heuristics when the gap between the objective value of the
176            best known solution and the best bound on the objective of any solution
177            is less than this fraction of of the absolute value of best known
178            solution.
179
180          Code stops if either this test or CbcAllowableGap test succeeds
181        */
182        CbcHeuristicFractionGap,
183        /// Smallest non-zero change on a branch
184        CbcSmallestChange,
185        /// Sum of non-zero changes on a branch
186        CbcSumChange,
187        /// Largest non-zero change on a branch
188        CbcLargestChange,
189        /// Small non-zero change on a branch to be used as guess
190        CbcSmallChange,
191        /** Just a marker, so that a static sized array can store parameters. */
192        CbcLastDblParam
193    };
194
195    //---------------------------------------------------------------------------
196
197public:
198    ///@name Solve methods
199    //@{
200    /** \brief Solve the initial LP relaxation
201
202      Invoke the solver's %initialSolve() method.
203    */
204    void initialSolve();
205
206    /** \brief Invoke the branch \& cut algorithm
207
208      The method assumes that initialSolve() has been called to solve the
209      LP relaxation. It processes the root node, then proceeds to explore the
210      branch & cut search tree. The search ends when the tree is exhausted or
211      one of several execution limits is reached.
212      If doStatistics is 1 summary statistics are printed
213      if 2 then also the path to best solution (if found by branching)
214      if 3 then also one line per node
215    */
216    void branchAndBound(int doStatistics = 0);
217private:
218
219    /** \brief Evaluate a subproblem using cutting planes and heuristics
220
221      The method invokes a main loop which generates cuts, applies heuristics,
222      and reoptimises using the solver's native %resolve() method.
223      It returns true if the subproblem remains feasible at the end of the
224      evaluation.
225    */
226    bool solveWithCuts(OsiCuts & cuts, int numberTries, CbcNode * node);
227    /** Generate one round of cuts - serial mode
228      returns -
229      0 - normal
230      1 - must keep going
231      2 - set numberTries to zero
232      -1 - infeasible
233    */
234    int serialCuts(OsiCuts & cuts, CbcNode * node, OsiCuts & slackCuts, int lastNumberCuts);
235    /** Generate one round of cuts - parallel mode
236        returns -
237        0 - normal
238        1 - must keep going
239        2 - set numberTries to zero
240        -1 - infeasible
241    */
242    int parallelCuts(CbcBaseModel * master, OsiCuts & cuts, CbcNode * node, OsiCuts & slackCuts, int lastNumberCuts);
243    /** Input one node output N nodes to put on tree and optional solution update
244        This should be able to operate in parallel so is given a solver and is const(ish)
245        However we will need to keep an array of solver_ and bases and more
246        status is 0 for normal, 1 if solution
247        Calling code should always push nodes back on tree
248    */
249    CbcNode ** solveOneNode(int whichSolver, CbcNode * node,
250                            int & numberNodesOutput, int & status) ;
251    /// Update size of whichGenerator
252    void resizeWhichGenerator(int numberNow, int numberAfter);
253public:
254#ifdef CBC_KEEP_DEPRECATED
255    // See if anyone is using these any more!!
256    /** \brief create a clean model from partially fixed problem
257
258      The method creates a new model with given bounds and with no tree.
259    */
260    CbcModel *  cleanModel(const double * lower, const double * upper);
261    /** \brief Invoke the branch \& cut algorithm on partially fixed problem
262
263      The method presolves the given model and does branch and cut. The search
264      ends when the tree is exhausted or maximum nodes is reached.
265
266      If better solution found then it is saved.
267
268      Returns 0 if search completed and solution, 1 if not completed and solution,
269      2 if completed and no solution, 3 if not completed and no solution.
270
271      Normally okay to do cleanModel immediately followed by subBranchandBound
272      (== other form of subBranchAndBound)
273      but may need to get at model for advanced features.
274
275      Deletes model2
276    */
277    int subBranchAndBound(CbcModel * model2,
278                          CbcModel * presolvedModel,
279                          int maximumNodes);
280    /** \brief Invoke the branch \& cut algorithm on partially fixed problem
281
282      The method creates a new model with given bounds, presolves it
283      then proceeds to explore the branch & cut search tree. The search
284      ends when the tree is exhausted or maximum nodes is reached.
285
286      If better solution found then it is saved.
287
288      Returns 0 if search completed and solution, 1 if not completed and solution,
289      2 if completed and no solution, 3 if not completed and no solution.
290
291      This is just subModel immediately followed by other version of
292      subBranchandBound.
293
294    */
295    int subBranchAndBound(const double * lower, const double * upper,
296                          int maximumNodes);
297
298    /** \brief Process root node and return a strengthened model
299
300      The method assumes that initialSolve() has been called to solve the
301      LP relaxation. It processes the root node and then returns a pointer
302      to the strengthened model (or NULL if infeasible)
303    */
304    OsiSolverInterface *  strengthenedModel();
305    /** preProcess problem - replacing solver
306        If makeEquality true then <= cliques converted to ==.
307        Presolve will be done numberPasses times.
308
309        Returns NULL if infeasible
310
311        If makeEquality is 1 add slacks to get cliques,
312        if 2 add slacks to get sos (but only if looks plausible) and keep sos info
313    */
314    CglPreProcess * preProcess( int makeEquality = 0, int numberPasses = 5,
315                                int tuning = 5);
316    /** Does postprocessing - original solver back.
317        User has to delete process */
318    void postProcess(CglPreProcess * process);
319#endif
320    /// Adds an update information object
321    void addUpdateInformation(const CbcObjectUpdateData & data);
322    /** Do one node - broken out for clarity?
323        also for parallel (when baseModel!=this)
324        Returns 1 if solution found
325        node NULL on return if no branches left
326        newNode NULL if no new node created
327    */
328    int doOneNode(CbcModel * baseModel, CbcNode * & node, CbcNode * & newNode);
329
330public:
331    /** \brief Reoptimise an LP relaxation
332
333      Invoke the solver's %resolve() method.
334      whereFrom -
335      0 - initial continuous
336      1 - resolve on branch (before new cuts)
337      2 - after new cuts
338      3  - obsolete code or something modified problem in unexpected way
339      10 - after strong branching has fixed variables at root
340      11 - after strong branching has fixed variables in tree
341
342      returns 1 feasible, 0 infeasible, -1 feasible but skip cuts
343    */
344    int resolve(CbcNodeInfo * parent, int whereFrom,
345                double * saveSolution = NULL,
346                double * saveLower = NULL,
347                double * saveUpper = NULL);
348    /// Make given rows (L or G) into global cuts and remove from lp
349    void makeGlobalCuts(int numberRows, const int * which);
350    /// Make given cut into a global cut
351    void makeGlobalCut(const OsiRowCut * cut);
352    /// Make given cut into a global cut
353    void makeGlobalCut(const OsiRowCut & cut);
354    /// Make given column cut into a global cut
355    void makeGlobalCut(const OsiColCut * cut);
356    /// Make given column cut into a global cut
357    void makeGlobalCut(const OsiColCut & cut);
358    //@}
359
360    /** \name Presolve methods */
361    //@{
362
363    /** Identify cliques and construct corresponding objects.
364
365        Find cliques with size in the range
366        [\p atLeastThisMany, \p lessThanThis] and construct corresponding
367        CbcClique objects.
368        If \p makeEquality is true then a new model may be returned if
369        modifications had to be made, otherwise \c this is returned.
370        If the problem is infeasible #numberObjects_ is set to -1.
371        A client must use deleteObjects() before a second call to findCliques().
372        If priorities exist, clique priority is set to the default.
373    */
374    CbcModel * findCliques(bool makeEquality, int atLeastThisMany,
375                           int lessThanThis, int defaultValue = 1000);
376
377    /** Do integer presolve, creating a new (presolved) model.
378
379      Returns the new model, or NULL if feasibility is lost.
380      If weak is true then just does a normal presolve
381
382      \todo It remains to work out the cleanest way of getting a solution to
383            the original problem at the end. So this is very preliminary.
384     */
385    CbcModel * integerPresolve(bool weak = false);
386
387    /** Do integer presolve, modifying the current model.
388
389        Returns true if the model remains feasible after presolve.
390    */
391    bool integerPresolveThisModel(OsiSolverInterface * originalSolver, bool weak = false);
392
393
394    /// Put back information into the original model after integer presolve.
395    void originalModel(CbcModel * presolvedModel, bool weak);
396
397    /** \brief For variables involved in VUB constraints, see if we can tighten
398           bounds by solving lp's
399
400        Returns false if feasibility is lost.
401        If CglProbing is available, it will be tried as well to see if it can
402        tighten bounds.
403        This routine is just a front end for tightenVubs(int,const int*,double).
404
405        If <tt>type = -1</tt> all variables are processed (could be very slow).
406        If <tt>type = 0</tt> only variables involved in VUBs are processed.
407        If <tt>type = n > 0</tt>, only the n most expensive VUB variables
408        are processed, where it is assumed that x is at its maximum so delta
409        would have to go to 1 (if x not at bound).
410
411        If \p allowMultipleBinary is true, then a VUB constraint is a row with
412        one continuous variable and any number of binary variables.
413
414        If <tt>useCutoff < 1.0e30</tt>, the original objective is installed as a
415        constraint with \p useCutoff as a bound.
416    */
417    bool tightenVubs(int type, bool allowMultipleBinary = false,
418                     double useCutoff = 1.0e50);
419
420    /** \brief For variables involved in VUB constraints, see if we can tighten
421           bounds by solving lp's
422
423      This version is just handed a list of variables to be processed.
424    */
425    bool tightenVubs(int numberVubs, const int * which,
426                     double useCutoff = 1.0e50);
427    /**
428      Analyze problem to find a minimum change in the objective function.
429    */
430    void analyzeObjective();
431
432    /**
433      Add additional integers.
434    */
435    void AddIntegers();
436
437    /**
438      Save copy of the model.
439    */
440    void saveModel(OsiSolverInterface * saveSolver, double * checkCutoffForRestart, bool * feasible);
441
442    //@}
443
444    /** \name Object manipulation routines
445
446      See OsiObject for an explanation of `object' in the context of CbcModel.
447    */
448    //@{
449
450    /// Get the number of objects
451    inline int numberObjects() const {
452        return numberObjects_;
453    }
454    /// Set the number of objects
455    inline void setNumberObjects(int number) {
456        numberObjects_ = number;
457    }
458
459    /// Get the array of objects
460    inline OsiObject ** objects() const {
461        return object_;
462    }
463
464    /// Get the specified object
465    const inline OsiObject * object(int which) const {
466        return object_[which];
467    }
468    /// Get the specified object
469    inline OsiObject * modifiableObject(int which) const {
470        return object_[which];
471    }
472
473    void setOptionalInteger(int index);
474
475    /// Delete all object information (and just back to integers if true)
476    void deleteObjects(bool findIntegers = true);
477
478    /** Add in object information.
479
480      Objects are cloned; the owner can delete the originals.
481    */
482    void addObjects(int numberObjects, OsiObject ** objects);
483
484    /** Add in object information.
485
486      Objects are cloned; the owner can delete the originals.
487    */
488    void addObjects(int numberObjects, CbcObject ** objects);
489
490    /// Ensure attached objects point to this model.
491    void synchronizeModel() ;
492
493    /** \brief Identify integer variables and create corresponding objects.
494
495      Record integer variables and create an CbcSimpleInteger object for each
496      one.
497      If \p startAgain is true, a new scan is forced, overwriting any existing
498      integer variable information.
499      If type > 0 then 1==PseudoCost, 2 new ones low priority
500    */
501
502    void findIntegers(bool startAgain, int type = 0);
503
504    //@}
505
506    //---------------------------------------------------------------------------
507
508    /**@name Parameter set/get methods
509
510       The set methods return true if the parameter was set to the given value,
511       false if the value of the parameter is out of range.
