source: stable/2.7/Cbc/src/CbcModel.hpp @ 1779

Last change on this file since 1779 was 1779, checked in by stefan, 7 years ago

merge r1773 and r1775 from trunk

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 97.5 KB
Line 
1/* $Id: CbcModel.hpp 1779 2012-05-19 12:30:04Z stefan $ */
2// Copyright (C) 2002, International Business Machines
3// Corporation and others.  All Rights Reserved.
4// This code is licensed under the terms of the Eclipse Public License (EPL).
5
6#ifndef CbcModel_H
7#define CbcModel_H
8#include <string>
9#include <vector>
10#include "CoinMessageHandler.hpp"
11#include "OsiSolverInterface.hpp"
12#include "OsiBranchingObject.hpp"
13#include "OsiCuts.hpp"
14#include "CoinWarmStartBasis.hpp"
15#include "CbcCompareBase.hpp"
16#include "CbcMessage.hpp"
17#include "CbcEventHandler.hpp"
18#include "ClpDualRowPivot.hpp"
19
20
21class CbcCutGenerator;
22class CbcBaseModel;
23class OsiRowCut;
24class OsiBabSolver;
25class OsiRowCutDebugger;
26class CglCutGenerator;
27class CglStored;
28class CbcCutModifier;
29class CglTreeProbingInfo;
30class CbcHeuristic;
31class OsiObject;
32class CbcThread;
33class CbcTree;
34class CbcStrategy;
35class CbcFeasibilityBase;
36class CbcStatistics;
37class CbcEventHandler ;
38class CglPreProcess;
39# ifdef COIN_HAS_CLP
40class OsiClpSolverInterface;
41class ClpNodeStuff;
42#endif
43// #define CBC_CHECK_BASIS 1
44
45//#############################################################################
46
47/** Simple Branch and bound class
48
49  The initialSolve() method solves the initial LP relaxation of the MIP
50  problem. The branchAndBound() method can then be called to finish using
51  a branch and cut algorithm.
52
53  <h3>Search Tree Traversal</h3>
54
55  Subproblems (aka nodes) requiring additional evaluation are stored using
56  the CbcNode and CbcNodeInfo objects. Ancestry linkage is maintained in the
57  CbcNodeInfo object. Evaluation of a subproblem within branchAndBound()
58  proceeds as follows:
59  <ul>
60    <li> The node representing the most promising parent subproblem is popped
61         from the heap which holds the set of subproblems requiring further
62         evaluation.
63    <li> Using branching instructions stored in the node, and information in
64         its ancestors, the model and solver are adjusted to create the
65         active subproblem.
66    <li> If the parent subproblem will require further evaluation
67         (<i>i.e.</i>, there are branches remaining) its node is pushed back
68         on the heap. Otherwise, the node is deleted.  This may trigger
69         recursive deletion of ancestors.
70    <li> The newly created subproblem is evaluated.
71    <li> If the subproblem requires further evaluation, a node is created.
72         All information needed to recreate the subproblem (branching
73         information, row and column cuts) is placed in the node and the node
74         is added to the set of subproblems awaiting further evaluation.
75  </ul>
76  Note that there is never a node representing the active subproblem; the model
77  and solver represent the active subproblem.
78
79  <h3>Row (Constraint) Cut Handling</h3>
80
81  For a typical subproblem, the sequence of events is as follows:
82  <ul>
83    <li> The subproblem is rebuilt for further evaluation: One result of a
84         call to addCuts() is a traversal of ancestors, leaving a list of all
85         cuts used in the ancestors in #addedCuts_. This list is then scanned
86         to construct a basis that includes only tight cuts. Entries for
87         loose cuts are set to NULL.
88    <li> The subproblem is evaluated: One result of a call to solveWithCuts()
89         is the return of a set of newly generated cuts for the subproblem.
90         #addedCuts_ is also kept up-to-date as old cuts become loose.
91    <li> The subproblem is stored for further processing: A call to
92         CbcNodeInfo::addCuts() adds the newly generated cuts to the
93         CbcNodeInfo object associated with this node.
94  </ul>
95  See CbcCountRowCut for details of the bookkeeping associated with cut
96  management.
97*/
98
99class CbcModel  {
100
101public:
102
103    enum CbcIntParam {
104        /** The maximum number of nodes before terminating */
105        CbcMaxNumNode = 0,
106        /** The maximum number of solutions before terminating */
107        CbcMaxNumSol,
108        /** Fathoming discipline
109
110          Controls objective function comparisons for purposes of fathoming by bound
111          or determining monotonic variables.
112
113          If 1, action is taken only when the current objective is strictly worse
114          than the target. Implementation is handled by adding a small tolerance to
115          the target.
116        */
117        CbcFathomDiscipline,
118        /** Adjusts printout
119            1 does different node message with number unsatisfied on last branch
120        */
121        CbcPrinting,
122        /** Number of branches (may be more than number of nodes as may
123            include strong branching) */
124        CbcNumberBranches,
125        /** Just a marker, so that a static sized array can store parameters. */
126        CbcLastIntParam
127    };
128
129    enum CbcDblParam {
130        /** The maximum amount the value of an integer variable can vary from
131            integer and still be considered feasible. */
132        CbcIntegerTolerance = 0,
133        /** The objective is assumed to worsen by this amount for each
134            integer infeasibility. */
135        CbcInfeasibilityWeight,
136        /** The amount by which to tighten the objective function cutoff when
137            a new solution is discovered. */
138        CbcCutoffIncrement,
139        /** Stop when the gap between the objective value of the best known solution
140          and the best bound on the objective of any solution is less than this.
141
142          This is an absolute value. Conversion from a percentage is left to the
143          client.
144        */
145        CbcAllowableGap,
146        /** Stop when the gap between the objective value of the best known solution
147          and the best bound on the objective of any solution is less than this
148          fraction of of the absolute value of best known solution.
149
150          Code stops if either this test or CbcAllowableGap test succeeds
151        */
152        CbcAllowableFractionGap,
153        /** \brief The maximum number of seconds before terminating.
154               A double should be adequate! */
155        CbcMaximumSeconds,
156        /// Cutoff - stored for speed
157        CbcCurrentCutoff,
158        /// Optimization direction - stored for speed
159        CbcOptimizationDirection,
160        /// Current objective value
161        CbcCurrentObjectiveValue,
162        /// Current minimization objective value
163        CbcCurrentMinimizationObjectiveValue,
164        /** \brief The time at start of model.
165               So that other pieces of code can access */
166        CbcStartSeconds,
167        /** Stop doing heuristics when the gap between the objective value of the
168            best known solution and the best bound on the objective of any solution
169            is less than this.
170
171          This is an absolute value. Conversion from a percentage is left to the
172          client.
173        */
174        CbcHeuristicGap,
175        /** Stop doing heuristics when the gap between the objective value of the
176            best known solution and the best bound on the objective of any solution
177            is less than this fraction of of the absolute value of best known
178            solution.
179
180          Code stops if either this test or CbcAllowableGap test succeeds
181        */
182        CbcHeuristicFractionGap,
183        /// Smallest non-zero change on a branch
184        CbcSmallestChange,
185        /// Sum of non-zero changes on a branch
186        CbcSumChange,
187        /// Largest non-zero change on a branch
188        CbcLargestChange,
189        /// Small non-zero change on a branch to be used as guess
190        CbcSmallChange,
191        /** Just a marker, so that a static sized array can store parameters. */
192        CbcLastDblParam
193    };
194
195    //---------------------------------------------------------------------------
196
197public:
198    ///@name Solve methods
199    //@{
200    /** \brief Solve the initial LP relaxation
201
202      Invoke the solver's %initialSolve() method.
203    */
204    void initialSolve();
205
206    /** \brief Invoke the branch \& cut algorithm
207
208      The method assumes that initialSolve() has been called to solve the
209      LP relaxation. It processes the root node, then proceeds to explore the
210      branch & cut search tree. The search ends when the tree is exhausted or
211      one of several execution limits is reached.
212      If doStatistics is 1 summary statistics are printed
213      if 2 then also the path to best solution (if found by branching)
214      if 3 then also one line per node
215    */
216    void branchAndBound(int doStatistics = 0);
217private:
218
219    /** \brief Evaluate a subproblem using cutting planes and heuristics
220
221      The method invokes a main loop which generates cuts, applies heuristics,
222      and reoptimises using the solver's native %resolve() method.
223      It returns true if the subproblem remains feasible at the end of the
224      evaluation.
225    */
226    bool solveWithCuts(OsiCuts & cuts, int numberTries, CbcNode * node);
227    /** Generate one round of cuts - serial mode
228      returns -
229      0 - normal
230      1 - must keep going
231      2 - set numberTries to zero
232      -1 - infeasible
233    */
234    int serialCuts(OsiCuts & cuts, CbcNode * node, OsiCuts & slackCuts, int lastNumberCuts);
235    /** Generate one round of cuts - parallel mode
236        returns -
237        0 - normal
238        1 - must keep going
239        2 - set numberTries to zero
240        -1 - infeasible
241    */
242    int parallelCuts(CbcBaseModel * master, OsiCuts & cuts, CbcNode * node, OsiCuts & slackCuts, int lastNumberCuts);
243    /** Input one node output N nodes to put on tree and optional solution update
244        This should be able to operate in parallel so is given a solver and is const(ish)
245        However we will need to keep an array of solver_ and bases and more
246        status is 0 for normal, 1 if solution
247        Calling code should always push nodes back on tree
248    */
249    CbcNode ** solveOneNode(int whichSolver, CbcNode * node,
250                            int & numberNodesOutput, int & status) ;
251    /// Update size of whichGenerator
252    void resizeWhichGenerator(int numberNow, int numberAfter);
253public:
254#ifdef CBC_KEEP_DEPRECATED
255    // See if anyone is using these any more!!
256    /** \brief create a clean model from partially fixed problem
257
258      The method creates a new model with given bounds and with no tree.
259    */
260    CbcModel *  cleanModel(const double * lower, const double * upper);
261    /** \brief Invoke the branch \& cut algorithm on partially fixed problem
262
263      The method presolves the given model and does branch and cut. The search
264      ends when the tree is exhausted or maximum nodes is reached.
265
266      If better solution found then it is saved.
267
268      Returns 0 if search completed and solution, 1 if not completed and solution,
269      2 if completed and no solution, 3 if not completed and no solution.
270
271      Normally okay to do cleanModel immediately followed by subBranchandBound
272      (== other form of subBranchAndBound)
273      but may need to get at model for advanced features.
274
275      Deletes model2
276    */
277    int subBranchAndBound(CbcModel * model2,
278                          CbcModel * presolvedModel,
279                          int maximumNodes);
280    /** \brief Invoke the branch \& cut algorithm on partially fixed problem
281
282      The method creates a new model with given bounds, presolves it
283      then proceeds to explore the branch & cut search tree. The search
284      ends when the tree is exhausted or maximum nodes is reached.
285
286      If better solution found then it is saved.
287
288      Returns 0 if search completed and solution, 1 if not completed and solution,
289      2 if completed and no solution, 3 if not completed and no solution.
290
291      This is just subModel immediately followed by other version of
292      subBranchandBound.
293
294    */
295    int subBranchAndBound(const double * lower, const double * upper,
296                          int maximumNodes);
297
298    /** \brief Process root node and return a strengthened model
299
300      The method assumes that initialSolve() has been called to solve the
301      LP relaxation. It processes the root node and then returns a pointer
302      to the strengthened model (or NULL if infeasible)
303    */
304    OsiSolverInterface *  strengthenedModel();
305    /** preProcess problem - replacing solver
306        If makeEquality true then <= cliques converted to ==.
307        Presolve will be done numberPasses times.
308
309        Returns NULL if infeasible
310
311        If makeEquality is 1 add slacks to get cliques,
312        if 2 add slacks to get sos (but only if looks plausible) and keep sos info
313    */
314    CglPreProcess * preProcess( int makeEquality = 0, int numberPasses = 5,
315                                int tuning = 5);
316    /** Does postprocessing - original solver back.
317        User has to delete process */
318    void postProcess(CglPreProcess * process);
319#endif
320    /// Adds an update information object
321    void addUpdateInformation(const CbcObjectUpdateData & data);
322    /** Do one node - broken out for clarity?
323        also for parallel (when baseModel!=this)
324        Returns 1 if solution found
325        node NULL on return if no branches left
326        newNode NULL if no new node created
327    */
328    int doOneNode(CbcModel * baseModel, CbcNode * & node, CbcNode * & newNode);
329
330public:
331    /** \brief Reoptimise an LP relaxation
332
333      Invoke the solver's %resolve() method.
334      whereFrom -
335      0 - initial continuous
336      1 - resolve on branch (before new cuts)
337      2 - after new cuts
338      3  - obsolete code or something modified problem in unexpected way
339      10 - after strong branching has fixed variables at root
340      11 - after strong branching has fixed variables in tree
341
342      returns 1 feasible, 0 infeasible, -1 feasible but skip cuts
343    */
344    int resolve(CbcNodeInfo * parent, int whereFrom,
345                double * saveSolution = NULL,
346                double * saveLower = NULL,
347                double * saveUpper = NULL);
348    /// Make given rows (L or G) into global cuts and remove from lp
349    void makeGlobalCuts(int numberRows, const int * which);
350    /// Make given cut into a global cut
351    void makeGlobalCut(const OsiRowCut * cut);
352    /// Make given cut into a global cut
353    void makeGlobalCut(const OsiRowCut & cut);
354    /// Make given column cut into a global cut
355    void makeGlobalCut(const OsiColCut * cut);
356    /// Make given column cut into a global cut
357    void makeGlobalCut(const OsiColCut & cut);
358    //@}
359
360    /** \name Presolve methods */
361    //@{
362
363    /** Identify cliques and construct corresponding objects.
364
365        Find cliques with size in the range
366        [\p atLeastThisMany, \p lessThanThis] and construct corresponding
367        CbcClique objects.
368        If \p makeEquality is true then a new model may be returned if
369        modifications had to be made, otherwise \c this is returned.
370        If the problem is infeasible #numberObjects_ is set to -1.
371        A client must use deleteObjects() before a second call to findCliques().
372        If priorities exist, clique priority is set to the default.
373    */
374    CbcModel * findCliques(bool makeEquality, int atLeastThisMany,
375                           int lessThanThis, int defaultValue = 1000);
376
377    /** Do integer presolve, creating a new (presolved) model.
378
379      Returns the new model, or NULL if feasibility is lost.
380      If weak is true then just does a normal presolve
381
382      \todo It remains to work out the cleanest way of getting a solution to
383            the original problem at the end. So this is very preliminary.
384     */
385    CbcModel * integerPresolve(bool weak = false);
386
387    /** Do integer presolve, modifying the current model.
388
389        Returns true if the model remains feasible after presolve.
390    */
391    bool integerPresolveThisModel(OsiSolverInterface * originalSolver, bool weak = false);
392
393
394    /// Put back information into the original model after integer presolve.
395    void originalModel(CbcModel * presolvedModel, bool weak);
396
397    /** \brief For variables involved in VUB constraints, see if we can tighten
398           bounds by solving lp's
399
400        Returns false if feasibility is lost.
401        If CglProbing is available, it will be tried as well to see if it can
402        tighten bounds.
403        This routine is just a front end for tightenVubs(int,const int*,double).
404
405        If <tt>type = -1</tt> all variables are processed (could be very slow).
406        If <tt>type = 0</tt> only variables involved in VUBs are processed.
407        If <tt>type = n > 0</tt>, only the n most expensive VUB variables
408        are processed, where it is assumed that x is at its maximum so delta
409        would have to go to 1 (if x not at bound).
410
411        If \p allowMultipleBinary is true, then a VUB constraint is a row with
412        one continuous variable and any number of binary variables.
413
414        If <tt>useCutoff < 1.0e30</tt>, the original objective is installed as a
415        constraint with \p useCutoff as a bound.
416    */
417    bool tightenVubs(int type, bool allowMultipleBinary = false,
418                     double useCutoff = 1.0e50);
419
420    /** \brief For variables involved in VUB constraints, see if we can tighten
421           bounds by solving lp's
422
423      This version is just handed a list of variables to be processed.
424    */
425    bool tightenVubs(int numberVubs, const int * which,
426                     double useCutoff = 1.0e50);
427    /**
428      Analyze problem to find a minimum change in the objective function.
429    */
430    void analyzeObjective();
431
432    /**
433      Add additional integers.
434    */
435    void AddIntegers();
436
437    /**
438      Save copy of the model.
439    */
440    void saveModel(OsiSolverInterface * saveSolver, double * checkCutoffForRestart, bool * feasible);
441
442    //@}
443
444    /** \name Object manipulation routines
445
446      See OsiObject for an explanation of `object' in the context of CbcModel.
447    */
448    //@{
449
450    /// Get the number of objects
451    inline int numberObjects() const {
452        return numberObjects_;
453    }
454    /// Set the number of objects
455    inline void setNumberObjects(int number) {
456        numberObjects_ = number;
457    }
458
459    /// Get the array of objects
460    inline OsiObject ** objects() const {
461        return object_;
462    }
463
464    /// Get the specified object
465    const inline OsiObject * object(int which) const {
466        return object_[which];
467    }
468    /// Get the specified object
469    inline OsiObject * modifiableObject(int which) const {
470        return object_[which];
471    }
472
473    void setOptionalInteger(int index);
474
475    /// Delete all object information (and just back to integers if true)
476    void deleteObjects(bool findIntegers = true);
477
478    /** Add in object information.
479
480      Objects are cloned; the owner can delete the originals.
481    */
482    void addObjects(int numberObjects, OsiObject ** objects);
483
484    /** Add in object information.
485
486      Objects are cloned; the owner can delete the originals.
487    */
488    void addObjects(int numberObjects, CbcObject ** objects);
489
490    /// Ensure attached objects point to this model.
491    void synchronizeModel() ;
492
493    /** \brief Identify integer variables and create corresponding objects.
494
495      Record integer variables and create an CbcSimpleInteger object for each
496      one.
497      If \p startAgain is true, a new scan is forced, overwriting any existing
498      integer variable information.
499      If type > 0 then 1==PseudoCost, 2 new ones low priority
500    */
501
502    void findIntegers(bool startAgain, int type = 0);
503
504    //@}
505
506    //---------------------------------------------------------------------------
507
508    /**@name Parameter set/get methods
509
510       The set methods return true if the parameter was set to the given value,
511       false if the value of the parameter is out of range.
512
513       The get methods return the value of the parameter.
514
515    */
516    //@{
517    /// Set an integer parameter
518    inline bool setIntParam(CbcIntParam key, int value) {
519        intParam_[key] = value;
520        return true;
521    }
522    /// Set a double parameter
523    inline bool setDblParam(CbcDblParam key, double value) {
524        dblParam_[key] = value;
525        return true;
526    }
527    /// Get an integer parameter
528    inline int getIntParam(CbcIntParam key) const {
529        return intParam_[key];
530    }
531    /// Get a double parameter
532    inline double getDblParam(CbcDblParam key) const {
533        return dblParam_[key];
534    }
535    /*! \brief Set cutoff bound on the objective function.
536
537      When using strict comparison, the bound is adjusted by a tolerance to
538      avoid accidentally cutting off the optimal solution.
539    */
540    void setCutoff(double value) ;
541
542    /// Get the cutoff bound on the objective function - always as minimize
543    inline double getCutoff() const { //double value ;
544        //solver_->getDblParam(OsiDualObjectiveLimit,value) ;
545        //assert( dblParam_[CbcCurrentCutoff]== value * solver_->getObjSense());
546        return dblParam_[CbcCurrentCutoff];
547    }
548
549    /// Set the \link CbcModel::CbcMaxNumNode maximum node limit \endlink
550    inline bool setMaximumNodes( int value) {
551        return setIntParam(CbcMaxNumNode, value);
552    }
553
554    /// Get the \link CbcModel::CbcMaxNumNode maximum node limit \endlink
555    inline int getMaximumNodes() const {
556        return getIntParam(CbcMaxNumNode);
557    }
558
559    /** Set the
560        \link CbcModel::CbcMaxNumSol maximum number of solutions \endlink
561        desired.
562    */
563    inline bool setMaximumSolutions( int value) {
564        return setIntParam(CbcMaxNumSol, value);
565    }
566    /** Get the
567        \link CbcModel::CbcMaxNumSol maximum number of solutions \endlink
568        desired.
569    */
570    inline int getMaximumSolutions() const {
571        return getIntParam(CbcMaxNumSol);
572    }
573    /// Set the printing mode
574    inline bool setPrintingMode( int value) {
575        return setIntParam(CbcPrinting, value);
576    }
577
578    /// Get the printing mode
579    inline int getPrintingMode() const {
580        return getIntParam(CbcPrinting);
581    }
582
583    /** Set the
584        \link CbcModel::CbcMaximumSeconds maximum number of seconds \endlink
585        desired.
586    */
587    inline bool setMaximumSeconds( double value) {
588        return setDblParam(CbcMaximumSeconds, value);
589    }
590    /** Get the
591        \link CbcModel::CbcMaximumSeconds maximum number of seconds \endlink
592        desired.
593    */
594    inline double getMaximumSeconds() const {
595        return getDblParam(CbcMaximumSeconds);
596    }
597    /// Current time since start of branchAndbound
598    double getCurrentSeconds() const ;
599
600    /// Return true if maximum time reached
601    bool maximumSecondsReached() const ;
602
603    /** Set the
604      \link CbcModel::CbcIntegerTolerance integrality tolerance \endlink
605    */
606    inline bool setIntegerTolerance( double value) {
607        return setDblParam(CbcIntegerTolerance, value);
608    }
609    /** Get the
610      \link CbcModel::CbcIntegerTolerance integrality tolerance \endlink
611    */
612    inline double getIntegerTolerance() const {
613        return getDblParam(CbcIntegerTolerance);
614    }
615
616    /** Set the
617        \link CbcModel::CbcInfeasibilityWeight
618          weight per integer infeasibility \endlink
619    */
620    inline bool setInfeasibilityWeight( double value) {
621        return setDblParam(CbcInfeasibilityWeight, value);
622    }
623    /** Get the
624        \link CbcModel::CbcInfeasibilityWeight
625          weight per integer infeasibility \endlink
626    */
627    inline double getInfeasibilityWeight() const {
628        return getDblParam(CbcInfeasibilityWeight);
629    }
630
631    /** Set the \link CbcModel::CbcAllowableGap allowable gap \endlink
632        between the best known solution and the best possible solution.
633    */
634    inline bool setAllowableGap( double value) {
635        return setDblParam(CbcAllowableGap, value);
636    }
637    /** Get the \link CbcModel::CbcAllowableGap allowable gap \endlink
638        between the best known solution and the best possible solution.
639    */
640    inline double getAllowableGap() const {
641        return getDblParam(CbcAllowableGap);
642    }
643
644    /** Set the \link CbcModel::CbcAllowableFractionGap fraction allowable gap \endlink
645        between the best known solution and the best possible solution.
646    */
647    inline bool setAllowableFractionGap( double value) {
648        return setDblParam(CbcAllowableFractionGap, value);
649    }
650    /** Get the \link CbcModel::CbcAllowableFractionGap fraction allowable gap \endlink
651        between the best known solution and the best possible solution.
652    */
653    inline double getAllowableFractionGap() const {
654        return getDblParam(CbcAllowableFractionGap);
655    }
656    /** Set the \link CbcModel::CbcAllowableFractionGap percentage allowable gap \endlink
657        between the best known solution and the best possible solution.
658    */
659    inline bool setAllowablePercentageGap( double value) {
660        return setDblParam(CbcAllowableFractionGap, value*0.01);
661    }
662    /** Get the \link CbcModel::CbcAllowableFractionGap percentage allowable gap \endlink
663        between the best known solution and the best possible solution.
664    */
665    inline double getAllowablePercentageGap() const {
666        return 100.0*getDblParam(CbcAllowableFractionGap);
667    }
668    /** Set the \link CbcModel::CbcHeuristicGap heuristic gap \endlink
669        between the best known solution and the best possible solution.