512
513       The get methods return the value of the parameter.
514
515    */
516    //@{
517    /// Set an integer parameter
518    inline bool setIntParam(CbcIntParam key, int value) {
519        intParam_[key] = value;
520        return true;
521    }
522    /// Set a double parameter
523    inline bool setDblParam(CbcDblParam key, double value) {
524        dblParam_[key] = value;
525        return true;
526    }
527    /// Get an integer parameter
528    inline int getIntParam(CbcIntParam key) const {
529        return intParam_[key];
530    }
531    /// Get a double parameter
532    inline double getDblParam(CbcDblParam key) const {
533        return dblParam_[key];
534    }
535    /*! \brief Set cutoff bound on the objective function.
536
537      When using strict comparison, the bound is adjusted by a tolerance to
538      avoid accidentally cutting off the optimal solution.
539    */
540    void setCutoff(double value) ;
541
542    /// Get the cutoff bound on the objective function - always as minimize
543    inline double getCutoff() const { //double value ;
544        //solver_->getDblParam(OsiDualObjectiveLimit,value) ;
545        //assert( dblParam_[CbcCurrentCutoff]== value * solver_->getObjSense());
546        return dblParam_[CbcCurrentCutoff];
547    }
548
549    /// Set the \link CbcModel::CbcMaxNumNode maximum node limit \endlink
550    inline bool setMaximumNodes( int value) {
551        return setIntParam(CbcMaxNumNode, value);
552    }
553
554    /// Get the \link CbcModel::CbcMaxNumNode maximum node limit \endlink
555    inline int getMaximumNodes() const {
556        return getIntParam(CbcMaxNumNode);
557    }
558
559    /** Set the
560        \link CbcModel::CbcMaxNumSol maximum number of solutions \endlink
561        desired.
562    */
563    inline bool setMaximumSolutions( int value) {
564        return setIntParam(CbcMaxNumSol, value);
565    }
566    /** Get the
567        \link CbcModel::CbcMaxNumSol maximum number of solutions \endlink
568        desired.
569    */
570    inline int getMaximumSolutions() const {
571        return getIntParam(CbcMaxNumSol);
572    }
573    /// Set the printing mode
574    inline bool setPrintingMode( int value) {
575        return setIntParam(CbcPrinting, value);
576    }
577
578    /// Get the printing mode
579    inline int getPrintingMode() const {
580        return getIntParam(CbcPrinting);
581    }
582
583    /** Set the
584        \link CbcModel::CbcMaximumSeconds maximum number of seconds \endlink
585        desired.
586    */
587    inline bool setMaximumSeconds( double value) {
588        return setDblParam(CbcMaximumSeconds, value);
589    }
590    /** Get the
591        \link CbcModel::CbcMaximumSeconds maximum number of seconds \endlink
592        desired.
593    */
594    inline double getMaximumSeconds() const {
595        return getDblParam(CbcMaximumSeconds);
596    }
597    /// Current time since start of branchAndbound
598    double getCurrentSeconds() const ;
599
600    /// Return true if maximum time reached
601    bool maximumSecondsReached() const ;
602
603    /** Set the
604      \link CbcModel::CbcIntegerTolerance integrality tolerance \endlink
605    */
606    inline bool setIntegerTolerance( double value) {
607        return setDblParam(CbcIntegerTolerance, value);
608    }
609    /** Get the
610      \link CbcModel::CbcIntegerTolerance integrality tolerance \endlink
611    */
612    inline double getIntegerTolerance() const {
613        return getDblParam(CbcIntegerTolerance);
614    }
615
616    /** Set the
617        \link CbcModel::CbcInfeasibilityWeight
618          weight per integer infeasibility \endlink
619    */
620    inline bool setInfeasibilityWeight( double value) {
621        return setDblParam(CbcInfeasibilityWeight, value);
622    }
623    /** Get the
624        \link CbcModel::CbcInfeasibilityWeight
625          weight per integer infeasibility \endlink
626    */
627    inline double getInfeasibilityWeight() const {
628        return getDblParam(CbcInfeasibilityWeight);
629    }
630
631    /** Set the \link CbcModel::CbcAllowableGap allowable gap \endlink
632        between the best known solution and the best possible solution.
633    */
634    inline bool setAllowableGap( double value) {
635        return setDblParam(CbcAllowableGap, value);
636    }
637    /** Get the \link CbcModel::CbcAllowableGap allowable gap \endlink
638        between the best known solution and the best possible solution.
639    */
640    inline double getAllowableGap() const {
641        return getDblParam(CbcAllowableGap);
642    }
643
644    /** Set the \link CbcModel::CbcAllowableFractionGap fraction allowable gap \endlink
645        between the best known solution and the best possible solution.
646    */
647    inline bool setAllowableFractionGap( double value) {
648        return setDblParam(CbcAllowableFractionGap, value);
649    }
650    /** Get the \link CbcModel::CbcAllowableFractionGap fraction allowable gap \endlink
651        between the best known solution and the best possible solution.
652    */
653    inline double getAllowableFractionGap() const {
654        return getDblParam(CbcAllowableFractionGap);
655    }
656    /** Set the \link CbcModel::CbcAllowableFractionGap percentage allowable gap \endlink
657        between the best known solution and the best possible solution.
658    */
659    inline bool setAllowablePercentageGap( double value) {
660        return setDblParam(CbcAllowableFractionGap, value*0.01);
661    }
662    /** Get the \link CbcModel::CbcAllowableFractionGap percentage allowable gap \endlink
663        between the best known solution and the best possible solution.
664    */
665    inline double getAllowablePercentageGap() const {
666        return 100.0*getDblParam(CbcAllowableFractionGap);
667    }
668    /** Set the \link CbcModel::CbcHeuristicGap heuristic gap \endlink
669        between the best known solution and the best possible solution.
670    */
671    inline bool setHeuristicGap( double value) {
672        return setDblParam(CbcHeuristicGap, value);
673    }
674    /** Get the \link CbcModel::CbcHeuristicGap heuristic gap \endlink
675        between the best known solution and the best possible solution.
676    */
677    inline double getHeuristicGap() const {
678        return getDblParam(CbcHeuristicGap);
679    }
680
681    /** Set the \link CbcModel::CbcHeuristicFractionGap fraction heuristic gap \endlink
682        between the best known solution and the best possible solution.
683    */
684    inline bool setHeuristicFractionGap( double value) {
685        return setDblParam(CbcHeuristicFractionGap, value);
686    }
687    /** Get the \link CbcModel::CbcHeuristicFractionGap fraction heuristic gap \endlink
688        between the best known solution and the best possible solution.
689    */
690    inline double getHeuristicFractionGap() const {
691        return getDblParam(CbcHeuristicFractionGap);
692    }
693    /** Set the
694        \link CbcModel::CbcCutoffIncrement  \endlink
695        desired.
696    */
697    inline bool setCutoffIncrement( double value) {
698        return setDblParam(CbcCutoffIncrement, value);
699    }
700    /** Get the
701        \link CbcModel::CbcCutoffIncrement  \endlink
702        desired.
703    */
704    inline double getCutoffIncrement() const {
705        return getDblParam(CbcCutoffIncrement);
706    }
707
708    /** Pass in target solution and optional priorities.
709        If priorities then >0 means only branch if incorrect
710        while <0 means branch even if correct. +1 or -1 are
711        highest priority */
712    void setHotstartSolution(const double * solution, const int * priorities = NULL) ;
713
714    /// Set the minimum drop to continue cuts
715    inline void setMinimumDrop(double value) {
716        minimumDrop_ = value;
717    }
718    /// Get the minimum drop to continue cuts
719    inline double getMinimumDrop() const {
720        return minimumDrop_;
721    }
722
723    /** Set the maximum number of cut passes at root node (default 20)
724        Minimum drop can also be used for fine tuning */
725    inline void setMaximumCutPassesAtRoot(int value) {
726        maximumCutPassesAtRoot_ = value;
727    }
728    /** Get the maximum number of cut passes at root node */
729    inline int getMaximumCutPassesAtRoot() const {
730        return maximumCutPassesAtRoot_;
731    }
732
733    /** Set the maximum number of cut passes at other nodes (default 10)
734        Minimum drop can also be used for fine tuning */
735    inline void setMaximumCutPasses(int value) {
736        maximumCutPasses_ = value;
737    }
738    /** Get the maximum number of cut passes at other nodes (default 10) */
739    inline int getMaximumCutPasses() const {
740        return maximumCutPasses_;
741    }
742    /** Get current cut pass number in this round of cuts.
743        (1 is first pass) */
744    inline int getCurrentPassNumber() const {
745        return currentPassNumber_;
746    }
747
748    /** Set the maximum number of candidates to be evaluated for strong
749      branching.
750
751      A value of 0 disables strong branching.
752    */
753    void setNumberStrong(int number);
754    /** Get the maximum number of candidates to be evaluated for strong
755      branching.
756    */
757    inline int numberStrong() const {
758        return numberStrong_;
759    }
760    /** Set global preferred way to branch
761        -1 down, +1 up, 0 no preference */
762    inline void setPreferredWay(int value) {
763        preferredWay_ = value;
764    }
765    /** Get the preferred way to branch (default 0) */
766    inline int getPreferredWay() const {
767        return preferredWay_;
768    }
769    /// Get at which depths to do cuts
770    inline int whenCuts() const {
771        return whenCuts_;
772    }
773    /// Set at which depths to do cuts
774    inline void setWhenCuts(int value) {
775        whenCuts_ = value;
776    }
777    /** Return true if we want to do cuts
778        If allowForTopOfTree zero then just does on multiples of depth
779        if 1 then allows for doing at top of tree
780        if 2 then says if cuts allowed anywhere apart from root
781    */
782    bool doCutsNow(int allowForTopOfTree) const;
783
784    /** Set the number of branches before pseudo costs believed
785        in dynamic strong branching.
786
787      A value of 0 disables dynamic strong branching.
788    */
789    void setNumberBeforeTrust(int number);
790    /** get the number of branches before pseudo costs believed
791        in dynamic strong branching. */
792    inline int numberBeforeTrust() const {
793        return numberBeforeTrust_;
794    }
795    /** Set the number of variables for which to compute penalties
796        in dynamic strong branching.
797
798      A value of 0 disables penalties.
799    */
800    void setNumberPenalties(int number);
801    /** get the number of variables for which to compute penalties
802        in dynamic strong branching. */
803    inline int numberPenalties() const {
804        return numberPenalties_;
805    }
806    /// Number of analyze iterations to do
807    inline void setNumberAnalyzeIterations(int number) {
808        numberAnalyzeIterations_ = number;
809    }
810    inline int numberAnalyzeIterations() const {
811        return numberAnalyzeIterations_;
812    }
813    /** Get scale factor to make penalties match strong.
814        Should/will be computed */
815    inline double penaltyScaleFactor() const {
816        return penaltyScaleFactor_;
817    }
818    /** Set scale factor to make penalties match strong.
819        Should/will be computed */
820    void setPenaltyScaleFactor(double value);
821    /** Problem type as set by user or found by analysis.  This will be extended
822        0 - not known
823        1 - Set partitioning <=
824        2 - Set partitioning ==
825        3 - Set covering
826        4 - all +- 1 or all +1 and odd
827    */
828    void inline setProblemType(int number) {
829        problemType_ = number;
830    }
831    inline int problemType() const {
832        return problemType_;
833    }
834    /// Current depth
835    inline int currentDepth() const {
836        return currentDepth_;
837    }
838
839    /// Set how often to scan global cuts
840    void setHowOftenGlobalScan(int number);
841    /// Get how often to scan global cuts
842    inline int howOftenGlobalScan() const {
843        return howOftenGlobalScan_;
844    }
845    /// Original columns as created by integerPresolve or preprocessing
846    inline int * originalColumns() const {
847        return originalColumns_;
848    }
849    /// Set original columns as created by preprocessing
850    void setOriginalColumns(const int * originalColumns) ;
851
852    /** Set the print frequency.
853
854      Controls the number of nodes evaluated between status prints.
855      If <tt>number <=0</tt> the print frequency is set to 100 nodes for large
856      problems, 1000 for small problems.