670    */
671    inline bool setHeuristicGap( double value) {
672        return setDblParam(CbcHeuristicGap, value);
673    }
674    /** Get the \link CbcModel::CbcHeuristicGap heuristic gap \endlink
675        between the best known solution and the best possible solution.
676    */
677    inline double getHeuristicGap() const {
678        return getDblParam(CbcHeuristicGap);
679    }
680
681    /** Set the \link CbcModel::CbcHeuristicFractionGap fraction heuristic gap \endlink
682        between the best known solution and the best possible solution.
683    */
684    inline bool setHeuristicFractionGap( double value) {
685        return setDblParam(CbcHeuristicFractionGap, value);
686    }
687    /** Get the \link CbcModel::CbcHeuristicFractionGap fraction heuristic gap \endlink
688        between the best known solution and the best possible solution.
689    */
690    inline double getHeuristicFractionGap() const {
691        return getDblParam(CbcHeuristicFractionGap);
692    }
693    /** Set the
694        \link CbcModel::CbcCutoffIncrement  \endlink
695        desired.
696    */
697    inline bool setCutoffIncrement( double value) {
698        return setDblParam(CbcCutoffIncrement, value);
699    }
700    /** Get the
701        \link CbcModel::CbcCutoffIncrement  \endlink
702        desired.
703    */
704    inline double getCutoffIncrement() const {
705        return getDblParam(CbcCutoffIncrement);
706    }
707
708    /** Pass in target solution and optional priorities.
709        If priorities then >0 means only branch if incorrect
710        while <0 means branch even if correct. +1 or -1 are
711        highest priority */
712    void setHotstartSolution(const double * solution, const int * priorities = NULL) ;
713
714    /// Set the minimum drop to continue cuts
715    inline void setMinimumDrop(double value) {
716        minimumDrop_ = value;
717    }
718    /// Get the minimum drop to continue cuts
719    inline double getMinimumDrop() const {
720        return minimumDrop_;
721    }
722
723    /** Set the maximum number of cut passes at root node (default 20)
724        Minimum drop can also be used for fine tuning */
725    inline void setMaximumCutPassesAtRoot(int value) {
726        maximumCutPassesAtRoot_ = value;
727    }
728    /** Get the maximum number of cut passes at root node */
729    inline int getMaximumCutPassesAtRoot() const {
730        return maximumCutPassesAtRoot_;
731    }
732
733    /** Set the maximum number of cut passes at other nodes (default 10)
734        Minimum drop can also be used for fine tuning */
735    inline void setMaximumCutPasses(int value) {
736        maximumCutPasses_ = value;
737    }
738    /** Get the maximum number of cut passes at other nodes (default 10) */
739    inline int getMaximumCutPasses() const {
740        return maximumCutPasses_;
741    }
742    /** Get current cut pass number in this round of cuts.
743        (1 is first pass) */
744    inline int getCurrentPassNumber() const {
745        return currentPassNumber_;
746    }
747
748    /** Set the maximum number of candidates to be evaluated for strong
749      branching.
750
751      A value of 0 disables strong branching.
752    */
753    void setNumberStrong(int number);
754    /** Get the maximum number of candidates to be evaluated for strong
755      branching.
756    */
757    inline int numberStrong() const {
758        return numberStrong_;
759    }
760    /** Set global preferred way to branch
761        -1 down, +1 up, 0 no preference */
762    inline void setPreferredWay(int value) {
763        preferredWay_ = value;
764    }
765    /** Get the preferred way to branch (default 0) */
766    inline int getPreferredWay() const {
767        return preferredWay_;
768    }
769    /// Get at which depths to do cuts
770    inline int whenCuts() const {
771        return whenCuts_;
772    }
773    /// Set at which depths to do cuts
774    inline void setWhenCuts(int value) {
775        whenCuts_ = value;
776    }
777    /** Return true if we want to do cuts
778        If allowForTopOfTree zero then just does on multiples of depth
779        if 1 then allows for doing at top of tree
780        if 2 then says if cuts allowed anywhere apart from root
781    */
782    bool doCutsNow(int allowForTopOfTree) const;
783
784    /** Set the number of branches before pseudo costs believed
785        in dynamic strong branching.
786
787      A value of 0 disables dynamic strong branching.
788    */
789    void setNumberBeforeTrust(int number);
790    /** get the number of branches before pseudo costs believed
791        in dynamic strong branching. */
792    inline int numberBeforeTrust() const {
793        return numberBeforeTrust_;
794    }
795    /** Set the number of variables for which to compute penalties
796        in dynamic strong branching.
797
798      A value of 0 disables penalties.
799    */
800    void setNumberPenalties(int number);
801    /** get the number of variables for which to compute penalties
802        in dynamic strong branching. */
803    inline int numberPenalties() const {
804        return numberPenalties_;
805    }
806    /// Number of analyze iterations to do
807    inline void setNumberAnalyzeIterations(int number) {
808        numberAnalyzeIterations_ = number;
809    }
810    inline int numberAnalyzeIterations() const {
811        return numberAnalyzeIterations_;
812    }
813    /** Get scale factor to make penalties match strong.
814        Should/will be computed */
815    inline double penaltyScaleFactor() const {
816        return penaltyScaleFactor_;
817    }
818    /** Set scale factor to make penalties match strong.
819        Should/will be computed */
820    void setPenaltyScaleFactor(double value);
821    /** Problem type as set by user or found by analysis.  This will be extended
822        0 - not known
823        1 - Set partitioning <=
824        2 - Set partitioning ==
825        3 - Set covering
826        4 - all +- 1 or all +1 and odd
827    */
828    void inline setProblemType(int number) {
829        problemType_ = number;
830    }
831    inline int problemType() const {
832        return problemType_;
833    }
834    /// Current depth
835    inline int currentDepth() const {
836        return currentDepth_;
837    }
838
839    /// Set how often to scan global cuts
840    void setHowOftenGlobalScan(int number);
841    /// Get how often to scan global cuts
842    inline int howOftenGlobalScan() const {
843        return howOftenGlobalScan_;
844    }
845    /// Original columns as created by integerPresolve or preprocessing
846    inline int * originalColumns() const {
847        return originalColumns_;
848    }
849    /// Set original columns as created by preprocessing
850    void setOriginalColumns(const int * originalColumns) ;
851
852    /** Set the print frequency.
853
854      Controls the number of nodes evaluated between status prints.
855      If <tt>number <=0</tt> the print frequency is set to 100 nodes for large
856      problems, 1000 for small problems.
857      Print frequency has very slight overhead if small.
858    */
859    inline void setPrintFrequency(int number) {
860        printFrequency_ = number;
861    }
862    /// Get the print frequency
863    inline int printFrequency() const {
864        return printFrequency_;
865    }
866    //@}
867
868    //---------------------------------------------------------------------------
869    ///@name Methods returning info on how the solution process terminated
870    //@{
871    /// Are there a numerical difficulties?
872    bool isAbandoned() const;
873    /// Is optimality proven?
874    bool isProvenOptimal() const;
875    /// Is  infeasiblity proven (or none better than cutoff)?
876    bool isProvenInfeasible() const;
877    /// Was continuous solution unbounded
878    bool isContinuousUnbounded() const;
879    /// Was continuous solution unbounded
880    bool isProvenDualInfeasible() const;
881    /// Node limit reached?
882    bool isNodeLimitReached() const;
883    /// Time limit reached?
884    bool isSecondsLimitReached() const;
885    /// Solution limit reached?
886    bool isSolutionLimitReached() const;
887    /// Get how many iterations it took to solve the problem.
888    inline int getIterationCount() const {
889        return numberIterations_;
890    }
891    /// Increment how many iterations it took to solve the problem.
892    inline void incrementIterationCount(int value) {
893        numberIterations_ += value;
894    }
895    /// Get how many Nodes it took to solve the problem (including those in complete fathoming B&B inside CLP).
896    inline int getNodeCount() const {
897        return numberNodes_;
898    }
899    /// Increment how many nodes it took to solve the problem.
900    inline void incrementNodeCount(int value) {
901        numberNodes_ += value;
902    }
903    /// Get how many Nodes were enumerated in complete fathoming B&B inside CLP
904    inline int getExtraNodeCount() const {
905       return numberExtraNodes_;
906    }
907    /** Final status of problem
908        Some of these can be found out by is...... functions
909        -1 before branchAndBound
910        0 finished - check isProvenOptimal or isProvenInfeasible to see if solution found
911        (or check value of best solution)
912        1 stopped - on maxnodes, maxsols, maxtime
913        2 difficulties so run was abandoned
914        (5 event user programmed event occurred)
915    */
916    inline int status() const {
917        return status_;
918    }
919    inline void setProblemStatus(int value) {
920        status_ = value;
921    }
922    /** Secondary status of problem
923        -1 unset (status_ will also be -1)
924        0 search completed with solution
925        1 linear relaxation not feasible (or worse than cutoff)
926        2 stopped on gap
927        3 stopped on nodes
928        4 stopped on time
929        5 stopped on user event
930        6 stopped on solutions
931        7 linear relaxation unbounded
932    */
933    inline int secondaryStatus() const {
934        return secondaryStatus_;
935    }
936    inline void setSecondaryStatus(int value) {
937        secondaryStatus_ = value;
938    }
939    /// Are there numerical difficulties (for initialSolve) ?
940    bool isInitialSolveAbandoned() const ;
941    /// Is optimality proven (for initialSolve) ?
942    bool isInitialSolveProvenOptimal() const ;
943    /// Is primal infeasiblity proven (for initialSolve) ?
944    bool isInitialSolveProvenPrimalInfeasible() const ;
945    /// Is dual infeasiblity proven (for initialSolve) ?
946    bool isInitialSolveProvenDualInfeasible() const ;
947
948    //@}
949
950    //---------------------------------------------------------------------------
951    /**@name Problem information methods
952
953       These methods call the solver's query routines to return
954       information about the problem referred to by the current object.
955       Querying a problem that has no data associated with it result in
956       zeros for the number of rows and columns, and NULL pointers from
957       the methods that return vectors.
958
959       Const pointers returned from any data-query method are valid as
960       long as the data is unchanged and the solver is not called.
961    */
962    //@{
963    /// Number of rows in continuous (root) problem.
964    inline int numberRowsAtContinuous() const {
965        return numberRowsAtContinuous_;
966    }
967
968    /// Get number of columns
969    inline int getNumCols() const {
970        return solver_->getNumCols();
971    }
972
973    /// Get number of rows
974    inline int getNumRows() const {
975        return solver_->getNumRows();
976    }
977
978    /// Get number of nonzero elements
979    inline CoinBigIndex getNumElements() const {
980        return solver_->getNumElements();
981    }
982
983    /// Number of integers in problem
984    inline int numberIntegers() const {
985        return numberIntegers_;
986    }
987    // Integer variables
988    inline const int * integerVariable() const {
989        return integerVariable_;
990    }
991    /// Whether or not integer
992    inline char integerType(int i) const {
993        assert (integerInfo_);
994        assert (integerInfo_[i] == 0 || integerInfo_[i] == 1);
995        return integerInfo_[i];
996    }
997    /// Whether or not integer
998    inline const char * integerType() const {
999        return integerInfo_;
1000    }
1001
1002    /// Get pointer to array[getNumCols()] of column lower bounds
1003    inline const double * getColLower() const {
1004        return solver_->getColLower();
1005    }
1006
1007    /// Get pointer to array[getNumCols()] of column upper bounds
1008    inline const double * getColUpper() const {
1009        return solver_->getColUpper();
1010    }
1011
1012    /** Get pointer to array[getNumRows()] of row constraint senses.
1013        <ul>
1014        <li>'L': <= constraint
1015        <li>'E': =  constraint
1016        <li>'G': >= constraint
1017        <li>'R': ranged constraint
1018        <li>'N': free constraint
1019        </ul>
1020    */
1021    inline const char * getRowSense() const {
1022        return solver_->getRowSense();
1023    }
1024
1025    /** Get pointer to array[getNumRows()] of rows right-hand sides
1026        <ul>
1027        <li> if rowsense()[i] == 'L' then rhs()[i] == rowupper()[i]
1028        <li> if rowsense()[i] == 'G' then rhs()[i] == rowlower()[i]
1029        <li> if rowsense()[i] == 'R' then rhs()[i] == rowupper()[i]
1030        <li> if rowsense()[i] == 'N' then rhs()[i] == 0.0
1031        </ul>
1032    */
1033    inline const double * getRightHandSide() const {
1034        return solver_->getRightHandSide();
1035    }
1036
1037    /** Get pointer to array[getNumRows()] of row ranges.