857      Print frequency has very slight overhead if small.
858    */
859    inline void setPrintFrequency(int number) {
860        printFrequency_ = number;
861    }
862    /// Get the print frequency
863    inline int printFrequency() const {
864        return printFrequency_;
865    }
866    //@}
867
868    //---------------------------------------------------------------------------
869    ///@name Methods returning info on how the solution process terminated
870    //@{
871    /// Are there a numerical difficulties?
872    bool isAbandoned() const;
873    /// Is optimality proven?
874    bool isProvenOptimal() const;
875    /// Is  infeasiblity proven (or none better than cutoff)?
876    bool isProvenInfeasible() const;
877    /// Was continuous solution unbounded
878    bool isContinuousUnbounded() const;
879    /// Was continuous solution unbounded
880    bool isProvenDualInfeasible() const;
881    /// Node limit reached?
882    bool isNodeLimitReached() const;
883    /// Time limit reached?
884    bool isSecondsLimitReached() const;
885    /// Solution limit reached?
886    bool isSolutionLimitReached() const;
887    /// Get how many iterations it took to solve the problem.
888    inline int getIterationCount() const {
889        return numberIterations_;
890    }
891    /// Increment how many iterations it took to solve the problem.
892    inline void incrementIterationCount(int value) {
893        numberIterations_ += value;
894    }
895    /// Get how many Nodes it took to solve the problem (including those in complete fathoming B&B inside CLP).
896    inline int getNodeCount() const {
897        return numberNodes_;
898    }
899    /// Increment how many nodes it took to solve the problem.
900    inline void incrementNodeCount(int value) {
901        numberNodes_ += value;
902    }
903    /// Get how many Nodes were enumerated in complete fathoming B&B inside CLP
904    inline int getExtraNodeCount() const {
905       return numberExtraNodes_;
906    }
907    /** Final status of problem
908        Some of these can be found out by is...... functions
909        -1 before branchAndBound
910        0 finished - check isProvenOptimal or isProvenInfeasible to see if solution found
911        (or check value of best solution)
912        1 stopped - on maxnodes, maxsols, maxtime
913        2 difficulties so run was abandoned
914        (5 event user programmed event occurred)
915    */
916    inline int status() const {
917        return status_;
918    }
919    inline void setProblemStatus(int value) {
920        status_ = value;
921    }
922    /** Secondary status of problem
923        -1 unset (status_ will also be -1)
924        0 search completed with solution
925        1 linear relaxation not feasible (or worse than cutoff)
926        2 stopped on gap
927        3 stopped on nodes
928        4 stopped on time
929        5 stopped on user event
930        6 stopped on solutions
931        7 linear relaxation unbounded
932    */
933    inline int secondaryStatus() const {
934        return secondaryStatus_;
935    }
936    inline void setSecondaryStatus(int value) {
937        secondaryStatus_ = value;
938    }
939    /// Are there numerical difficulties (for initialSolve) ?
940    bool isInitialSolveAbandoned() const ;
941    /// Is optimality proven (for initialSolve) ?
942    bool isInitialSolveProvenOptimal() const ;
943    /// Is primal infeasiblity proven (for initialSolve) ?
944    bool isInitialSolveProvenPrimalInfeasible() const ;
945    /// Is dual infeasiblity proven (for initialSolve) ?
946    bool isInitialSolveProvenDualInfeasible() const ;
947
948    //@}
949
950    //---------------------------------------------------------------------------
951    /**@name Problem information methods
952
953       These methods call the solver's query routines to return
954       information about the problem referred to by the current object.
955       Querying a problem that has no data associated with it result in
956       zeros for the number of rows and columns, and NULL pointers from
957       the methods that return vectors.
958
959       Const pointers returned from any data-query method are valid as
960       long as the data is unchanged and the solver is not called.
961    */
962    //@{
963    /// Number of rows in continuous (root) problem.
964    inline int numberRowsAtContinuous() const {
965        return numberRowsAtContinuous_;
966    }
967
968    /// Get number of columns
969    inline int getNumCols() const {
970        return solver_->getNumCols();
971    }
972
973    /// Get number of rows
974    inline int getNumRows() const {
975        return solver_->getNumRows();
976    }
977
978    /// Get number of nonzero elements
979    inline CoinBigIndex getNumElements() const {
980        return solver_->getNumElements();
981    }
982
983    /// Number of integers in problem
984    inline int numberIntegers() const {
985        return numberIntegers_;
986    }
987    // Integer variables
988    inline const int * integerVariable() const {
989        return integerVariable_;
990    }
991    /// Whether or not integer
992    inline char integerType(int i) const {
993        assert (integerInfo_);
994        assert (integerInfo_[i] == 0 || integerInfo_[i] == 1);
995        return integerInfo_[i];
996    }
997    /// Whether or not integer
998    inline const char * integerType() const {
999        return integerInfo_;
1000    }
1001
1002    /// Get pointer to array[getNumCols()] of column lower bounds
1003    inline const double * getColLower() const {
1004        return solver_->getColLower();
1005    }
1006
1007    /// Get pointer to array[getNumCols()] of column upper bounds
1008    inline const double * getColUpper() const {
1009        return solver_->getColUpper();
1010    }
1011
1012    /** Get pointer to array[getNumRows()] of row constraint senses.
1013        <ul>
1014        <li>'L': <= constraint
1015        <li>'E': =  constraint
1016        <li>'G': >= constraint
1017        <li>'R': ranged constraint
1018        <li>'N': free constraint
1019        </ul>
1020    */
1021    inline const char * getRowSense() const {
1022        return solver_->getRowSense();
1023    }
1024
1025    /** Get pointer to array[getNumRows()] of rows right-hand sides
1026        <ul>
1027        <li> if rowsense()[i] == 'L' then rhs()[i] == rowupper()[i]
1028        <li> if rowsense()[i] == 'G' then rhs()[i] == rowlower()[i]
1029        <li> if rowsense()[i] == 'R' then rhs()[i] == rowupper()[i]
1030        <li> if rowsense()[i] == 'N' then rhs()[i] == 0.0
1031        </ul>
1032    */
1033    inline const double * getRightHandSide() const {
1034        return solver_->getRightHandSide();
1035    }
1036
1037    /** Get pointer to array[getNumRows()] of row ranges.
1038        <ul>
1039        <li> if rowsense()[i] == 'R' then
1040        rowrange()[i] == rowupper()[i] - rowlower()[i]
1041        <li> if rowsense()[i] != 'R' then
1042        rowrange()[i] is 0.0
1043        </ul>
1044    */
1045    inline const double * getRowRange() const {
1046        return solver_->getRowRange();
1047    }
1048
1049    /// Get pointer to array[getNumRows()] of row lower bounds
1050    inline const double * getRowLower() const {
1051        return solver_->getRowLower();
1052    }
1053
1054    /// Get pointer to array[getNumRows()] of row upper bounds
1055    inline const double * getRowUpper() const {
1056        return solver_->getRowUpper();
1057    }
1058
1059    /// Get pointer to array[getNumCols()] of objective function coefficients
1060    inline const double * getObjCoefficients() const {
1061        return solver_->getObjCoefficients();
1062    }
1063
1064    /// Get objective function sense (1 for min (default), -1 for max)
1065    inline double getObjSense() const {
1066        //assert (dblParam_[CbcOptimizationDirection]== solver_->getObjSense());
1067        return dblParam_[CbcOptimizationDirection];
1068    }
1069
1070    /// Return true if variable is continuous
1071    inline bool isContinuous(int colIndex) const {
1072        return solver_->isContinuous(colIndex);
1073    }
1074
1075    /// Return true if variable is binary
1076    inline bool isBinary(int colIndex) const {
1077        return solver_->isBinary(colIndex);
1078    }
1079
1080    /** Return true if column is integer.
1081        Note: This function returns true if the the column
1082        is binary or a general integer.
1083    */
1084    inline bool isInteger(int colIndex) const {
1085        return solver_->isInteger(colIndex);
1086    }
1087
1088    /// Return true if variable is general integer
1089    inline bool isIntegerNonBinary(int colIndex) const {
1090        return solver_->isIntegerNonBinary(colIndex);
1091    }
1092
1093    /// Return true if variable is binary and not fixed at either bound
1094    inline bool isFreeBinary(int colIndex) const {
1095        return solver_->isFreeBinary(colIndex) ;
1096    }
1097
1098    /// Get pointer to row-wise copy of matrix
1099    inline const CoinPackedMatrix * getMatrixByRow() const {
1100        return solver_->getMatrixByRow();
1101    }
1102
1103    /// Get pointer to column-wise copy of matrix
1104    inline const CoinPackedMatrix * getMatrixByCol() const {
1105        return solver_->getMatrixByCol();
1106    }
1107
1108    /// Get solver's value for infinity
1109    inline double getInfinity() const {
1110        return solver_->getInfinity();
1111    }
1112    /// Get pointer to array[getNumCols()] (for speed) of column lower bounds
1113    inline const double * getCbcColLower() const {
1114        return cbcColLower_;
1115    }
1116    /// Get pointer to array[getNumCols()] (for speed) of column upper bounds
1117    inline const double * getCbcColUpper() const {
1118        return cbcColUpper_;
1119    }
1120    /// Get pointer to array[getNumRows()] (for speed) of row lower bounds
1121    inline const double * getCbcRowLower() const {
1122        return cbcRowLower_;
1123    }
1124    /// Get pointer to array[getNumRows()] (for speed) of row upper bounds
1125    inline const double * getCbcRowUpper() const {
1126        return cbcRowUpper_;
1127    }
1128    /// Get pointer to array[getNumCols()] (for speed) of primal solution vector
1129    inline const double * getCbcColSolution() const {
1130        return cbcColSolution_;
1131    }
1132    /// Get pointer to array[getNumRows()] (for speed) of dual prices
1133    inline const double * getCbcRowPrice() const {
1134        return cbcRowPrice_;
1135    }
1136    /// Get a pointer to array[getNumCols()] (for speed) of reduced costs
1137    inline const double * getCbcReducedCost() const {
1138        return cbcReducedCost_;
1139    }
1140    /// Get pointer to array[getNumRows()] (for speed) of row activity levels.
1141    inline const double * getCbcRowActivity() const {
1142        return cbcRowActivity_;
1143    }
1144    //@}
1145
1146
1147    /**@name Methods related to querying the solution */
1148    //@{
1149    /// Holds solution at continuous (after cuts if branchAndBound called)
1150    inline double * continuousSolution() const {
1151        return continuousSolution_;
1152    }
1153    /** Array marked whenever a solution is found if non-zero.
1154        Code marks if heuristic returns better so heuristic
1155        need only mark if it wants to on solutions which
1156        are worse than current */
1157    inline int * usedInSolution() const {
1158        return usedInSolution_;
1159    }
1160    /// Increases usedInSolution for nonzeros
1161    void incrementUsed(const double * solution);
1162    /// Record a new incumbent solution and update objectiveValue
1163    void setBestSolution(CBC_Message how,
1164                         double & objectiveValue, const double *solution,
1165                         int fixVariables = 0);
1166    /// Just update objectiveValue
1167    void setBestObjectiveValue( double objectiveValue);
1168    /// Deals with event handler and solution
1169    CbcEventHandler::CbcAction dealWithEventHandler(CbcEventHandler::CbcEvent event,
1170            double objValue,
1171            const double * solution);
1172
1173    /** Call this to really test if a valid solution can be feasible
1174        Solution is number columns in size.
1175        If fixVariables true then bounds of continuous solver updated.
1176        Returns objective value (worse than cutoff if not feasible)
1177        Previously computed objective value is now passed in (in case user does not do solve)
1178        virtual so user can override
1179    */
1180    virtual double checkSolution(double cutoff, double * solution,
1181                         int fixVariables, double originalObjValue);
1182    /** Test the current solution for feasiblility.
1183
1184      Scan all objects for indications of infeasibility. This is broken down
1185      into simple integer infeasibility (\p numberIntegerInfeasibilities)
1186      and all other reports of infeasibility (\p numberObjectInfeasibilities).