1038        <ul>
1039        <li> if rowsense()[i] == 'R' then
1040        rowrange()[i] == rowupper()[i] - rowlower()[i]
1041        <li> if rowsense()[i] != 'R' then
1042        rowrange()[i] is 0.0
1043        </ul>
1044    */
1045    inline const double * getRowRange() const {
1046        return solver_->getRowRange();
1047    }
1048
1049    /// Get pointer to array[getNumRows()] of row lower bounds
1050    inline const double * getRowLower() const {
1051        return solver_->getRowLower();
1052    }
1053
1054    /// Get pointer to array[getNumRows()] of row upper bounds
1055    inline const double * getRowUpper() const {
1056        return solver_->getRowUpper();
1057    }
1058
1059    /// Get pointer to array[getNumCols()] of objective function coefficients
1060    inline const double * getObjCoefficients() const {
1061        return solver_->getObjCoefficients();
1062    }
1063
1064    /// Get objective function sense (1 for min (default), -1 for max)
1065    inline double getObjSense() const {
1066        //assert (dblParam_[CbcOptimizationDirection]== solver_->getObjSense());
1067        return dblParam_[CbcOptimizationDirection];
1068    }
1069
1070    /// Return true if variable is continuous
1071    inline bool isContinuous(int colIndex) const {
1072        return solver_->isContinuous(colIndex);
1073    }
1074
1075    /// Return true if variable is binary
1076    inline bool isBinary(int colIndex) const {
1077        return solver_->isBinary(colIndex);
1078    }
1079
1080    /** Return true if column is integer.
1081        Note: This function returns true if the the column
1082        is binary or a general integer.
1083    */
1084    inline bool isInteger(int colIndex) const {
1085        return solver_->isInteger(colIndex);
1086    }
1087
1088    /// Return true if variable is general integer
1089    inline bool isIntegerNonBinary(int colIndex) const {
1090        return solver_->isIntegerNonBinary(colIndex);
1091    }
1092
1093    /// Return true if variable is binary and not fixed at either bound
1094    inline bool isFreeBinary(int colIndex) const {
1095        return solver_->isFreeBinary(colIndex) ;
1096    }
1097
1098    /// Get pointer to row-wise copy of matrix
1099    inline const CoinPackedMatrix * getMatrixByRow() const {
1100        return solver_->getMatrixByRow();
1101    }
1102
1103    /// Get pointer to column-wise copy of matrix
1104    inline const CoinPackedMatrix * getMatrixByCol() const {
1105        return solver_->getMatrixByCol();
1106    }
1107
1108    /// Get solver's value for infinity
1109    inline double getInfinity() const {
1110        return solver_->getInfinity();
1111    }
1112    /// Get pointer to array[getNumCols()] (for speed) of column lower bounds
1113    inline const double * getCbcColLower() const {
1114        return cbcColLower_;
1115    }
1116    /// Get pointer to array[getNumCols()] (for speed) of column upper bounds
1117    inline const double * getCbcColUpper() const {
1118        return cbcColUpper_;
1119    }
1120    /// Get pointer to array[getNumRows()] (for speed) of row lower bounds
1121    inline const double * getCbcRowLower() const {
1122        return cbcRowLower_;
1123    }
1124    /// Get pointer to array[getNumRows()] (for speed) of row upper bounds
1125    inline const double * getCbcRowUpper() const {
1126        return cbcRowUpper_;
1127    }
1128    /// Get pointer to array[getNumCols()] (for speed) of primal solution vector
1129    inline const double * getCbcColSolution() const {
1130        return cbcColSolution_;
1131    }
1132    /// Get pointer to array[getNumRows()] (for speed) of dual prices
1133    inline const double * getCbcRowPrice() const {
1134        return cbcRowPrice_;
1135    }
1136    /// Get a pointer to array[getNumCols()] (for speed) of reduced costs
1137    inline const double * getCbcReducedCost() const {
1138        return cbcReducedCost_;
1139    }
1140    /// Get pointer to array[getNumRows()] (for speed) of row activity levels.
1141    inline const double * getCbcRowActivity() const {
1142        return cbcRowActivity_;
1143    }
1144    //@}
1145
1146
1147    /**@name Methods related to querying the solution */
1148    //@{
1149    /// Holds solution at continuous (after cuts if branchAndBound called)
1150    inline double * continuousSolution() const {
1151        return continuousSolution_;
1152    }
1153    /** Array marked whenever a solution is found if non-zero.
1154        Code marks if heuristic returns better so heuristic
1155        need only mark if it wants to on solutions which
1156        are worse than current */
1157    inline int * usedInSolution() const {
1158        return usedInSolution_;
1159    }
1160    /// Increases usedInSolution for nonzeros
1161    void incrementUsed(const double * solution);
1162    /// Record a new incumbent solution and update objectiveValue
1163    void setBestSolution(CBC_Message how,
1164                         double & objectiveValue, const double *solution,
1165                         int fixVariables = 0);
1166    /// Just update objectiveValue
1167    void setBestObjectiveValue( double objectiveValue);
1168    /// Deals with event handler and solution
1169    CbcEventHandler::CbcAction dealWithEventHandler(CbcEventHandler::CbcEvent event,
1170            double objValue,
1171            const double * solution);
1172
1173    /** Call this to really test if a valid solution can be feasible
1174        Solution is number columns in size.
1175        If fixVariables true then bounds of continuous solver updated.
1176        Returns objective value (worse than cutoff if not feasible)
1177        Previously computed objective value is now passed in (in case user does not do solve)
1178    */
1179    double checkSolution(double cutoff, double * solution,
1180                         int fixVariables, double originalObjValue);
1181    /** Test the current solution for feasiblility.
1182
1183      Scan all objects for indications of infeasibility. This is broken down
1184      into simple integer infeasibility (\p numberIntegerInfeasibilities)
1185      and all other reports of infeasibility (\p numberObjectInfeasibilities).
1186    */
1187    bool feasibleSolution(int & numberIntegerInfeasibilities,
1188                          int & numberObjectInfeasibilities) const;
1189
1190    /** Solution to the most recent lp relaxation.
1191
1192      The solver's solution to the most recent lp relaxation.
1193    */
1194
1195    inline double * currentSolution() const {
1196        return currentSolution_;
1197    }
1198    /** For testing infeasibilities - will point to
1199        currentSolution_ or solver-->getColSolution()
1200    */
1201    inline const double * testSolution() const {
1202        return testSolution_;
1203    }
1204    inline void setTestSolution(const double * solution) {
1205        testSolution_ = solution;
1206    }
1207    /// Make sure region there and optionally copy solution
1208    void reserveCurrentSolution(const double * solution = NULL);
1209
1210    /// Get pointer to array[getNumCols()] of primal solution vector
1211    inline const double * getColSolution() const {
1212        return solver_->getColSolution();
1213    }
1214
1215    /// Get pointer to array[getNumRows()] of dual prices
1216    inline const double * getRowPrice() const {
1217        return solver_->getRowPrice();
1218    }
1219
1220    /// Get a pointer to array[getNumCols()] of reduced costs
1221    inline const double * getReducedCost() const {
1222        return solver_->getReducedCost();
1223    }
1224
1225    /// Get pointer to array[getNumRows()] of row activity levels.
1226    inline const double * getRowActivity() const {
1227        return solver_->getRowActivity();
1228    }
1229
1230    /// Get current objective function value
1231    inline double getCurrentObjValue() const {
1232        return dblParam_[CbcCurrentObjectiveValue];
1233    }
1234    /// Get current minimization objective function value
1235    inline double getCurrentMinimizationObjValue() const {
1236        return dblParam_[CbcCurrentMinimizationObjectiveValue];
1237    }
1238
1239    /// Get best objective function value as minimization
1240    inline double getMinimizationObjValue() const {
1241        return bestObjective_;
1242    }
1243    /// Set best objective function value as minimization
1244    inline void setMinimizationObjValue(double value) {
1245        bestObjective_ = value;
1246    }
1247
1248    /// Get best objective function value
1249    inline double getObjValue() const {
1250        return bestObjective_ * solver_->getObjSense() ;
1251    }
1252    /** Get best possible objective function value.
1253        This is better of best possible left on tree
1254        and best solution found.
1255        If called from within branch and cut may be optimistic.
1256    */
1257    double getBestPossibleObjValue() const;
1258    /// Set best objective function value
1259    inline void setObjValue(double value) {
1260        bestObjective_ = value * solver_->getObjSense() ;
1261    }
1262    /// Get solver objective function value (as minimization)
1263    inline double getSolverObjValue() const {
1264        return solver_->getObjValue() * solver_->getObjSense() ;
1265    }
1266
1267    /** The best solution to the integer programming problem.
1268
1269      The best solution to the integer programming problem found during
1270      the search. If no solution is found, the method returns null.
1271    */
1272
1273    inline double * bestSolution() const {
1274        return bestSolution_;
1275    }
1276    /** User callable setBestSolution.
1277        If check false does not check valid
1278        If true then sees if feasible and warns if objective value
1279        worse than given (so just set to COIN_DBL_MAX if you don't care).
1280        If check true then does not save solution if not feasible
1281    */
1282    void setBestSolution(const double * solution, int numberColumns,
1283                         double objectiveValue, bool check = false);
1284
1285    /// Get number of solutions
1286    inline int getSolutionCount() const {
1287        return numberSolutions_;
1288    }
1289
1290    /// Set number of solutions (so heuristics will be different)
1291    inline void setSolutionCount(int value) {
1292        numberSolutions_ = value;
1293    }
1294    /// Number of saved solutions (including best)
1295    int numberSavedSolutions() const;
1296    /// Maximum number of extra saved solutions
1297    inline int maximumSavedSolutions() const {
1298        return maximumSavedSolutions_;
1299    }
1300    /// Set maximum number of extra saved solutions
1301    void setMaximumSavedSolutions(int value);
1302    /// Return a saved solution (0==best) - NULL if off end
1303    const double * savedSolution(int which) const;
1304    /// Return a saved solution objective (0==best) - COIN_DBL_MAX if off end
1305    double savedSolutionObjective(int which) const;
1306
1307    /** Current phase (so heuristics etc etc can find out).
1308        0 - initial solve
1309        1 - solve with cuts at root
1310        2 - solve with cuts
1311        3 - other e.g. strong branching
1312        4 - trying to validate a solution
1313        5 - at end of search
1314    */
1315    inline int phase() const {
1316        return phase_;
1317    }
1318
1319    /// Get number of heuristic solutions
1320    inline int getNumberHeuristicSolutions() const {
1321        return numberHeuristicSolutions_;
1322    }
1323    /// Set number of heuristic solutions
1324    inline void setNumberHeuristicSolutions(int value) {
1325        numberHeuristicSolutions_ = value;
1326    }
1327
1328    /// Set objective function sense (1 for min (default), -1 for max,)
1329    inline void setObjSense(double s) {
1330        dblParam_[CbcOptimizationDirection] = s;
1331        solver_->setObjSense(s);
1332    }
1333
1334    /// Value of objective at continuous
1335    inline double getContinuousObjective() const {
1336        return originalContinuousObjective_;
1337    }
1338    inline void setContinuousObjective(double value) {
1339        originalContinuousObjective_ = value;
1340    }
1341    /// Number of infeasibilities at continuous
1342    inline int getContinuousInfeasibilities() const {
1343        return continuousInfeasibilities_;
1344    }
1345    inline void setContinuousInfeasibilities(int value) {
1346        continuousInfeasibilities_ = value;
1347    }
1348    /// Value of objective after root node cuts added
1349    inline double rootObjectiveAfterCuts() const {
1350        return continuousObjective_;
1351    }
1352    /// Sum of Changes to objective by first solve
1353    inline double sumChangeObjective() const {
1354        return sumChangeObjective1_;
1355    }
1356    /** Number of times global cuts violated.  When global cut pool then this
1357        should be kept for each cut and type of cut */
1358    inline int numberGlobalViolations() const {
1359        return numberGlobalViolations_;
1360    }
1361    inline void clearNumberGlobalViolations() {
1362        numberGlobalViolations_ = 0;
1363    }
1364    /// Whether to force a resolve after takeOffCuts
1365    inline bool resolveAfterTakeOffCuts() const {
1366        return resolveAfterTakeOffCuts_;
1367    }
1368    inline void setResolveAfterTakeOffCuts(bool yesNo) {
1369        resolveAfterTakeOffCuts_ = yesNo;
1370    }
1371    /// Maximum number of rows
1372    inline int maximumRows() const {
1373        return maximumRows_;
1374    }
1375    /// Work basis for temporary use
1376    inline CoinWarmStartBasis & workingBasis() {
1377        return workingBasis_;
1378    }
1379    /// Get number of "iterations" to stop after
1380    inline int getStopNumberIterations() const {
1381        return stopNumberIterations_;
1382    }
1383    /// Set number of "iterations" to stop after
1384    inline void setStopNumberIterations(int value) {
1385        stopNumberIterations_ = value;
1386    }
1387    //@}
1388
1389    /** \name Node selection */
1390    //@{
1391    // Comparison functions (which may be overridden by inheritance)
1392    inline CbcCompareBase * nodeComparison() const {
1393        return nodeCompare_;
1394    }
1395    void setNodeComparison(CbcCompareBase * compare);
1396    void setNodeComparison(CbcCompareBase & compare);
1397    //@}
1398
1399    /** \name Problem feasibility checking */
1400    //@{
1401    // Feasibility functions (which may be overridden by inheritance)
1402    inline CbcFeasibilityBase * problemFeasibility() const {
1403        return problemFeasibility_;
1404    }
1405    void setProblemFeasibility(CbcFeasibilityBase * feasibility);
1406    void setProblemFeasibility(CbcFeasibilityBase & feasibility);
1407    //@}
1408
1409    /** \name Tree methods and subtree methods */
1410    //@{
1411    /// Tree method e.g. heap (which may be overridden by inheritance)
1412    inline CbcTree * tree() const {
1413        return tree_;
1414    }
1415    /// For modifying tree handling (original is cloned)
1416    void passInTreeHandler(CbcTree & tree);
1417    /** For passing in an CbcModel to do a sub Tree (with derived tree handlers).
1418        Passed in model must exist for duration of branch and bound
1419    */
1420    void passInSubTreeModel(CbcModel & model);
1421    /** For retrieving a copy of subtree model with given OsiSolver.
1422        If no subtree model will use self (up to user to reset cutoff etc).
1423        If solver NULL uses current
1424    */
1425    CbcModel * subTreeModel(OsiSolverInterface * solver = NULL) const;
1426    /// Returns number of times any subtree stopped on nodes, time etc
1427    inline int numberStoppedSubTrees() const {
1428        return numberStoppedSubTrees_;
1429    }
1430    /// Says a sub tree was stopped
1431    inline void incrementSubTreeStopped() {
1432        numberStoppedSubTrees_++;
1433    }
1434    /** Whether to automatically do presolve before branch and bound (subTrees).
1435        0 - no
1436        1 - ordinary presolve
1437        2 - integer presolve (dodgy)
1438    */
1439    inline int typePresolve() const {
1440        return presolve_;
1441    }
1442    inline void setTypePresolve(int value) {
1443        presolve_ = value;
1444    }
1445
1446    //@}
1447
1448    /** \name Branching Decisions
1449
1450      See the CbcBranchDecision class for additional information.
1451    */
1452    //@{
1453
1454    /// Get the current branching decision method.
1455    inline CbcBranchDecision * branchingMethod() const {
1456        return branchingMethod_;
1457    }
1458    /// Set the branching decision method.
1459    inline void setBranchingMethod(CbcBranchDecision * method) {
1460        delete branchingMethod_;
1461        branchingMethod_ = method->clone();
1462    }
1463    /** Set the branching method
1464
1465      \overload
1466    */
1467    inline void setBranchingMethod(CbcBranchDecision & method) {
1468        delete branchingMethod_;
1469        branchingMethod_ = method.clone();
1470    }
1471    /// Get the current cut modifier method
1472    inline CbcCutModifier * cutModifier() const {
1473        return cutModifier_;
1474    }
1475    /// Set the cut modifier method
1476    void setCutModifier(CbcCutModifier * modifier);
1477    /** Set the cut modifier method
1478
1479      \overload
1480    */
1481    void setCutModifier(CbcCutModifier & modifier);
1482    //@}
1483
1484    /** \name Row (constraint) and Column (variable) cut generation */
1485    //@{
1486
1487    /** State of search
1488        0 - no solution
1489        1 - only heuristic solutions
1490        2 - branched to a solution
1491        3 - no solution but many nodes
1492    */
1493    inline int stateOfSearch() const {
1494        return stateOfSearch_;
1495    }
1496    inline void setStateOfSearch(int state) {
1497        stateOfSearch_ = state;
1498    }
1499    /// Strategy worked out - mainly at root node for use by CbcNode
1500    inline int searchStrategy() const {
1501        return searchStrategy_;
1502    }
1503    /// Set strategy worked out - mainly at root node for use by CbcNode
1504    inline void setSearchStrategy(int value) {
1505        searchStrategy_ = value;
1506    }
1507
1508    /// Get the number of cut generators
1509    inline int numberCutGenerators() const {
1510        return numberCutGenerators_;
1511    }
1512    /// Get the list of cut generators
1513    inline CbcCutGenerator ** cutGenerators() const {
1514        return generator_;
1515    }
1516    ///Get the specified cut generator
1517    inline CbcCutGenerator * cutGenerator(int i) const {
1518        return generator_[i];
1519    }
1520    ///Get the specified cut generator before any changes
1521    inline CbcCutGenerator * virginCutGenerator(int i) const {
1522        return virginGenerator_[i];
1523    }
1524    /** Add one generator - up to user to delete generators.
1525        howoften affects how generator is used. 0 or 1 means always,
1526        >1 means every that number of nodes.  Negative values have same
1527        meaning as positive but they may be switched off (-> -100) by code if
1528        not many cuts generated at continuous.  -99 is just done at root.
1529        Name is just for printout.
1530        If depth >0 overrides how often generator is called (if howOften==-1 or >0).
1531    */
1532    void addCutGenerator(CglCutGenerator * generator,
1533                         int howOften = 1, const char * name = NULL,
1534                         bool normal = true, bool atSolution = false,
1535                         bool infeasible = false, int howOftenInSub = -100,
1536                         int whatDepth = -1, int whatDepthInSub = -1);
1537//@}
1538    /** \name Strategy and sub models
1539
1540      See the CbcStrategy class for additional information.
1541    */
1542    //@{
1543
1544    /// Get the current strategy
1545    inline CbcStrategy * strategy() const {
1546        return strategy_;
1547    }
1548    /// Set the strategy. Clones
1549    void setStrategy(CbcStrategy & strategy);
1550    /// Set the strategy. assigns
1551    inline void setStrategy(CbcStrategy * strategy) {
1552        strategy_ = strategy;
1553    }
1554    /// Get the current parent model
1555    inline CbcModel * parentModel() const {
1556        return parentModel_;
1557    }
1558    /// Set the parent model
1559    inline void setParentModel(CbcModel & parentModel) {
1560        parentModel_ = &parentModel;
1561    }
1562    //@}
1563
1564
1565    /** \name Heuristics and priorities */
1566    //@{
1567    /*! \brief Add one heuristic - up to user to delete
1568
1569      The name is just used for print messages.
1570    */
1571    void addHeuristic(CbcHeuristic * generator, const char *name = NULL,
1572                      int before = -1);
1573    ///Get the specified heuristic
1574    inline CbcHeuristic * heuristic(int i) const {
1575        return heuristic_[i];
1576    }
1577    /// Get the number of heuristics
1578    inline int numberHeuristics() const {
1579        return numberHeuristics_;
1580    }
1581    /// Pointer to heuristic solver which found last solution (or NULL)
1582    inline CbcHeuristic * lastHeuristic() const {
1583        return lastHeuristic_;
1584    }
1585    /// set last heuristic which found a solution
1586    inline void setLastHeuristic(CbcHeuristic * last) {
1587        lastHeuristic_ = last;
1588    }
1589
1590    /** Pass in branching priorities.
1591
1592        If ifClique then priorities are on cliques otherwise priorities are
1593        on integer variables.
1594        Other type (if exists set to default)
1595        1 is highest priority. (well actually -INT_MAX is but that's ugly)
1596        If hotstart > 0 then branches are created to force
1597        the variable to the value given by best solution.  This enables a
1598        sort of hot start.  The node choice should be greatest depth
1599        and hotstart should normally be switched off after a solution.
1600
1601        If ifNotSimpleIntegers true then appended to normal integers
1602
1603        This is now deprecated except for simple usage.  If user
1604        creates Cbcobjects then set priority in them
1605
1606        \internal Added for Kurt Spielberg.
1607    */
1608    void passInPriorities(const int * priorities, bool ifNotSimpleIntegers);
1609
1610    /// Returns priority level for an object (or 1000 if no priorities exist)
1611    inline int priority(int sequence) const {
1612        return object_[sequence]->priority();
1613    }
1614
1615    /*! \brief Set an event handler
1616
1617      A clone of the handler passed as a parameter is stored in CbcModel.
1618    */
1619    void passInEventHandler(const CbcEventHandler *eventHandler) ;
1620
1621    /*! \brief Retrieve a pointer to the event handler */
1622    inline CbcEventHandler* getEventHandler() const {
1623        return (eventHandler_) ;
1624    }
1625
1626    //@}
1627
1628    /**@name Setting/Accessing application data */
1629    //@{
1630    /** Set application data.
1631
1632    This is a pointer that the application can store into and
1633    retrieve from the solver interface.
1634    This field is available for the application to optionally
1635    define and use.
1636    */
1637    void setApplicationData (void * appData);
1638
1639    /// Get application data
1640    void * getApplicationData() const;
1641    /**
1642        For advanced applications you may wish to modify the behavior of Cbc
1643        e.g. if the solver is a NLP solver then you may not have an exact
1644        optimum solution at each step.  Information could be built into
1645        OsiSolverInterface but this is an alternative so that that interface
1646        does not have to be changed.  If something similar is useful to
1647        enough solvers then it could be migrated
1648        You can also pass in by using solver->setAuxiliaryInfo.
1649        You should do that if solver is odd - if solver is normal simplex
1650        then use this.
1651        NOTE - characteristics are not cloned
1652    */
1653    void passInSolverCharacteristics(OsiBabSolver * solverCharacteristics);
1654    /// Get solver characteristics
1655    inline const OsiBabSolver * solverCharacteristics() const {
1656        return solverCharacteristics_;
1657    }
1658    //@}
1659
1660    //---------------------------------------------------------------------------
1661
1662    /**@name Message handling etc */
1663    //@{
1664    /// Pass in Message handler (not deleted at end)
1665    void passInMessageHandler(CoinMessageHandler * handler);
1666    /// Set language
1667    void newLanguage(CoinMessages::Language language);
1668    inline void setLanguage(CoinMessages::Language language) {
1669        newLanguage(language);
1670    }
1671    /// Return handler
1672    inline CoinMessageHandler * messageHandler() const {
1673        return handler_;
1674    }
1675    /// Return messages
1676    inline CoinMessages & messages() {
1677        return messages_;
1678    }
1679    /// Return pointer to messages
1680    inline CoinMessages * messagesPointer() {
1681        return &messages_;
1682    }
1683    /// Set log level
1684    void setLogLevel(int value);
1685    /// Get log level
1686    inline int logLevel() const {
1687        return handler_->logLevel();
1688    }
1689    /** Set flag to say if handler_ is the default handler.
1690
1691      The default handler is deleted when the model is deleted. Other
1692      handlers (supplied by the client) will not be deleted.