1187    */
1188    bool feasibleSolution(int & numberIntegerInfeasibilities,
1189                          int & numberObjectInfeasibilities) const;
1190
1191    /** Solution to the most recent lp relaxation.
1192
1193      The solver's solution to the most recent lp relaxation.
1194    */
1195
1196    inline double * currentSolution() const {
1197        return currentSolution_;
1198    }
1199    /** For testing infeasibilities - will point to
1200        currentSolution_ or solver-->getColSolution()
1201    */
1202    inline const double * testSolution() const {
1203        return testSolution_;
1204    }
1205    inline void setTestSolution(const double * solution) {
1206        testSolution_ = solution;
1207    }
1208    /// Make sure region there and optionally copy solution
1209    void reserveCurrentSolution(const double * solution = NULL);
1210
1211    /// Get pointer to array[getNumCols()] of primal solution vector
1212    inline const double * getColSolution() const {
1213        return solver_->getColSolution();
1214    }
1215
1216    /// Get pointer to array[getNumRows()] of dual prices
1217    inline const double * getRowPrice() const {
1218        return solver_->getRowPrice();
1219    }
1220
1221    /// Get a pointer to array[getNumCols()] of reduced costs
1222    inline const double * getReducedCost() const {
1223        return solver_->getReducedCost();
1224    }
1225
1226    /// Get pointer to array[getNumRows()] of row activity levels.
1227    inline const double * getRowActivity() const {
1228        return solver_->getRowActivity();
1229    }
1230
1231    /// Get current objective function value
1232    inline double getCurrentObjValue() const {
1233        return dblParam_[CbcCurrentObjectiveValue];
1234    }
1235    /// Get current minimization objective function value
1236    inline double getCurrentMinimizationObjValue() const {
1237        return dblParam_[CbcCurrentMinimizationObjectiveValue];
1238    }
1239
1240    /// Get best objective function value as minimization
1241    inline double getMinimizationObjValue() const {
1242        return bestObjective_;
1243    }
1244    /// Set best objective function value as minimization
1245    inline void setMinimizationObjValue(double value) {
1246        bestObjective_ = value;
1247    }
1248
1249    /// Get best objective function value
1250    inline double getObjValue() const {
1251        return bestObjective_ * solver_->getObjSense() ;
1252    }
1253    /** Get best possible objective function value.
1254        This is better of best possible left on tree
1255        and best solution found.
1256        If called from within branch and cut may be optimistic.
1257    */
1258    double getBestPossibleObjValue() const;
1259    /// Set best objective function value
1260    inline void setObjValue(double value) {
1261        bestObjective_ = value * solver_->getObjSense() ;
1262    }
1263    /// Get solver objective function value (as minimization)
1264    inline double getSolverObjValue() const {
1265        return solver_->getObjValue() * solver_->getObjSense() ;
1266    }
1267
1268    /** The best solution to the integer programming problem.
1269
1270      The best solution to the integer programming problem found during
1271      the search. If no solution is found, the method returns null.
1272    */
1273
1274    inline double * bestSolution() const {
1275        return bestSolution_;
1276    }
1277    /** User callable setBestSolution.
1278        If check false does not check valid
1279        If true then sees if feasible and warns if objective value
1280        worse than given (so just set to COIN_DBL_MAX if you don't care).
1281        If check true then does not save solution if not feasible
1282    */
1283    void setBestSolution(const double * solution, int numberColumns,
1284                         double objectiveValue, bool check = false);
1285
1286    /// Get number of solutions
1287    inline int getSolutionCount() const {
1288        return numberSolutions_;
1289    }
1290
1291    /// Set number of solutions (so heuristics will be different)
1292    inline void setSolutionCount(int value) {
1293        numberSolutions_ = value;
1294    }
1295    /// Number of saved solutions (including best)
1296    int numberSavedSolutions() const;
1297    /// Maximum number of extra saved solutions
1298    inline int maximumSavedSolutions() const {
1299        return maximumSavedSolutions_;
1300    }
1301    /// Set maximum number of extra saved solutions
1302    void setMaximumSavedSolutions(int value);
1303    /// Return a saved solution (0==best) - NULL if off end
1304    const double * savedSolution(int which) const;
1305    /// Return a saved solution objective (0==best) - COIN_DBL_MAX if off end
1306    double savedSolutionObjective(int which) const;
1307
1308    /** Current phase (so heuristics etc etc can find out).
1309        0 - initial solve
1310        1 - solve with cuts at root
1311        2 - solve with cuts
1312        3 - other e.g. strong branching
1313        4 - trying to validate a solution
1314        5 - at end of search
1315    */
1316    inline int phase() const {
1317        return phase_;
1318    }
1319
1320    /// Get number of heuristic solutions
1321    inline int getNumberHeuristicSolutions() const {
1322        return numberHeuristicSolutions_;
1323    }
1324    /// Set number of heuristic solutions
1325    inline void setNumberHeuristicSolutions(int value) {
1326        numberHeuristicSolutions_ = value;
1327    }
1328
1329    /// Set objective function sense (1 for min (default), -1 for max,)
1330    inline void setObjSense(double s) {
1331        dblParam_[CbcOptimizationDirection] = s;
1332        solver_->setObjSense(s);
1333    }
1334
1335    /// Value of objective at continuous
1336    inline double getContinuousObjective() const {
1337        return originalContinuousObjective_;
1338    }
1339    inline void setContinuousObjective(double value) {
1340        originalContinuousObjective_ = value;
1341    }
1342    /// Number of infeasibilities at continuous
1343    inline int getContinuousInfeasibilities() const {
1344        return continuousInfeasibilities_;
1345    }
1346    inline void setContinuousInfeasibilities(int value) {
1347        continuousInfeasibilities_ = value;
1348    }
1349    /// Value of objective after root node cuts added
1350    inline double rootObjectiveAfterCuts() const {
1351        return continuousObjective_;
1352    }
1353    /// Sum of Changes to objective by first solve
1354    inline double sumChangeObjective() const {
1355        return sumChangeObjective1_;
1356    }
1357    /** Number of times global cuts violated.  When global cut pool then this
1358        should be kept for each cut and type of cut */
1359    inline int numberGlobalViolations() const {
1360        return numberGlobalViolations_;
1361    }
1362    inline void clearNumberGlobalViolations() {
1363        numberGlobalViolations_ = 0;
1364    }
1365    /// Whether to force a resolve after takeOffCuts
1366    inline bool resolveAfterTakeOffCuts() const {
1367        return resolveAfterTakeOffCuts_;
1368    }
1369    inline void setResolveAfterTakeOffCuts(bool yesNo) {
1370        resolveAfterTakeOffCuts_ = yesNo;
1371    }
1372    /// Maximum number of rows
1373    inline int maximumRows() const {
1374        return maximumRows_;
1375    }
1376    /// Work basis for temporary use
1377    inline CoinWarmStartBasis & workingBasis() {
1378        return workingBasis_;
1379    }
1380    /// Get number of "iterations" to stop after
1381    inline int getStopNumberIterations() const {
1382        return stopNumberIterations_;
1383    }
1384    /// Set number of "iterations" to stop after
1385    inline void setStopNumberIterations(int value) {
1386        stopNumberIterations_ = value;
1387    }
1388    //@}
1389
1390    /** \name Node selection */
1391    //@{
1392    // Comparison functions (which may be overridden by inheritance)
1393    inline CbcCompareBase * nodeComparison() const {
1394        return nodeCompare_;
1395    }
1396    void setNodeComparison(CbcCompareBase * compare);
1397    void setNodeComparison(CbcCompareBase & compare);
1398    //@}
1399
1400    /** \name Problem feasibility checking */
1401    //@{
1402    // Feasibility functions (which may be overridden by inheritance)
1403    inline CbcFeasibilityBase * problemFeasibility() const {
1404        return problemFeasibility_;
1405    }
1406    void setProblemFeasibility(CbcFeasibilityBase * feasibility);
1407    void setProblemFeasibility(CbcFeasibilityBase & feasibility);
1408    //@}
1409
1410    /** \name Tree methods and subtree methods */
1411    //@{
1412    /// Tree method e.g. heap (which may be overridden by inheritance)
1413    inline CbcTree * tree() const {
1414        return tree_;
1415    }
1416    /// For modifying tree handling (original is cloned)
1417    void passInTreeHandler(CbcTree & tree);
1418    /** For passing in an CbcModel to do a sub Tree (with derived tree handlers).
1419        Passed in model must exist for duration of branch and bound
1420    */
1421    void passInSubTreeModel(CbcModel & model);
1422    /** For retrieving a copy of subtree model with given OsiSolver.
1423        If no subtree model will use self (up to user to reset cutoff etc).
1424        If solver NULL uses current
1425    */
1426    CbcModel * subTreeModel(OsiSolverInterface * solver = NULL) const;
1427    /// Returns number of times any subtree stopped on nodes, time etc
1428    inline int numberStoppedSubTrees() const {
1429        return numberStoppedSubTrees_;
1430    }
1431    /// Says a sub tree was stopped
1432    inline void incrementSubTreeStopped() {
1433        numberStoppedSubTrees_++;
1434    }
1435    /** Whether to automatically do presolve before branch and bound (subTrees).
1436        0 - no
1437        1 - ordinary presolve
1438        2 - integer presolve (dodgy)
1439    */
1440    inline int typePresolve() const {
1441        return presolve_;
1442    }
1443    inline void setTypePresolve(int value) {
1444        presolve_ = value;
1445    }
1446
1447    //@}
1448
1449    /** \name Branching Decisions
1450
1451      See the CbcBranchDecision class for additional information.
1452    */
1453    //@{
1454
1455    /// Get the current branching decision method.
1456    inline CbcBranchDecision * branchingMethod() const {
1457        return branchingMethod_;
1458    }
1459    /// Set the branching decision method.
1460    inline void setBranchingMethod(CbcBranchDecision * method) {
1461        delete branchingMethod_;
1462        branchingMethod_ = method->clone();
1463    }
1464    /** Set the branching method
1465
1466      \overload
1467    */
1468    inline void setBranchingMethod(CbcBranchDecision & method) {
1469        delete branchingMethod_;
1470        branchingMethod_ = method.clone();
1471    }
1472    /// Get the current cut modifier method
1473    inline CbcCutModifier * cutModifier() const {
1474        return cutModifier_;
1475    }
1476    /// Set the cut modifier method
1477    void setCutModifier(CbcCutModifier * modifier);
1478    /** Set the cut modifier method
1479
1480      \overload
1481    */
1482    void setCutModifier(CbcCutModifier & modifier);
1483    //@}
1484
1485    /** \name Row (constraint) and Column (variable) cut generation */
1486    //@{
1487
1488    /** State of search
1489        0 - no solution
1490        1 - only heuristic solutions
1491        2 - branched to a solution
1492        3 - no solution but many nodes
1493    */
1494    inline int stateOfSearch() const {
1495        return stateOfSearch_;
1496    }
1497    inline void setStateOfSearch(int state) {
1498        stateOfSearch_ = state;
1499    }
1500    /// Strategy worked out - mainly at root node for use by CbcNode
1501    inline int searchStrategy() const {
1502        return searchStrategy_;
1503    }
1504    /// Set strategy worked out - mainly at root node for use by CbcNode
1505    inline void setSearchStrategy(int value) {
1506        searchStrategy_ = value;
1507    }
1508
1509    /// Get the number of cut generators
1510    inline int numberCutGenerators() const {
1511        return numberCutGenerators_;
1512    }
1513    /// Get the list of cut generators
1514    inline CbcCutGenerator ** cutGenerators() const {
1515        return generator_;
1516    }
1517    ///Get the specified cut generator
1518    inline CbcCutGenerator * cutGenerator(int i) const {
1519        return generator_[i];
1520    }
1521    ///Get the specified cut generator before any changes
1522    inline CbcCutGenerator * virginCutGenerator(int i) const {
1523        return virginGenerator_[i];
1524    }
1525    /** Add one generator - up to user to delete generators.