1693    */
1694    inline void setDefaultHandler(bool yesNo) {
1695        defaultHandler_ = yesNo;
1696    }
1697    //@}
1698    //---------------------------------------------------------------------------
1699    ///@name Specialized
1700    //@{
1701
1702    /**
1703        Set special options
1704        0 bit (1) - check if cuts valid (if on debugger list)
1705        1 bit (2) - use current basis to check integer solution (rather than all slack)
1706        2 bit (4) - don't check integer solution (by solving LP)
1707        3 bit (8) - fast analyze
1708        4 bit (16) - non-linear model - so no well defined CoinPackedMatrix
1709        5 bit (32) - keep names
1710        6 bit (64) - try for dominated columns
1711        7 bit (128) - SOS type 1 but all declared integer
1712        8 bit (256) - Set to say solution just found, unset by doing cuts
1713        9 bit (512) - Try reduced model after 100 nodes
1714        10 bit (1024) - Switch on some heuristics even if seems unlikely
1715        11 bit (2048) - Mark as in small branch and bound
1716        12 bit (4096) - Funny cuts so do slow way (in some places)
1717        13 bit (8192) - Funny cuts so do slow way (in other places)
1718        14 bit (16384) - Use Cplex! for fathoming
1719        15 bit (32768) - Try reduced model after 0 nodes
1720        16 bit (65536) - Original model had integer bounds
1721        17 bit (131072) - Perturbation switched off
1722        18 bit (262144) - donor CbcModel
1723        19 bit (524288) - recipient CbcModel
1724        20 bit (1048576) - waiting for sub model to return
1725    */
1726    inline void setSpecialOptions(int value) {
1727        specialOptions_ = value;
1728    }
1729    /// Get special options
1730    inline int specialOptions() const {
1731        return specialOptions_;
1732    }
1733    /// Tell model to stop on event
1734    inline void sayEventHappened()
1735    { eventHappened_=true;}
1736    /// Says if normal solver i.e. has well defined CoinPackedMatrix
1737    inline bool normalSolver() const {
1738        return (specialOptions_&16) == 0;
1739    }
1740    /** Says if model is sitting there waiting for mini branch and bound to finish
1741        This is because an event handler may only have access to parent model in
1742        mini branch and bound
1743    */
1744    inline bool waitingForMiniBranchAndBound() const {
1745        return (specialOptions_&1048576) != 0;
1746    }
1747    /** Set more special options
1748        at present bottom 6 bits used for shadow price mode
1749        1024 for experimental hotstart
1750        2048,4096 breaking out of cuts
1751        8192 slowly increase minimum drop
1752        16384 gomory
1753        32768 more heuristics in sub trees
1754        65536 no cuts in preprocessing
1755        131072 Time limits elapsed
1756        18 bit (262144) - Perturb fathom nodes
1757        19 bit (524288) - No limit on fathom nodes
1758        20 bit (1048576) - Reduce sum of infeasibilities before cuts
1759        21 bit (2097152) - Reduce sum of infeasibilities after cuts
1760    */
1761    inline void setMoreSpecialOptions(int value) {
1762        moreSpecialOptions_ = value;
1763    }
1764    /// Get more special options
1765    inline int moreSpecialOptions() const {
1766        return moreSpecialOptions_;
1767    }
1768  /// Set time method
1769    inline void setUseElapsedTime(bool yesNo) {
1770        if (yesNo)
1771          moreSpecialOptions_ |= 131072;
1772        else
1773          moreSpecialOptions_ &= ~131072;
1774    }
1775    /// Get time method
1776    inline bool useElapsedTime() const {
1777        return (moreSpecialOptions_&131072)!=0;
1778    }
1779    /// Go to dantzig pivot selection if easy problem (clp only)
1780#ifdef COIN_HAS_CLP
1781    void goToDantzig(int numberNodes, ClpDualRowPivot *& savePivotMethod);
1782#endif
1783    /// Now we may not own objects - just point to solver's objects
1784    inline bool ownObjects() const {
1785        return ownObjects_;
1786    }
1787    /// Check original model before it gets messed up
1788    void checkModel();
1789    //@}
1790    //---------------------------------------------------------------------------
1791
1792    ///@name Constructors and destructors etc
1793    //@{
1794    /// Default Constructor
1795    CbcModel();
1796
1797    /// Constructor from solver
1798    CbcModel(const OsiSolverInterface &);
1799
1800    /** Assign a solver to the model (model assumes ownership)
1801
1802      On return, \p solver will be NULL.
1803      If deleteSolver then current solver deleted (if model owned)
1804
1805      \note Parameter settings in the outgoing solver are not inherited by
1806        the incoming solver.
1807    */
1808    void assignSolver(OsiSolverInterface *&solver, bool deleteSolver = true);
1809
1810    /** \brief Set ownership of solver
1811
1812      A parameter of false tells CbcModel it does not own the solver and
1813      should not delete it. Once you claim ownership of the solver, you're
1814      responsible for eventually deleting it. Note that CbcModel clones
1815      solvers with abandon.  Unless you have a deep understanding of the
1816      workings of CbcModel, the only time you want to claim ownership is when
1817      you're about to delete the CbcModel object but want the solver to
1818      continue to exist (as, for example, when branchAndBound has finished
1819      and you want to hang on to the answer).
1820    */
1821    inline void setModelOwnsSolver (bool ourSolver) {
1822        ownership_ = ourSolver ? (ownership_ | 0x80000000) : (ownership_ & (~0x80000000)) ;
1823    }
1824
1825    /*! \brief Get ownership of solver
1826
1827      A return value of true means that CbcModel owns the solver and will
1828      take responsibility for deleting it when that becomes necessary.
1829    */
1830    inline bool modelOwnsSolver () {
1831        return ((ownership_&0x80000000) != 0) ;
1832    }
1833
1834    /** Copy constructor .
1835      If cloneHandler is true then message handler is cloned
1836    */
1837    CbcModel(const CbcModel & rhs, bool cloneHandler = false);
1838
1839    /// Assignment operator
1840    CbcModel & operator=(const CbcModel& rhs);
1841
1842    /// Destructor
1843    ~CbcModel ();
1844
1845    /// Returns solver - has current state
1846    inline OsiSolverInterface * solver() const {
1847        return solver_;
1848    }
1849
1850    /// Returns current solver - sets new one
1851    inline OsiSolverInterface * swapSolver(OsiSolverInterface * solver) {
1852        OsiSolverInterface * returnSolver = solver_;
1853        solver_ = solver;
1854        return returnSolver;
1855    }
1856
1857    /// Returns solver with continuous state
1858    inline OsiSolverInterface * continuousSolver() const {
1859        return continuousSolver_;
1860    }
1861
1862    /// Create solver with continuous state
1863    inline void createContinuousSolver() {
1864        continuousSolver_ = solver_->clone();
1865    }
1866    /// Clear solver with continuous state
1867    inline void clearContinuousSolver() {
1868        delete continuousSolver_;
1869        continuousSolver_ = NULL;
1870    }
1871
1872    /// A copy of the solver, taken at constructor or by saveReferenceSolver
1873    inline OsiSolverInterface * referenceSolver() const {
1874        return referenceSolver_;
1875    }
1876
1877    /// Save a copy of the current solver so can be reset to
1878    void saveReferenceSolver();
1879
1880    /** Uses a copy of reference solver to be current solver.
1881        Because of possible mismatches all exotic integer information is loat
1882        (apart from normal information in OsiSolverInterface)
1883        so SOS etc and priorities will have to be redone
1884    */
1885    void resetToReferenceSolver();
1886
1887    /// Clears out as much as possible (except solver)
1888    void gutsOfDestructor();
1889    /** Clears out enough to reset CbcModel as if no branch and bound done
1890     */
1891    void gutsOfDestructor2();
1892    /** Clears out enough to reset CbcModel cutoff etc
1893     */
1894    void resetModel();
1895    /** Most of copy constructor
1896        mode - 0 copy but don't delete before
1897               1 copy and delete before
1898           2 copy and delete before (but use virgin generators)
1899    */
1900    void gutsOfCopy(const CbcModel & rhs, int mode = 0);
1901    /// Move status, nodes etc etc across
1902    void moveInfo(const CbcModel & rhs);
1903    //@}
1904
1905    ///@name Multithreading
1906    //@{
1907    /// Indicates whether Cbc library has been compiled with multithreading support
1908    static bool haveMultiThreadSupport();
1909    /// Get pointer to masterthread
1910    CbcThread * masterThread() const {
1911        return masterThread_;
1912    }
1913    /// Get pointer to walkback
1914    CbcNodeInfo ** walkback() const {
1915        return walkback_;
1916    }
1917    /// Get number of threads
1918    inline int getNumberThreads() const {
1919        return numberThreads_;
1920    }
1921    /// Set number of threads
1922    inline void setNumberThreads(int value) {
1923        numberThreads_ = value;
1924    }
1925    /// Get thread mode
1926    inline int getThreadMode() const {
1927        return threadMode_;
1928    }
1929    /** Set thread mode
1930        always use numberThreads for branching
1931        1 set then deterministic
1932        2 set then use numberThreads for root cuts
1933        4 set then use numberThreads in root mini branch and bound
1934        8 set and numberThreads - do heuristics numberThreads at a time
1935        8 set and numberThreads==0 do all heuristics at once
1936        default is 0
1937    */
1938    inline void setThreadMode(int value) {
1939        threadMode_ = value;
1940    }
1941    /** Return
1942        -2 if deterministic threaded and main thread
1943        -1 if deterministic threaded and serial thread
1944        0 if serial
1945        1 if opportunistic threaded
1946    */
1947    inline int parallelMode() const {
1948        if (!numberThreads_) {
1949            if ((threadMode_&1) == 0)
1950                return 0;
1951            else
1952                return -1;
1953            return 0;
1954        } else {
1955            if ((threadMode_&1) == 0)
1956                return 1;
1957            else
1958                return -2;
1959        }
1960    }
1961    /// From here to end of section - code in CbcThread.cpp until class changed
1962    /// Returns true if locked
1963    bool isLocked() const;
1964#ifdef CBC_THREAD
1965    /**
1966       Locks a thread if parallel so that stuff like cut pool
1967       can be updated and/or used.
1968    */
1969    void lockThread();
1970    /**
1971       Unlocks a thread if parallel to say cut pool stuff not needed
1972    */
1973    void unlockThread();
1974#else
1975    inline void lockThread() {}
1976    inline void unlockThread() {}
1977#endif
1978    /** Set information in a child
1979        -3 pass pointer to child thread info
1980        -2 just stop
1981        -1 delete simple child stuff
1982        0 delete opportunistic child stuff
1983        1 delete deterministic child stuff
1984    */
1985    void setInfoInChild(int type, CbcThread * info);
1986    /** Move/copy information from one model to another
1987        -1 - initialization
1988        0 - from base model
1989        1 - to base model (and reset)
1990        2 - add in final statistics etc (and reset so can do clean destruction)
1991    */
1992    void moveToModel(CbcModel * baseModel, int mode);
1993    /// Split up nodes
1994    int splitModel(int numberModels, CbcModel ** model,
1995                   int numberNodes);
1996    /// Start threads
1997    void startSplitModel(int numberIterations);
1998    /// Merge models
1999    void mergeModels(int numberModel, CbcModel ** model,
2000                     int numberNodes);
2001    //@}
2002
2003    ///@name semi-private i.e. users should not use
2004    //@{
2005    /// Get how many Nodes it took to solve the problem.
2006    int getNodeCount2() const {
2007        return numberNodes2_;
2008    }
2009    /// Set pointers for speed
2010    void setPointers(const OsiSolverInterface * solver);
2011    /** Perform reduced cost fixing
2012
2013      Fixes integer variables at their current value based on reduced cost
2014      penalties.  Returns number fixed
2015    */
2016    int reducedCostFix() ;
2017    /** Makes all handlers same.  If makeDefault 1 then makes top level
2018        default and rest point to that.  If 2 then each is copy
2019    */
2020    void synchronizeHandlers(int makeDefault);
2021    /// Save a solution to saved list
2022    void saveExtraSolution(const double * solution, double objectiveValue);
2023    /// Save a solution to best and move current to saved
2024    void saveBestSolution(const double * solution, double objectiveValue);
2025    /// Delete best and saved solutions
2026    void deleteSolutions();
2027    /// Encapsulates solver resolve
2028    int resolve(OsiSolverInterface * solver);
2029#ifdef CLP_RESOLVE
2030    /// Special purpose resolve
2031    int resolveClp(OsiClpSolverInterface * solver, int type);
2032#endif
2033
2034    /** Encapsulates choosing a variable -
2035        anyAction -2, infeasible (-1 round again), 0 done
2036    */
2037    int chooseBranch(CbcNode * & newNode, int numberPassesLeft,
2038                     CbcNode * oldNode, OsiCuts & cuts,
2039                     bool & resolved, CoinWarmStartBasis *lastws,
2040                     const double * lowerBefore, const double * upperBefore,
2041                     OsiSolverBranch * & branches);
2042    int chooseBranch(CbcNode * newNode, int numberPassesLeft, bool & resolved);
2043
2044    /** Return an empty basis object of the specified size
2045
2046      A useful utility when constructing a basis for a subproblem from scratch.
2047      The object returned will be of the requested capacity and appropriate for
2048      the solver attached to the model.