1526        howoften affects how generator is used. 0 or 1 means always,
1527        >1 means every that number of nodes.  Negative values have same
1528        meaning as positive but they may be switched off (-> -100) by code if
1529        not many cuts generated at continuous.  -99 is just done at root.
1530        Name is just for printout.
1531        If depth >0 overrides how often generator is called (if howOften==-1 or >0).
1532    */
1533    void addCutGenerator(CglCutGenerator * generator,
1534                         int howOften = 1, const char * name = NULL,
1535                         bool normal = true, bool atSolution = false,
1536                         bool infeasible = false, int howOftenInSub = -100,
1537                         int whatDepth = -1, int whatDepthInSub = -1);
1538//@}
1539    /** \name Strategy and sub models
1540
1541      See the CbcStrategy class for additional information.
1542    */
1543    //@{
1544
1545    /// Get the current strategy
1546    inline CbcStrategy * strategy() const {
1547        return strategy_;
1548    }
1549    /// Set the strategy. Clones
1550    void setStrategy(CbcStrategy & strategy);
1551    /// Set the strategy. assigns
1552    inline void setStrategy(CbcStrategy * strategy) {
1553        strategy_ = strategy;
1554    }
1555    /// Get the current parent model
1556    inline CbcModel * parentModel() const {
1557        return parentModel_;
1558    }
1559    /// Set the parent model
1560    inline void setParentModel(CbcModel & parentModel) {
1561        parentModel_ = &parentModel;
1562    }
1563    //@}
1564
1565
1566    /** \name Heuristics and priorities */
1567    //@{
1568    /*! \brief Add one heuristic - up to user to delete
1569
1570      The name is just used for print messages.
1571    */
1572    void addHeuristic(CbcHeuristic * generator, const char *name = NULL,
1573                      int before = -1);
1574    ///Get the specified heuristic
1575    inline CbcHeuristic * heuristic(int i) const {
1576        return heuristic_[i];
1577    }
1578    /// Get the number of heuristics
1579    inline int numberHeuristics() const {
1580        return numberHeuristics_;
1581    }
1582    /// Pointer to heuristic solver which found last solution (or NULL)
1583    inline CbcHeuristic * lastHeuristic() const {
1584        return lastHeuristic_;
1585    }
1586    /// set last heuristic which found a solution
1587    inline void setLastHeuristic(CbcHeuristic * last) {
1588        lastHeuristic_ = last;
1589    }
1590
1591    /** Pass in branching priorities.
1592
1593        If ifClique then priorities are on cliques otherwise priorities are
1594        on integer variables.
1595        Other type (if exists set to default)
1596        1 is highest priority. (well actually -INT_MAX is but that's ugly)
1597        If hotstart > 0 then branches are created to force
1598        the variable to the value given by best solution.  This enables a
1599        sort of hot start.  The node choice should be greatest depth
1600        and hotstart should normally be switched off after a solution.
1601
1602        If ifNotSimpleIntegers true then appended to normal integers
1603
1604        This is now deprecated except for simple usage.  If user
1605        creates Cbcobjects then set priority in them
1606
1607        \internal Added for Kurt Spielberg.
1608    */
1609    void passInPriorities(const int * priorities, bool ifNotSimpleIntegers);
1610
1611    /// Returns priority level for an object (or 1000 if no priorities exist)
1612    inline int priority(int sequence) const {
1613        return object_[sequence]->priority();
1614    }
1615
1616    /*! \brief Set an event handler
1617
1618      A clone of the handler passed as a parameter is stored in CbcModel.
1619    */
1620    void passInEventHandler(const CbcEventHandler *eventHandler) ;
1621
1622    /*! \brief Retrieve a pointer to the event handler */
1623    inline CbcEventHandler* getEventHandler() const {
1624        return (eventHandler_) ;
1625    }
1626
1627    //@}
1628
1629    /**@name Setting/Accessing application data */
1630    //@{
1631    /** Set application data.
1632
1633    This is a pointer that the application can store into and
1634    retrieve from the solver interface.
1635    This field is available for the application to optionally
1636    define and use.
1637    */
1638    void setApplicationData (void * appData);
1639
1640    /// Get application data
1641    void * getApplicationData() const;
1642    /**
1643        For advanced applications you may wish to modify the behavior of Cbc
1644        e.g. if the solver is a NLP solver then you may not have an exact
1645        optimum solution at each step.  Information could be built into
1646        OsiSolverInterface but this is an alternative so that that interface
1647        does not have to be changed.  If something similar is useful to
1648        enough solvers then it could be migrated
1649        You can also pass in by using solver->setAuxiliaryInfo.
1650        You should do that if solver is odd - if solver is normal simplex
1651        then use this.
1652        NOTE - characteristics are not cloned
1653    */
1654    void passInSolverCharacteristics(OsiBabSolver * solverCharacteristics);
1655    /// Get solver characteristics
1656    inline const OsiBabSolver * solverCharacteristics() const {
1657        return solverCharacteristics_;
1658    }
1659    //@}
1660
1661    //---------------------------------------------------------------------------
1662
1663    /**@name Message handling etc */
1664    //@{
1665    /// Pass in Message handler (not deleted at end)
1666    void passInMessageHandler(CoinMessageHandler * handler);
1667    /// Set language
1668    void newLanguage(CoinMessages::Language language);
1669    inline void setLanguage(CoinMessages::Language language) {
1670        newLanguage(language);
1671    }
1672    /// Return handler
1673    inline CoinMessageHandler * messageHandler() const {
1674        return handler_;
1675    }
1676    /// Return messages
1677    inline CoinMessages & messages() {
1678        return messages_;
1679    }
1680    /// Return pointer to messages
1681    inline CoinMessages * messagesPointer() {
1682        return &messages_;
1683    }
1684    /// Set log level
1685    void setLogLevel(int value);
1686    /// Get log level
1687    inline int logLevel() const {
1688        return handler_->logLevel();
1689    }
1690    /** Set flag to say if handler_ is the default handler.
1691
1692      The default handler is deleted when the model is deleted. Other
1693      handlers (supplied by the client) will not be deleted.
1694    */
1695    inline void setDefaultHandler(bool yesNo) {
1696        defaultHandler_ = yesNo;
1697    }
1698    //@}
1699    //---------------------------------------------------------------------------
1700    ///@name Specialized
1701    //@{
1702
1703    /**
1704        Set special options
1705        0 bit (1) - check if cuts valid (if on debugger list)
1706        1 bit (2) - use current basis to check integer solution (rather than all slack)
1707        2 bit (4) - don't check integer solution (by solving LP)
1708        3 bit (8) - fast analyze
1709        4 bit (16) - non-linear model - so no well defined CoinPackedMatrix
1710        5 bit (32) - keep names
1711        6 bit (64) - try for dominated columns
1712        7 bit (128) - SOS type 1 but all declared integer
1713        8 bit (256) - Set to say solution just found, unset by doing cuts
1714        9 bit (512) - Try reduced model after 100 nodes
1715        10 bit (1024) - Switch on some heuristics even if seems unlikely
1716        11 bit (2048) - Mark as in small branch and bound
1717        12 bit (4096) - Funny cuts so do slow way (in some places)
1718        13 bit (8192) - Funny cuts so do slow way (in other places)
1719        14 bit (16384) - Use Cplex! for fathoming
1720        15 bit (32768) - Try reduced model after 0 nodes
1721        16 bit (65536) - Original model had integer bounds
1722        17 bit (131072) - Perturbation switched off
1723        18 bit (262144) - donor CbcModel
1724        19 bit (524288) - recipient CbcModel
1725        20 bit (1048576) - waiting for sub model to return
1726    */
1727    inline void setSpecialOptions(int value) {
1728        specialOptions_ = value;
1729    }
1730    /// Get special options
1731    inline int specialOptions() const {
1732        return specialOptions_;
1733    }
1734    /// Tell model to stop on event
1735    inline void sayEventHappened()
1736    { eventHappened_=true;}
1737    /// Says if normal solver i.e. has well defined CoinPackedMatrix
1738    inline bool normalSolver() const {
1739        return (specialOptions_&16) == 0;
1740    }
1741    /** Says if model is sitting there waiting for mini branch and bound to finish
1742        This is because an event handler may only have access to parent model in
1743        mini branch and bound
1744    */
1745    inline bool waitingForMiniBranchAndBound() const {
1746        return (specialOptions_&1048576) != 0;
1747    }
1748    /** Set more special options
1749        at present bottom 6 bits used for shadow price mode
1750        1024 for experimental hotstart
1751        2048,4096 breaking out of cuts
1752        8192 slowly increase minimum drop
1753        16384 gomory
1754        32768 more heuristics in sub trees
1755        65536 no cuts in preprocessing
1756        131072 Time limits elapsed
1757        18 bit (262144) - Perturb fathom nodes
1758        19 bit (524288) - No limit on fathom nodes
1759        20 bit (1048576) - Reduce sum of infeasibilities before cuts
1760        21 bit (2097152) - Reduce sum of infeasibilities after cuts
1761    */
1762    inline void setMoreSpecialOptions(int value) {
1763        moreSpecialOptions_ = value;
1764    }
1765    /// Get more special options
1766    inline int moreSpecialOptions() const {
1767        return moreSpecialOptions_;
1768    }
1769  /// Set time method
1770    inline void setUseElapsedTime(bool yesNo) {
1771        if (yesNo)
1772          moreSpecialOptions_ |= 131072;
1773        else
1774          moreSpecialOptions_ &= ~131072;
1775    }
1776    /// Get time method
1777    inline bool useElapsedTime() const {
1778        return (moreSpecialOptions_&131072)!=0;
1779    }
1780    /// Go to dantzig pivot selection if easy problem (clp only)
1781#ifdef COIN_HAS_CLP
1782    void goToDantzig(int numberNodes, ClpDualRowPivot *& savePivotMethod);
1783#endif
1784    /// Now we may not own objects - just point to solver's objects
1785    inline bool ownObjects() const {
1786        return ownObjects_;
1787    }
1788    /// Check original model before it gets messed up
1789    void checkModel();
1790    //@}
1791    //---------------------------------------------------------------------------
1792
1793    ///@name Constructors and destructors etc
1794    //@{
1795    /// Default Constructor
1796    CbcModel();
1797
1798    /// Constructor from solver
1799    CbcModel(const OsiSolverInterface &);
1800
1801    /** Assign a solver to the model (model assumes ownership)
1802
1803      On return, \p solver will be NULL.
1804      If deleteSolver then current solver deleted (if model owned)
1805
1806      \note Parameter settings in the outgoing solver are not inherited by
1807        the incoming solver.
1808    */
1809    void assignSolver(OsiSolverInterface *&solver, bool deleteSolver = true);
1810
1811    /** \brief Set ownership of solver
1812
1813      A parameter of false tells CbcModel it does not own the solver and
1814      should not delete it. Once you claim ownership of the solver, you're
1815      responsible for eventually deleting it. Note that CbcModel clones
1816      solvers with abandon.  Unless you have a deep understanding of the
1817      workings of CbcModel, the only time you want to claim ownership is when
1818      you're about to delete the CbcModel object but want the solver to
1819      continue to exist (as, for example, when branchAndBound has finished
1820      and you want to hang on to the answer).
1821    */
1822    inline void setModelOwnsSolver (bool ourSolver) {
1823        ownership_ = ourSolver ? (ownership_ | 0x80000000) : (ownership_ & (~0x80000000)) ;
1824    }
1825
1826    /*! \brief Get ownership of solver
1827
1828      A return value of true means that CbcModel owns the solver and will
1829      take responsibility for deleting it when that becomes necessary.
1830    */
1831    inline bool modelOwnsSolver () {
1832        return ((ownership_&0x80000000) != 0) ;
1833    }
1834
1835    /** Copy constructor .