2049    */
2050    CoinWarmStartBasis *getEmptyBasis(int ns = 0, int na = 0) const ;
2051
2052    /** Remove inactive cuts from the model
2053
2054      An OsiSolverInterface is expected to maintain a valid basis, but not a
2055      valid solution, when loose cuts are deleted. Restoring a valid solution
2056      requires calling the solver to reoptimise. If it's certain the solution
2057      will not be required, set allowResolve to false to suppress
2058      reoptimisation.
2059      If saveCuts then slack cuts will be saved
2060      On input current cuts are cuts and newCuts
2061      on exit current cuts will be correct.  Returns number dropped
2062    */
2063    int takeOffCuts(OsiCuts &cuts,
2064                    bool allowResolve, OsiCuts * saveCuts,
2065                    int numberNewCuts = 0, const OsiRowCut ** newCuts = NULL) ;
2066
2067    /** Determine and install the active cuts that need to be added for
2068      the current subproblem
2069
2070      The whole truth is a bit more complicated. The first action is a call to
2071      addCuts1(). addCuts() then sorts through the list, installs the tight
2072      cuts in the model, and does bookkeeping (adjusts reference counts).
2073      The basis returned from addCuts1() is adjusted accordingly.
2074
2075      If it turns out that the node should really be fathomed by bound,
2076      addCuts() simply treats all the cuts as loose as it does the bookkeeping.
2077
2078      canFix true if extra information being passed
2079    */
2080    int addCuts(CbcNode * node, CoinWarmStartBasis *&lastws, bool canFix);
2081
2082    /** Traverse the tree from node to root and prep the model
2083
2084      addCuts1() begins the job of prepping the model to match the current
2085      subproblem. The model is stripped of all cuts, and the search tree is
2086      traversed from node to root to determine the changes required. Appropriate
2087      bounds changes are installed, a list of cuts is collected but not
2088      installed, and an appropriate basis (minus the cuts, but big enough to
2089      accommodate them) is constructed.
2090
2091      Returns true if new problem similar to old
2092
2093      \todo addCuts1() is called in contexts where it's known in advance that
2094        all that's desired is to determine a list of cuts and do the
2095        bookkeeping (adjust the reference counts). The work of installing
2096        bounds and building a basis goes to waste.
2097    */
2098    bool addCuts1(CbcNode * node, CoinWarmStartBasis *&lastws);
2099    /** Returns bounds just before where - initially original bounds.
2100        Also sets downstream nodes (lower if force 1, upper if 2)
2101    */
2102    void previousBounds (CbcNode * node, CbcNodeInfo * where, int iColumn,
2103                         double & lower, double & upper, int force);
2104    /** Set objective value in a node.  This is separated out so that
2105       odd solvers can use.  It may look at extra information in
2106       solverCharacteriscs_ and will also use bound from parent node
2107    */
2108    void setObjectiveValue(CbcNode * thisNode, const CbcNode * parentNode) const;
2109
2110    /** If numberBeforeTrust >0 then we are going to use CbcBranchDynamic.
2111        Scan and convert CbcSimpleInteger objects
2112    */
2113    void convertToDynamic();
2114    /// Set numberBeforeTrust in all objects
2115    void synchronizeNumberBeforeTrust(int type = 0);
2116    /// Zap integer information in problem (may leave object info)
2117    void zapIntegerInformation(bool leaveObjects = true);
2118    /// Use cliques for pseudocost information - return nonzero if infeasible
2119    int cliquePseudoCosts(int doStatistics);
2120    /// Fill in useful estimates
2121    void pseudoShadow(int type);
2122    /** Return pseudo costs
2123        If not all integers or not pseudo costs - returns all zero
2124        Length of arrays are numberIntegers() and entries
2125        correspond to integerVariable()[i]
2126        User must allocate arrays before call
2127    */
2128    void fillPseudoCosts(double * downCosts, double * upCosts,
2129                         int * priority = NULL,
2130                         int * numberDown = NULL, int * numberUp = NULL,
2131                         int * numberDownInfeasible = NULL,
2132                         int * numberUpInfeasible = NULL) const;
2133    /** Do heuristics at root.
2134        0 - don't delete
2135        1 - delete
2136        2 - just delete - don't even use
2137    */
2138    void doHeuristicsAtRoot(int deleteHeuristicsAfterwards = 0);
2139    /// Adjust heuristics based on model
2140    void adjustHeuristics();
2141    /// Get the hotstart solution
2142    inline const double * hotstartSolution() const {
2143        return hotstartSolution_;
2144    }
2145    /// Get the hotstart priorities
2146    inline const int * hotstartPriorities() const {
2147        return hotstartPriorities_;
2148    }
2149
2150    /// Return the list of cuts initially collected for this subproblem
2151    inline CbcCountRowCut ** addedCuts() const {
2152        return addedCuts_;
2153    }
2154    /// Number of entries in the list returned by #addedCuts()
2155    inline int currentNumberCuts() const {
2156        return currentNumberCuts_;
2157    }
2158    /// Global cuts
2159    inline OsiCuts * globalCuts() {
2160        return &globalCuts_;
2161    }
2162    /// Copy and set a pointer to a row cut which will be added instead of normal branching.
2163    void setNextRowCut(const OsiRowCut & cut);
2164    /// Get a pointer to current node (be careful)
2165    inline CbcNode * currentNode() const {
2166        return currentNode_;
2167    }
2168    /// Get a pointer to probing info
2169    inline CglTreeProbingInfo * probingInfo() const {
2170        return probingInfo_;
2171    }
2172    /// Thread specific random number generator
2173    inline CoinThreadRandom * randomNumberGenerator() {
2174        return &randomNumberGenerator_;
2175    }
2176    /// Set the number of iterations done in strong branching.
2177    inline void setNumberStrongIterations(int number) {
2178        numberStrongIterations_ = number;
2179    }
2180    /// Get the number of iterations done in strong branching.
2181    inline int numberStrongIterations() const {
2182        return numberStrongIterations_;
2183    }
2184    /// Get maximum number of iterations (designed to be used in heuristics)
2185    inline int maximumNumberIterations() const {
2186        return maximumNumberIterations_;
2187    }
2188    /// Set maximum number of iterations (designed to be used in heuristics)
2189    inline void setMaximumNumberIterations(int value) {
2190        maximumNumberIterations_ = value;
2191    }
2192# ifdef COIN_HAS_CLP
2193    /// Set depth for fast nodes
2194    inline void setFastNodeDepth(int value) {
2195        fastNodeDepth_ = value;
2196    }
2197    /// Get depth for fast nodes
2198    inline int fastNodeDepth() const {
2199        return fastNodeDepth_;
2200    }
2201    /// Get anything with priority >= this can be treated as continuous
2202    inline int continuousPriority() const {
2203        return continuousPriority_;
2204    }
2205    /// Set anything with priority >= this can be treated as continuous
2206    inline void setContinuousPriority(int value) {
2207        continuousPriority_ = value;
2208    }
2209    inline void incrementExtra(int nodes, int iterations) {
2210        numberExtraNodes_ += nodes;
2211        numberExtraIterations_ += iterations;
2212    }
2213#endif
2214    /// Number of extra iterations
2215    inline int numberExtraIterations() const {
2216        return numberExtraIterations_;
2217    }
2218    /// Increment strong info
2219    void incrementStrongInfo(int numberTimes, int numberIterations,
2220                             int numberFixed, bool ifInfeasible);
2221    /// Return strong info
2222    inline const int * strongInfo() const {
2223        return strongInfo_;
2224    }
2225
2226    /// Return mutable strong info
2227    inline int * mutableStrongInfo() {
2228        return strongInfo_;
2229    }
2230    /// Get stored row cuts for donor/recipient CbcModel
2231    CglStored * storedRowCuts() const {
2232        return storedRowCuts_;
2233    }
2234    /// Set stored row cuts for donor/recipient CbcModel
2235    void setStoredRowCuts(CglStored * cuts) {
2236        storedRowCuts_ = cuts;
2237    }
2238    /// Says whether all dynamic integers
2239    inline bool allDynamic () const {
2240        return ((ownership_&0x40000000) != 0) ;
2241    }
2242    /// Create C++ lines to get to current state
2243    void generateCpp( FILE * fp, int options);
2244    /// Generate an OsiBranchingInformation object
2245    OsiBranchingInformation usefulInformation() const;
2246    /** Warm start object produced by heuristic or strong branching
2247
2248        If get a valid integer solution outside branch and bound then it can take
2249        a reasonable time to solve LP which produces clean solution.  If this object has
2250        any size then it will be used in solve.
2251    */
2252    inline void setBestSolutionBasis(const CoinWarmStartBasis & bestSolutionBasis) {
2253        bestSolutionBasis_ = bestSolutionBasis;
2254    }
2255    /// Redo walkback arrays
2256    void redoWalkBack();
2257    //@}
2258
2259//---------------------------------------------------------------------------
2260
2261private:
2262    ///@name Private member data
2263    //@{
2264
2265    /// The solver associated with this model.
2266    OsiSolverInterface * solver_;
2267
2268    /** Ownership of objects and other stuff
2269
2270        0x80000000 model owns solver
2271        0x40000000 all variables CbcDynamicPseudoCost
2272    */
2273    unsigned int ownership_ ;
2274
2275    /// A copy of the solver, taken at the continuous (root) node.
2276    OsiSolverInterface * continuousSolver_;
2277
2278    /// A copy of the solver, taken at constructor or by saveReferenceSolver
2279    OsiSolverInterface * referenceSolver_;
2280
2281    /// Message handler
2282    CoinMessageHandler * handler_;
2283
2284    /** Flag to say if handler_ is the default handler.
2285
2286      The default handler is deleted when the model is deleted. Other
2287      handlers (supplied by the client) will not be deleted.
2288    */
2289    bool defaultHandler_;
2290
2291    /// Cbc messages
2292    CoinMessages messages_;
2293
2294    /// Array for integer parameters
2295    int intParam_[CbcLastIntParam];
2296
2297    /// Array for double parameters
2298    double dblParam_[CbcLastDblParam];
2299
2300    /** Pointer to an empty warm start object
2301
2302      It turns out to be useful to have this available as a base from
2303      which to build custom warm start objects. This is typed as CoinWarmStart
2304      rather than CoinWarmStartBasis to allow for the possibility that a
2305      client might want to apply a solver that doesn't use a basis-based warm
2306      start. See getEmptyBasis for an example of how this field can be used.
2307    */
2308    mutable CoinWarmStart *emptyWarmStart_ ;
2309
2310    /// Best objective
2311    double bestObjective_;
2312    /// Best possible objective
2313    double bestPossibleObjective_;
2314    /// Sum of Changes to objective by first solve
2315    double sumChangeObjective1_;
2316    /// Sum of Changes to objective by subsequent solves
2317    double sumChangeObjective2_;
2318
2319    /// Array holding the incumbent (best) solution.
2320    double * bestSolution_;
2321    /// Arrays holding other solutions.
2322    double ** savedSolutions_;
2323
2324    /** Array holding the current solution.
2325
2326      This array is used more as a temporary.
2327    */
2328    double * currentSolution_;
2329    /** For testing infeasibilities - will point to
2330        currentSolution_ or solver-->getColSolution()
2331    */
2332    mutable const double * testSolution_;
2333    /** Warm start object produced by heuristic or strong branching
2334
2335        If get a valid integer solution outside branch and bound then it can take
2336        a reasonable time to solve LP which produces clean solution.  If this object has
2337        any size then it will be used in solve.