1836      If cloneHandler is true then message handler is cloned
1837    */
1838    CbcModel(const CbcModel & rhs, bool cloneHandler = false);
1839
1840    /** Clone */
1841    virtual CbcModel *clone (bool cloneHandler);
1842
1843    /// Assignment operator
1844    CbcModel & operator=(const CbcModel& rhs);
1845
1846    /// Destructor
1847    virtual ~CbcModel ();
1848
1849    /// Returns solver - has current state
1850    inline OsiSolverInterface * solver() const {
1851        return solver_;
1852    }
1853
1854    /// Returns current solver - sets new one
1855    inline OsiSolverInterface * swapSolver(OsiSolverInterface * solver) {
1856        OsiSolverInterface * returnSolver = solver_;
1857        solver_ = solver;
1858        return returnSolver;
1859    }
1860
1861    /// Returns solver with continuous state
1862    inline OsiSolverInterface * continuousSolver() const {
1863        return continuousSolver_;
1864    }
1865
1866    /// Create solver with continuous state
1867    inline void createContinuousSolver() {
1868        continuousSolver_ = solver_->clone();
1869    }
1870    /// Clear solver with continuous state
1871    inline void clearContinuousSolver() {
1872        delete continuousSolver_;
1873        continuousSolver_ = NULL;
1874    }
1875
1876    /// A copy of the solver, taken at constructor or by saveReferenceSolver
1877    inline OsiSolverInterface * referenceSolver() const {
1878        return referenceSolver_;
1879    }
1880
1881    /// Save a copy of the current solver so can be reset to
1882    void saveReferenceSolver();
1883
1884    /** Uses a copy of reference solver to be current solver.
1885        Because of possible mismatches all exotic integer information is loat
1886        (apart from normal information in OsiSolverInterface)
1887        so SOS etc and priorities will have to be redone
1888    */
1889    void resetToReferenceSolver();
1890
1891    /// Clears out as much as possible (except solver)
1892    void gutsOfDestructor();
1893    /** Clears out enough to reset CbcModel as if no branch and bound done
1894     */
1895    void gutsOfDestructor2();
1896    /** Clears out enough to reset CbcModel cutoff etc
1897     */
1898    void resetModel();
1899    /** Most of copy constructor
1900        mode - 0 copy but don't delete before
1901               1 copy and delete before
1902           2 copy and delete before (but use virgin generators)
1903    */
1904    void gutsOfCopy(const CbcModel & rhs, int mode = 0);
1905    /// Move status, nodes etc etc across
1906    void moveInfo(const CbcModel & rhs);
1907    //@}
1908
1909    ///@name Multithreading
1910    //@{
1911    /// Indicates whether Cbc library has been compiled with multithreading support
1912    static bool haveMultiThreadSupport();
1913    /// Get pointer to masterthread
1914    CbcThread * masterThread() const {
1915        return masterThread_;
1916    }
1917    /// Get pointer to walkback
1918    CbcNodeInfo ** walkback() const {
1919        return walkback_;
1920    }
1921    /// Get number of threads
1922    inline int getNumberThreads() const {
1923        return numberThreads_;
1924    }
1925    /// Set number of threads
1926    inline void setNumberThreads(int value) {
1927        numberThreads_ = value;
1928    }
1929    /// Get thread mode
1930    inline int getThreadMode() const {
1931        return threadMode_;
1932    }
1933    /** Set thread mode
1934        always use numberThreads for branching
1935        1 set then deterministic
1936        2 set then use numberThreads for root cuts
1937        4 set then use numberThreads in root mini branch and bound
1938        8 set and numberThreads - do heuristics numberThreads at a time
1939        8 set and numberThreads==0 do all heuristics at once
1940        default is 0
1941    */
1942    inline void setThreadMode(int value) {
1943        threadMode_ = value;
1944    }
1945    /** Return
1946        -2 if deterministic threaded and main thread
1947        -1 if deterministic threaded and serial thread
1948        0 if serial
1949        1 if opportunistic threaded
1950    */
1951    inline int parallelMode() const {
1952        if (!numberThreads_) {
1953            if ((threadMode_&1) == 0)
1954                return 0;
1955            else
1956                return -1;
1957            return 0;
1958        } else {
1959            if ((threadMode_&1) == 0)
1960                return 1;
1961            else
1962                return -2;
1963        }
1964    }
1965    /// From here to end of section - code in CbcThread.cpp until class changed
1966    /// Returns true if locked
1967    bool isLocked() const;
1968#ifdef CBC_THREAD
1969    /**
1970       Locks a thread if parallel so that stuff like cut pool
1971       can be updated and/or used.
1972    */
1973    void lockThread();
1974    /**
1975       Unlocks a thread if parallel to say cut pool stuff not needed
1976    */
1977    void unlockThread();
1978#else
1979    inline void lockThread() {}
1980    inline void unlockThread() {}
1981#endif
1982    /** Set information in a child
1983        -3 pass pointer to child thread info
1984        -2 just stop
1985        -1 delete simple child stuff
1986        0 delete opportunistic child stuff
1987        1 delete deterministic child stuff
1988    */
1989    void setInfoInChild(int type, CbcThread * info);
1990    /** Move/copy information from one model to another
1991        -1 - initialization
1992        0 - from base model
1993        1 - to base model (and reset)
1994        2 - add in final statistics etc (and reset so can do clean destruction)
1995    */
1996    void moveToModel(CbcModel * baseModel, int mode);
1997    /// Split up nodes
1998    int splitModel(int numberModels, CbcModel ** model,
1999                   int numberNodes);
2000    /// Start threads
2001    void startSplitModel(int numberIterations);
2002    /// Merge models
2003    void mergeModels(int numberModel, CbcModel ** model,
2004                     int numberNodes);
2005    //@}
2006
2007    ///@name semi-private i.e. users should not use
2008    //@{
2009    /// Get how many Nodes it took to solve the problem.
2010    int getNodeCount2() const {
2011        return numberNodes2_;
2012    }
2013    /// Set pointers for speed
2014    void setPointers(const OsiSolverInterface * solver);
2015    /** Perform reduced cost fixing
2016
2017      Fixes integer variables at their current value based on reduced cost
2018      penalties.  Returns number fixed
2019    */
2020    int reducedCostFix() ;
2021    /** Makes all handlers same.  If makeDefault 1 then makes top level
2022        default and rest point to that.  If 2 then each is copy
2023    */
2024    void synchronizeHandlers(int makeDefault);
2025    /// Save a solution to saved list
2026    void saveExtraSolution(const double * solution, double objectiveValue);
2027    /// Save a solution to best and move current to saved
2028    void saveBestSolution(const double * solution, double objectiveValue);
2029    /// Delete best and saved solutions
2030    void deleteSolutions();
2031    /// Encapsulates solver resolve
2032    int resolve(OsiSolverInterface * solver);
2033#ifdef CLP_RESOLVE
2034    /// Special purpose resolve
2035    int resolveClp(OsiClpSolverInterface * solver, int type);
2036#endif
2037
2038    /** Encapsulates choosing a variable -
2039        anyAction -2, infeasible (-1 round again), 0 done
2040    */
2041    int chooseBranch(CbcNode * & newNode, int numberPassesLeft,
2042                     CbcNode * oldNode, OsiCuts & cuts,
2043                     bool & resolved, CoinWarmStartBasis *lastws,
2044                     const double * lowerBefore, const double * upperBefore,
2045                     OsiSolverBranch * & branches);
2046    int chooseBranch(CbcNode * newNode, int numberPassesLeft, bool & resolved);
2047
2048    /** Return an empty basis object of the specified size
2049
2050      A useful utility when constructing a basis for a subproblem from scratch.
2051      The object returned will be of the requested capacity and appropriate for
2052      the solver attached to the model.
2053    */
2054    CoinWarmStartBasis *getEmptyBasis(int ns = 0, int na = 0) const ;
2055
2056    /** Remove inactive cuts from the model
2057
2058      An OsiSolverInterface is expected to maintain a valid basis, but not a
2059      valid solution, when loose cuts are deleted. Restoring a valid solution
2060      requires calling the solver to reoptimise. If it's certain the solution
2061      will not be required, set allowResolve to false to suppress
2062      reoptimisation.
2063      If saveCuts then slack cuts will be saved
2064      On input current cuts are cuts and newCuts
2065      on exit current cuts will be correct.  Returns number dropped
2066    */
2067    int takeOffCuts(OsiCuts &cuts,
2068                    bool allowResolve, OsiCuts * saveCuts,
2069                    int numberNewCuts = 0, const OsiRowCut ** newCuts = NULL) ;
2070
2071    /** Determine and install the active cuts that need to be added for
2072      the current subproblem
2073
2074      The whole truth is a bit more complicated. The first action is a call to
2075      addCuts1(). addCuts() then sorts through the list, installs the tight
2076      cuts in the model, and does bookkeeping (adjusts reference counts).
2077      The basis returned from addCuts1() is adjusted accordingly.
2078
2079      If it turns out that the node should really be fathomed by bound,
2080      addCuts() simply treats all the cuts as loose as it does the bookkeeping.
2081
2082      canFix true if extra information being passed
2083    */
2084    int addCuts(CbcNode * node, CoinWarmStartBasis *&lastws, bool canFix);
2085
2086    /** Traverse the tree from node to root and prep the model
2087
2088      addCuts1() begins the job of prepping the model to match the current
2089      subproblem. The model is stripped of all cuts, and the search tree is
2090      traversed from node to root to determine the changes required. Appropriate
2091      bounds changes are installed, a list of cuts is collected but not
2092      installed, and an appropriate basis (minus the cuts, but big enough to
2093      accommodate them) is constructed.
2094
2095      Returns true if new problem similar to old
2096
2097      \todo addCuts1() is called in contexts where it's known in advance that
2098        all that's desired is to determine a list of cuts and do the
2099        bookkeeping (adjust the reference counts). The work of installing
2100        bounds and building a basis goes to waste.
2101    */
2102    bool addCuts1(CbcNode * node, CoinWarmStartBasis *&lastws);
2103    /** Returns bounds just before where - initially original bounds.
2104        Also sets downstream nodes (lower if force 1, upper if 2)
2105    */
2106    void previousBounds (CbcNode * node, CbcNodeInfo * where, int iColumn,
2107                         double & lower, double & upper, int force);
2108    /** Set objective value in a node.  This is separated out so that
2109       odd solvers can use.  It may look at extra information in
2110       solverCharacteriscs_ and will also use bound from parent node
2111    */
2112    void setObjectiveValue(CbcNode * thisNode, const CbcNode * parentNode) const;
2113
2114    /** If numberBeforeTrust >0 then we are going to use CbcBranchDynamic.
2115        Scan and convert CbcSimpleInteger objects
2116    */
2117    void convertToDynamic();
2118    /// Set numberBeforeTrust in all objects
2119    void synchronizeNumberBeforeTrust(int type = 0);
2120    /// Zap integer information in problem (may leave object info)
2121    void zapIntegerInformation(bool leaveObjects = true);
2122    /// Use cliques for pseudocost information - return nonzero if infeasible
2123    int cliquePseudoCosts(int doStatistics);
2124    /// Fill in useful estimates
2125    void pseudoShadow(int type);
2126    /** Return pseudo costs
2127        If not all integers or not pseudo costs - returns all zero
2128        Length of arrays are numberIntegers() and entries
2129        correspond to integerVariable()[i]
2130        User must allocate arrays before call
2131    */
2132    void fillPseudoCosts(double * downCosts, double * upCosts,
2133                         int * priority = NULL,
2134                         int * numberDown = NULL, int * numberUp = NULL,
2135                         int * numberDownInfeasible = NULL,
2136                         int * numberUpInfeasible = NULL) const;
2137    /** Do heuristics at root.
2138        0 - don't delete
2139        1 - delete
2140        2 - just delete - don't even use
2141    */
2142    void doHeuristicsAtRoot(int deleteHeuristicsAfterwards = 0);
2143    /// Adjust heuristics based on model
2144    void adjustHeuristics();
2145    /// Get the hotstart solution
2146    inline const double * hotstartSolution() const {
2147        return hotstartSolution_;
2148    }
2149    /// Get the hotstart priorities
2150    inline const int * hotstartPriorities() const {
2151        return hotstartPriorities_;
2152    }
2153
2154    /// Return the list of cuts initially collected for this subproblem
2155    inline CbcCountRowCut ** addedCuts() const {
2156        return addedCuts_;
2157    }
2158    /// Number of entries in the list returned by #addedCuts()
2159    inline int currentNumberCuts() const {
2160        return currentNumberCuts_;
2161    }
2162    /// Global cuts
2163    inline OsiCuts * globalCuts() {
2164        return &globalCuts_;
2165    }
2166    /// Copy and set a pointer to a row cut which will be added instead of normal branching.
2167    void setNextRowCut(const OsiRowCut & cut);
2168    /// Get a pointer to current node (be careful)
2169    inline CbcNode * currentNode() const {
2170        return currentNode_;
2171    }
2172    /// Get a pointer to probing info
2173    inline CglTreeProbingInfo * probingInfo() const {
2174        return probingInfo_;
2175    }
2176    /// Thread specific random number generator
2177    inline CoinThreadRandom * randomNumberGenerator() {
2178        return &randomNumberGenerator_;
2179    }
2180    /// Set the number of iterations done in strong branching.
2181    inline void setNumberStrongIterations(int number) {
2182        numberStrongIterations_ = number;
2183    }
2184    /// Get the number of iterations done in strong branching.
2185    inline int numberStrongIterations() const {
2186        return numberStrongIterations_;
2187    }
2188    /// Get maximum number of iterations (designed to be used in heuristics)
2189    inline int maximumNumberIterations() const {
2190        return maximumNumberIterations_;
2191    }
2192    /// Set maximum number of iterations (designed to be used in heuristics)
2193    inline void setMaximumNumberIterations(int value) {
2194        maximumNumberIterations_ = value;
2195    }
2196# ifdef COIN_HAS_CLP
2197    /// Set depth for fast nodes
2198    inline void setFastNodeDepth(int value) {
2199        fastNodeDepth_ = value;
2200    }
2201    /// Get depth for fast nodes
2202    inline int fastNodeDepth() const {
2203        return fastNodeDepth_;
2204    }
2205    /// Get anything with priority >= this can be treated as continuous
2206    inline int continuousPriority() const {
2207        return continuousPriority_;
2208    }
2209    /// Set anything with priority >= this can be treated as continuous
2210    inline void setContinuousPriority(int value) {
2211        continuousPriority_ = value;
2212    }
2213    inline void incrementExtra(int nodes, int iterations) {
2214        numberExtraNodes_ += nodes;
2215        numberExtraIterations_ += iterations;
2216    }
2217#endif
2218    /// Number of extra iterations
2219    inline int numberExtraIterations() const {
2220        return numberExtraIterations_;
2221    }
2222    /// Increment strong info
2223    void incrementStrongInfo(int numberTimes, int numberIterations,
2224                             int numberFixed, bool ifInfeasible);
2225    /// Return strong info
2226    inline const int * strongInfo() const {
2227        return strongInfo_;
2228    }
2229
2230    /// Return mutable strong info
2231    inline int * mutableStrongInfo() {
2232        return strongInfo_;
2233    }
2234    /// Get stored row cuts for donor/recipient CbcModel
2235    CglStored * storedRowCuts() const {
2236        return storedRowCuts_;
2237    }
2238    /// Set stored row cuts for donor/recipient CbcModel
2239    void setStoredRowCuts(CglStored * cuts) {
2240        storedRowCuts_ = cuts;
2241    }
2242    /// Says whether all dynamic integers
2243    inline bool allDynamic () const {
2244        return ((ownership_&0x40000000) != 0) ;
2245    }
2246    /// Create C++ lines to get to current state
2247    void generateCpp( FILE * fp, int options);
2248    /// Generate an OsiBranchingInformation object
2249    OsiBranchingInformation usefulInformation() const;
2250    /** Warm start object produced by heuristic or strong branching
2251
2252        If get a valid integer solution outside branch and bound then it can take
2253        a reasonable time to solve LP which produces clean solution.  If this object has
2254        any size then it will be used in solve.
2255    */
2256    inline void setBestSolutionBasis(const CoinWarmStartBasis & bestSolutionBasis) {
2257        bestSolutionBasis_ = bestSolutionBasis;
2258    }
2259    /// Redo walkback arrays
2260    void redoWalkBack();
2261    //@}
2262
2263//---------------------------------------------------------------------------
2264
2265private:
2266    ///@name Private member data
2267    //@{
2268
2269    /// The solver associated with this model.
2270    OsiSolverInterface * solver_;
2271
2272    /** Ownership of objects and other stuff
2273
2274        0x80000000 model owns solver
2275        0x40000000 all variables CbcDynamicPseudoCost
2276    */
2277    unsigned int ownership_ ;
2278
2279    /// A copy of the solver, taken at the continuous (root) node.
2280    OsiSolverInterface * continuousSolver_;
2281
2282    /// A copy of the solver, taken at constructor or by saveReferenceSolver
2283    OsiSolverInterface * referenceSolver_;
2284
2285    /// Message handler
2286    CoinMessageHandler * handler_;
2287
2288    /** Flag to say if handler_ is the default handler.
2289
2290      The default handler is deleted when the model is deleted. Other
2291      handlers (supplied by the client) will not be deleted.
2292    */
2293    bool defaultHandler_;
2294
2295    /// Cbc messages
2296    CoinMessages messages_;
2297
2298    /// Array for integer parameters
2299    int intParam_[CbcLastIntParam];
2300
2301    /// Array for double parameters
2302    double dblParam_[CbcLastDblParam];
2303
2304    /** Pointer to an empty warm start object
2305
2306      It turns out to be useful to have this available as a base from
2307      which to build custom warm start objects. This is typed as CoinWarmStart
2308      rather than CoinWarmStartBasis to allow for the possibility that a
2309      client might want to apply a solver that doesn't use a basis-based warm
2310      start. See getEmptyBasis for an example of how this field can be used.
2311    */
2312    mutable CoinWarmStart *emptyWarmStart_ ;
2313
2314    /// Best objective
2315    double bestObjective_;
2316    /// Best possible objective
2317    double bestPossibleObjective_;
2318    /// Sum of Changes to objective by first solve
2319    double sumChangeObjective1_;
2320    /// Sum of Changes to objective by subsequent solves
2321    double sumChangeObjective2_;
2322
2323    /// Array holding the incumbent (best) solution.
2324    double * bestSolution_;
2325    /// Arrays holding other solutions.
2326    double ** savedSolutions_;
2327
2328    /** Array holding the current solution.
2329
2330      This array is used more as a temporary.
2331    */
2332    double * currentSolution_;
2333    /** For testing infeasibilities - will point to
2334        currentSolution_ or solver-->getColSolution()
2335    */
2336    mutable const double * testSolution_;
2337    /** Warm start object produced by heuristic or strong branching
2338
2339        If get a valid integer solution outside branch and bound then it can take
2340        a reasonable time to solve LP which produces clean solution.  If this object has
2341        any size then it will be used in solve.
2342    */
2343    CoinWarmStartBasis bestSolutionBasis_ ;
2344    /// Global cuts
2345    OsiCuts globalCuts_;
2346
2347    /// Minimum degradation in objective value to continue cut generation
2348    double minimumDrop_;
2349    /// Number of solutions
2350    int numberSolutions_;
2351    /// Number of saved solutions
2352    int numberSavedSolutions_;
2353    /// Maximum number of saved solutions
2354    int maximumSavedSolutions_;
2355    /** State of search
2356        0 - no solution
2357        1 - only heuristic solutions
2358        2 - branched to a solution
2359        3 - no solution but many nodes
2360    */
2361    int stateOfSearch_;
2362    /// At which depths to do cuts
2363    int whenCuts_;
2364    /// Hotstart solution
2365    double * hotstartSolution_;
2366    /// Hotstart priorities
2367    int * hotstartPriorities_;
2368    /// Number of heuristic solutions
2369    int numberHeuristicSolutions_;
2370    /// Cumulative number of nodes
2371    int numberNodes_;
2372    /** Cumulative number of nodes for statistics.
2373        Must fix to match up
2374    */
2375    int numberNodes2_;
2376    /// Cumulative number of iterations
2377    int numberIterations_;
2378    /// Cumulative number of solves
2379    int numberSolves_;
2380    /// Status of problem - 0 finished, 1 stopped, 2 difficulties
2381    int status_;
2382    /** Secondary status of problem
2383        -1 unset (status_ will also be -1)
2384        0 search completed with solution
2385        1 linear relaxation not feasible (or worse than cutoff)
2386        2 stopped on gap
2387        3 stopped on nodes
2388        4 stopped on time
2389        5 stopped on user event
2390        6 stopped on solutions
2391     */
2392    int secondaryStatus_;
2393    /// Number of integers in problem
2394    int numberIntegers_;
2395    /// Number of rows at continuous
2396    int numberRowsAtContinuous_;
2397    /// Maximum number of cuts
2398    int maximumNumberCuts_;
2399    /** Current phase (so heuristics etc etc can find out).
2400        0 - initial solve
2401        1 - solve with cuts at root
2402        2 - solve with cuts
2403        3 - other e.g. strong branching
2404        4 - trying to validate a solution
2405        5 - at end of search
2406    */
2407    int phase_;
2408
2409    /// Number of entries in #addedCuts_
2410    int currentNumberCuts_;
2411
2412    /** Current limit on search tree depth
2413
2414      The allocated size of #walkback_. Increased as needed.
2415    */
2416    int maximumDepth_;
2417    /** Array used to assemble the path between a node and the search tree root
2418
2419      The array is resized when necessary. #maximumDepth_  is the current
2420      allocated size.
2421    */
2422    CbcNodeInfo ** walkback_;
2423    CbcNodeInfo ** lastNodeInfo_;
2424    const OsiRowCut ** lastCut_;
2425    int lastDepth_;
2426    int lastNumberCuts2_;
2427    int maximumCuts_;
2428    int * lastNumberCuts_;
2429
2430    /** The list of cuts initially collected for this subproblem
2431
2432      When the subproblem at this node is rebuilt, a set of cuts is collected
2433      for inclusion in the constraint system. If any of these cuts are
2434      subsequently removed because they have become loose, the corresponding
2435      entry is set to NULL.
2436    */
2437    CbcCountRowCut ** addedCuts_;
2438
2439    /** A pointer to a row cut which will be added instead of normal branching.
2440        After use it should be set to NULL.
2441    */
2442    OsiRowCut * nextRowCut_;
2443
2444    /// Current node so can be used elsewhere
2445    CbcNode * currentNode_;
2446
2447    /// Indices of integer variables
2448    int * integerVariable_;
2449    /// Whether of not integer
2450    char * integerInfo_;
2451    /// Holds solution at continuous (after cuts)
2452    double * continuousSolution_;
2453    /// Array marked whenever a solution is found if non-zero
2454    int * usedInSolution_;
2455    /**
2456        Special options
2457        0 bit (1) - check if cuts valid (if on debugger list)
2458        1 bit (2) - use current basis to check integer solution (rather than all slack)
2459        2 bit (4) - don't check integer solution (by solving LP)
2460        3 bit (8) - fast analyze
2461        4 bit (16) - non-linear model - so no well defined CoinPackedMatrix
2462        5 bit (32) - keep names
2463        6 bit (64) - try for dominated columns
2464        7 bit (128) - SOS type 1 but all declared integer
2465        8 bit (256) - Set to say solution just found, unset by doing cuts
2466        9 bit (512) - Try reduced model after 100 nodes
2467        10 bit (1024) - Switch on some heuristics even if seems unlikely
2468        11 bit (2048) - Mark as in small branch and bound
2469        12 bit (4096) - Funny cuts so do slow way (in some places)
2470        13 bit (8192) - Funny cuts so do slow way (in other places)
2471        14 bit (16384) - Use Cplex! for fathoming
2472        15 bit (32768) - Try reduced model after 0 nodes
2473        16 bit (65536) - Original model had integer bounds
2474        17 bit (131072) - Perturbation switched off
2475        18 bit (262144) - donor CbcModel
2476        19 bit (524288) - recipient CbcModel
2477    */
2478    int specialOptions_;
2479    /** More special options
2480        at present bottom 6 bits used for shadow price mode
2481        1024 for experimental hotstart
2482        2048,4096 breaking out of cuts
2483        8192 slowly increase minimum drop
2484        16384 gomory
2485        32768 more heuristics in sub trees
2486        65536 no cuts in preprocessing
2487        131072 Time limits elapsed
2488        18 bit (262144) - Perturb fathom nodes
2489        19 bit (524288) - No limit on fathom nodes
2490        20 bit (1048576) - Reduce sum of infeasibilities before cuts
2491        21 bit (2097152) - Reduce sum of infeasibilities after cuts
2492    */
2493    int moreSpecialOptions_;
2494    /// User node comparison function
2495    CbcCompareBase * nodeCompare_;
2496    /// User feasibility function (see CbcFeasibleBase.hpp)
2497    CbcFeasibilityBase * problemFeasibility_;
2498    /// Tree
2499    CbcTree * tree_;
2500    /// A pointer to model to be used for subtrees
2501    CbcModel * subTreeModel_;
2502    /// Number of times any subtree stopped on nodes, time etc
2503    int numberStoppedSubTrees_;
2504    /// Variable selection function
2505    CbcBranchDecision * branchingMethod_;
2506    /// Cut modifier function
2507    CbcCutModifier * cutModifier_;
2508    /// Strategy
2509    CbcStrategy * strategy_;
2510    /// Parent model
2511    CbcModel * parentModel_;
2512    /** Whether to automatically do presolve before branch and bound.
2513        0 - no
2514        1 - ordinary presolve
2515        2 - integer presolve (dodgy)
2516    */
2517    /// Pointer to array[getNumCols()] (for speed) of column lower bounds
2518    const double * cbcColLower_;
2519    /// Pointer to array[getNumCols()] (for speed) of column upper bounds
2520    const double * cbcColUpper_;
2521    /// Pointer to array[getNumRows()] (for speed) of row lower bounds
2522    const double * cbcRowLower_;
2523    /// Pointer to array[getNumRows()] (for speed) of row upper bounds
2524    const double * cbcRowUpper_;
2525    /// Pointer to array[getNumCols()] (for speed) of primal solution vector
2526    const double * cbcColSolution_;
2527    /// Pointer to array[getNumRows()] (for speed) of dual prices
2528    const double * cbcRowPrice_;
2529    /// Get a pointer to array[getNumCols()] (for speed) of reduced costs
2530    const double * cbcReducedCost_;
2531    /// Pointer to array[getNumRows()] (for speed) of row activity levels.
2532    const double * cbcRowActivity_;
2533    /// Pointer to user-defined data structure
2534    void * appData_;
2535    /// Presolve for CbcTreeLocal
2536    int presolve_;
2537    /** Maximum number of candidates to consider for strong branching.
2538      To disable strong branching, set this to 0.
2539    */
2540    int numberStrong_;
2541    /** \brief The number of branches before pseudo costs believed
2542           in dynamic strong branching.
2543
2544      A value of 0 is  off.
2545    */
2546    int numberBeforeTrust_;
2547    /** \brief The number of variables for which to compute penalties
2548           in dynamic strong branching.
2549    */
2550    int numberPenalties_;
2551    /// For threads - stop after this many "iterations"
2552    int stopNumberIterations_;
2553    /** Scale factor to make penalties match strong.
2554        Should/will be computed */
2555    double penaltyScaleFactor_;
2556    /// Number of analyze iterations to do
2557    int numberAnalyzeIterations_;
2558    /// Arrays with analysis results
2559    double * analyzeResults_;
2560    /// Number of nodes infeasible by normal branching (before cuts)
2561    int numberInfeasibleNodes_;
2562    /** Problem type as set by user or found by analysis.  This will be extended
2563        0 - not known
2564        1 - Set partitioning <=
2565        2 - Set partitioning ==
2566        3 - Set covering
2567    */
2568    int problemType_;
2569    /// Print frequency
2570    int printFrequency_;
2571    /// Number of cut generators
2572    int numberCutGenerators_;
2573    // Cut generators
2574    CbcCutGenerator ** generator_;
2575    // Cut generators before any changes
2576    CbcCutGenerator ** virginGenerator_;
2577    /// Number of heuristics
2578    int numberHeuristics_;
2579    /// Heuristic solvers
2580    CbcHeuristic ** heuristic_;
2581    /// Pointer to heuristic solver which found last solution (or NULL)
2582    CbcHeuristic * lastHeuristic_;
2583    /// Depth for fast nodes
2584    int fastNodeDepth_;
2585    /*! Pointer to the event handler */
2586# ifdef CBC_ONLY_CLP
2587    ClpEventHandler *eventHandler_ ;
2588# else
2589    CbcEventHandler *eventHandler_ ;
2590# endif
2591
2592    /// Total number of objects
2593    int numberObjects_;
2594
2595    /** \brief Integer and Clique and ... information
2596
2597      \note The code assumes that the first objects on the list will be
2598        SimpleInteger objects for each integer variable, followed by
2599        Clique objects. Portions of the code that understand Clique objects
2600        will fail if they do not immediately follow the SimpleIntegers.
2601        Large chunks of the code will fail if the first objects are not
2602        SimpleInteger. As of 2003.08, SimpleIntegers and Cliques are the only
2603        objects.
2604    */
2605    OsiObject ** object_;
2606    /// Now we may not own objects - just point to solver's objects
2607    bool ownObjects_;
2608
2609    /// Original columns as created by integerPresolve or preprocessing
2610    int * originalColumns_;
2611    /// How often to scan global cuts
2612    int howOftenGlobalScan_;
2613    /** Number of times global cuts violated.  When global cut pool then this
2614        should be kept for each cut and type of cut */
2615    int numberGlobalViolations_;
2616    /// Number of extra iterations in fast lp
2617    int numberExtraIterations_;
2618    /// Number of extra nodes in fast lp
2619    int numberExtraNodes_;
2620    /** Value of objective at continuous
2621        (Well actually after initial round of cuts)
2622    */
2623    double continuousObjective_;
2624    /** Value of objective before root node cuts added
2625    */
2626    double originalContinuousObjective_;
2627    /// Number of infeasibilities at continuous
2628    int continuousInfeasibilities_;
2629    /// Maximum number of cut passes at root
2630    int maximumCutPassesAtRoot_;
2631    /// Maximum number of cut passes
2632    int maximumCutPasses_;
2633    /// Preferred way of branching
2634    int preferredWay_;
2635    /// Current cut pass number
2636    int currentPassNumber_;
2637    /// Maximum number of cuts (for whichGenerator_)
2638    int maximumWhich_;
2639    /// Maximum number of rows
2640    int maximumRows_;
2641    /// Current depth
2642    int currentDepth_;
2643    /// Thread specific random number generator
2644    mutable CoinThreadRandom randomNumberGenerator_;
2645    /// Work basis for temporary use
2646    CoinWarmStartBasis workingBasis_;
2647    /// Which cut generator generated this cut
2648    int * whichGenerator_;
2649    /// Maximum number of statistics
2650    int maximumStatistics_;
2651    /// statistics
2652    CbcStatistics ** statistics_;
2653    /// Maximum depth reached
2654    int maximumDepthActual_;
2655    /// Number of reduced cost fixings
2656    double numberDJFixed_;
2657    /// Probing info
2658    CglTreeProbingInfo * probingInfo_;
2659    /// Number of fixed by analyze at root
2660    int numberFixedAtRoot_;
2661    /// Number fixed by analyze so far
2662    int numberFixedNow_;
2663    /// Whether stopping on gap
2664    bool stoppedOnGap_;
2665    /// Whether event happened
2666    mutable bool eventHappened_;
2667    /// Number of long strong goes
2668    int numberLongStrong_;
2669    /// Number of old active cuts
2670    int numberOldActiveCuts_;
2671    /// Number of new cuts
2672    int numberNewCuts_;
2673    /// Strategy worked out - mainly at root node
2674    int searchStrategy_;
2675    /// Number of iterations in strong branching
2676    int numberStrongIterations_;
2677    /** 0 - number times strong branching done, 1 - number fixed, 2 - number infeasible
2678        Second group of three is a snapshot at node [6] */
2679    int strongInfo_[7];
2680    /**
2681        For advanced applications you may wish to modify the behavior of Cbc
2682        e.g. if the solver is a NLP solver then you may not have an exact
2683        optimum solution at each step.  This gives characteristics - just for one BAB.
2684        For actually saving/restoring a solution you need the actual solver one.
2685    */
2686    OsiBabSolver * solverCharacteristics_;
2687    /// Whether to force a resolve after takeOffCuts
2688    bool resolveAfterTakeOffCuts_;
2689    /// Maximum number of iterations (designed to be used in heuristics)
2690    int maximumNumberIterations_;
2691    /// Anything with priority >= this can be treated as continuous
2692    int continuousPriority_;
2693    /// Number of outstanding update information items
2694    int numberUpdateItems_;
2695    /// Maximum number of outstanding update information items
2696    int maximumNumberUpdateItems_;
2697    /// Update items
2698    CbcObjectUpdateData * updateItems_;
2699    /// Stored row cuts for donor/recipient CbcModel
2700    CglStored * storedRowCuts_;
2701    /**
2702       Parallel
2703       0 - off
2704       1 - testing
2705       2-99 threads
2706       other special meanings
2707    */
2708    int numberThreads_;
2709    /** thread mode
2710        always use numberThreads for branching
2711        1 set then deterministic
2712        2 set then use numberThreads for root cuts
2713        4 set then use numberThreads in root mini branch and bound
2714        default is 0
2715    */
2716    int threadMode_;
2717    /// Thread stuff for master
2718    CbcBaseModel * master_;
2719    /// Pointer to masterthread
2720    CbcThread * masterThread_;
2721//@}
2722};
2723/// So we can use osiObject or CbcObject during transition
2724void getIntegerInformation(const OsiObject * object, double & originalLower,
2725                           double & originalUpper) ;
2726// So we can call from other programs
2727// Real main program
2728class OsiClpSolverInterface;
2729int CbcMain (int argc, const char *argv[], OsiClpSolverInterface & solver, CbcModel ** babSolver);
2730int CbcMain (int argc, const char *argv[], CbcModel & babSolver);
2731// four ways of calling
2732int callCbc(const char * input2, OsiClpSolverInterface& solver1);
2733int callCbc(const char * input2);
2734int callCbc(const std::string input2, OsiClpSolverInterface& solver1);
2735int callCbc(const std::string input2) ;
2736// When we want to load up CbcModel with options first
2737void CbcMain0 (CbcModel & babSolver);
2738int CbcMain1 (int argc, const char *argv[], CbcModel & babSolver);
2739// two ways of calling
2740int callCbc(const char * input2, CbcModel & babSolver);
2741int callCbc(const std::string input2, CbcModel & babSolver);
2742// And when CbcMain0 already called to initialize
2743int callCbc1(const char * input2, CbcModel & babSolver);
2744int callCbc1(const std::string input2, CbcModel & babSolver);
2745// And when CbcMain0 already called to initialize (with call back) (see CbcMain1 for whereFrom)
2746int callCbc1(const char * input2, CbcModel & babSolver, int (CbcModel * currentSolver, int whereFrom));
2747int callCbc1(const std::string input2, CbcModel & babSolver, int (CbcModel * currentSolver, int whereFrom));
2748int CbcMain1 (int argc, const char *argv[], CbcModel & babSolver, int (CbcModel * currentSolver, int whereFrom));
2749// For uniform setting of cut and heuristic options
2750void setCutAndHeuristicOptions(CbcModel & model);
2751#endif
2752
Note: See TracBrowser for help on using the repository browser.