2338    */
2339    CoinWarmStartBasis bestSolutionBasis_ ;
2340    /// Global cuts
2341    OsiCuts globalCuts_;
2342
2343    /// Minimum degradation in objective value to continue cut generation
2344    double minimumDrop_;
2345    /// Number of solutions
2346    int numberSolutions_;
2347    /// Number of saved solutions
2348    int numberSavedSolutions_;
2349    /// Maximum number of saved solutions
2350    int maximumSavedSolutions_;
2351    /** State of search
2352        0 - no solution
2353        1 - only heuristic solutions
2354        2 - branched to a solution
2355        3 - no solution but many nodes
2356    */
2357    int stateOfSearch_;
2358    /// At which depths to do cuts
2359    int whenCuts_;
2360    /// Hotstart solution
2361    double * hotstartSolution_;
2362    /// Hotstart priorities
2363    int * hotstartPriorities_;
2364    /// Number of heuristic solutions
2365    int numberHeuristicSolutions_;
2366    /// Cumulative number of nodes
2367    int numberNodes_;
2368    /** Cumulative number of nodes for statistics.
2369        Must fix to match up
2370    */
2371    int numberNodes2_;
2372    /// Cumulative number of iterations
2373    int numberIterations_;
2374    /// Cumulative number of solves
2375    int numberSolves_;
2376    /// Status of problem - 0 finished, 1 stopped, 2 difficulties
2377    int status_;
2378    /** Secondary status of problem
2379        -1 unset (status_ will also be -1)
2380        0 search completed with solution
2381        1 linear relaxation not feasible (or worse than cutoff)
2382        2 stopped on gap
2383        3 stopped on nodes
2384        4 stopped on time
2385        5 stopped on user event
2386        6 stopped on solutions
2387     */
2388    int secondaryStatus_;
2389    /// Number of integers in problem
2390    int numberIntegers_;
2391    /// Number of rows at continuous
2392    int numberRowsAtContinuous_;
2393    /// Maximum number of cuts
2394    int maximumNumberCuts_;
2395    /** Current phase (so heuristics etc etc can find out).
2396        0 - initial solve
2397        1 - solve with cuts at root
2398        2 - solve with cuts
2399        3 - other e.g. strong branching
2400        4 - trying to validate a solution
2401        5 - at end of search
2402    */
2403    int phase_;
2404
2405    /// Number of entries in #addedCuts_
2406    int currentNumberCuts_;
2407
2408    /** Current limit on search tree depth
2409
2410      The allocated size of #walkback_. Increased as needed.
2411    */
2412    int maximumDepth_;
2413    /** Array used to assemble the path between a node and the search tree root
2414
2415      The array is resized when necessary. #maximumDepth_  is the current
2416      allocated size.
2417    */
2418    CbcNodeInfo ** walkback_;
2419    CbcNodeInfo ** lastNodeInfo_;
2420    const OsiRowCut ** lastCut_;
2421    int lastDepth_;
2422    int lastNumberCuts2_;
2423    int maximumCuts_;
2424    int * lastNumberCuts_;
2425
2426    /** The list of cuts initially collected for this subproblem
2427
2428      When the subproblem at this node is rebuilt, a set of cuts is collected
2429      for inclusion in the constraint system. If any of these cuts are
2430      subsequently removed because they have become loose, the corresponding
2431      entry is set to NULL.
2432    */
2433    CbcCountRowCut ** addedCuts_;
2434
2435    /** A pointer to a row cut which will be added instead of normal branching.
2436        After use it should be set to NULL.
2437    */
2438    OsiRowCut * nextRowCut_;
2439
2440    /// Current node so can be used elsewhere
2441    CbcNode * currentNode_;
2442
2443    /// Indices of integer variables
2444    int * integerVariable_;
2445    /// Whether of not integer
2446    char * integerInfo_;
2447    /// Holds solution at continuous (after cuts)
2448    double * continuousSolution_;
2449    /// Array marked whenever a solution is found if non-zero
2450    int * usedInSolution_;
2451    /**
2452        Special options
2453        0 bit (1) - check if cuts valid (if on debugger list)
2454        1 bit (2) - use current basis to check integer solution (rather than all slack)
2455        2 bit (4) - don't check integer solution (by solving LP)
2456        3 bit (8) - fast analyze
2457        4 bit (16) - non-linear model - so no well defined CoinPackedMatrix
2458        5 bit (32) - keep names
2459        6 bit (64) - try for dominated columns
2460        7 bit (128) - SOS type 1 but all declared integer
2461        8 bit (256) - Set to say solution just found, unset by doing cuts
2462        9 bit (512) - Try reduced model after 100 nodes
2463        10 bit (1024) - Switch on some heuristics even if seems unlikely
2464        11 bit (2048) - Mark as in small branch and bound
2465        12 bit (4096) - Funny cuts so do slow way (in some places)
2466        13 bit (8192) - Funny cuts so do slow way (in other places)
2467        14 bit (16384) - Use Cplex! for fathoming
2468        15 bit (32768) - Try reduced model after 0 nodes
2469        16 bit (65536) - Original model had integer bounds
2470        17 bit (131072) - Perturbation switched off
2471        18 bit (262144) - donor CbcModel
2472        19 bit (524288) - recipient CbcModel
2473    */
2474    int specialOptions_;
2475    /** More special options
2476        at present bottom 6 bits used for shadow price mode
2477        1024 for experimental hotstart
2478        2048,4096 breaking out of cuts
2479        8192 slowly increase minimum drop
2480        16384 gomory
2481        32768 more heuristics in sub trees
2482        65536 no cuts in preprocessing
2483        131072 Time limits elapsed
2484        18 bit (262144) - Perturb fathom nodes
2485        19 bit (524288) - No limit on fathom nodes
2486        20 bit (1048576) - Reduce sum of infeasibilities before cuts
2487        21 bit (2097152) - Reduce sum of infeasibilities after cuts
2488    */
2489    int moreSpecialOptions_;
2490    /// User node comparison function
2491    CbcCompareBase * nodeCompare_;
2492    /// User feasibility function (see CbcFeasibleBase.hpp)
2493    CbcFeasibilityBase * problemFeasibility_;
2494    /// Tree
2495    CbcTree * tree_;
2496    /// A pointer to model to be used for subtrees
2497    CbcModel * subTreeModel_;
2498    /// Number of times any subtree stopped on nodes, time etc
2499    int numberStoppedSubTrees_;
2500    /// Variable selection function
2501    CbcBranchDecision * branchingMethod_;
2502    /// Cut modifier function
2503    CbcCutModifier * cutModifier_;
2504    /// Strategy
2505    CbcStrategy * strategy_;
2506    /// Parent model
2507    CbcModel * parentModel_;
2508    /** Whether to automatically do presolve before branch and bound.
2509        0 - no
2510        1 - ordinary presolve
2511        2 - integer presolve (dodgy)
2512    */
2513    /// Pointer to array[getNumCols()] (for speed) of column lower bounds
2514    const double * cbcColLower_;
2515    /// Pointer to array[getNumCols()] (for speed) of column upper bounds
2516    const double * cbcColUpper_;
2517    /// Pointer to array[getNumRows()] (for speed) of row lower bounds
2518    const double * cbcRowLower_;
2519    /// Pointer to array[getNumRows()] (for speed) of row upper bounds
2520    const double * cbcRowUpper_;
2521    /// Pointer to array[getNumCols()] (for speed) of primal solution vector
2522    const double * cbcColSolution_;
2523    /// Pointer to array[getNumRows()] (for speed) of dual prices
2524    const double * cbcRowPrice_;
2525    /// Get a pointer to array[getNumCols()] (for speed) of reduced costs
2526    const double * cbcReducedCost_;
2527    /// Pointer to array[getNumRows()] (for speed) of row activity levels.
2528    const double * cbcRowActivity_;
2529    /// Pointer to user-defined data structure
2530    void * appData_;
2531    /// Presolve for CbcTreeLocal
2532    int presolve_;
2533    /** Maximum number of candidates to consider for strong branching.
2534      To disable strong branching, set this to 0.
2535    */
2536    int numberStrong_;
2537    /** \brief The number of branches before pseudo costs believed
2538           in dynamic strong branching.
2539
2540      A value of 0 is  off.
2541    */
2542    int numberBeforeTrust_;
2543    /** \brief The number of variables for which to compute penalties
2544           in dynamic strong branching.
2545    */
2546    int numberPenalties_;
2547    /// For threads - stop after this many "iterations"
2548    int stopNumberIterations_;
2549    /** Scale factor to make penalties match strong.
2550        Should/will be computed */
2551    double penaltyScaleFactor_;
2552    /// Number of analyze iterations to do
2553    int numberAnalyzeIterations_;
2554    /// Arrays with analysis results
2555    double * analyzeResults_;
2556    /// Number of nodes infeasible by normal branching (before cuts)
2557    int numberInfeasibleNodes_;
2558    /** Problem type as set by user or found by analysis.  This will be extended
2559        0 - not known
2560        1 - Set partitioning <=
2561        2 - Set partitioning ==
2562        3 - Set covering
2563    */
2564    int problemType_;
2565    /// Print frequency
2566    int printFrequency_;
2567    /// Number of cut generators
2568    int numberCutGenerators_;
2569    // Cut generators
2570    CbcCutGenerator ** generator_;
2571    // Cut generators before any changes
2572    CbcCutGenerator ** virginGenerator_;
2573    /// Number of heuristics
2574    int numberHeuristics_;
2575    /// Heuristic solvers
2576    CbcHeuristic ** heuristic_;
2577    /// Pointer to heuristic solver which found last solution (or NULL)
2578    CbcHeuristic * lastHeuristic_;
2579    /// Depth for fast nodes
2580    int fastNodeDepth_;
2581    /*! Pointer to the event handler */
2582# ifdef CBC_ONLY_CLP
2583    ClpEventHandler *eventHandler_ ;
2584# else
2585    CbcEventHandler *eventHandler_ ;
2586# endif
2587
2588    /// Total number of objects
2589    int numberObjects_;
2590
2591    /** \brief Integer and Clique and ... information
2592
2593      \note The code assumes that the first objects on the list will be
2594        SimpleInteger objects for each integer variable, followed by
2595        Clique objects. Portions of the code that understand Clique objects
2596        will fail if they do not immediately follow the SimpleIntegers.
2597        Large chunks of the code will fail if the first objects are not
2598        SimpleInteger. As of 2003.08, SimpleIntegers and Cliques are the only
2599        objects.
2600    */
2601    OsiObject ** object_;
2602    /// Now we may not own objects - just point to solver's objects
2603    bool ownObjects_;
2604
2605    /// Original columns as created by integerPresolve or preprocessing
2606    int * originalColumns_;
2607    /// How often to scan global cuts
2608    int howOftenGlobalScan_;
2609    /** Number of times global cuts violated.  When global cut pool then this
2610        should be kept for each cut and type of cut */
2611    int numberGlobalViolations_;
2612    /// Number of extra iterations in fast lp
2613    int numberExtraIterations_;
2614    /// Number of extra nodes in fast lp
2615    int numberExtraNodes_;
2616    /** Value of objective at continuous
2617        (Well actually after initial round of cuts)
2618    */
2619    double continuousObjective_;
2620    /** Value of objective before root node cuts added
2621    */
2622    double originalContinuousObjective_;
2623    /// Number of infeasibilities at continuous
2624    int continuousInfeasibilities_;
2625    /// Maximum number of cut passes at root
2626    int maximumCutPassesAtRoot_;
2627    /// Maximum number of cut passes
2628    int maximumCutPasses_;
2629    /// Preferred way of branching
2630    int preferredWay_;
2631    /// Current cut pass number
2632    int currentPassNumber_;
2633    /// Maximum number of cuts (for whichGenerator_)
2634    int maximumWhich_;
2635    /// Maximum number of rows
2636    int maximumRows_;
2637    /// Current depth
2638    int currentDepth_;
2639    /// Thread specific random number generator
2640    mutable CoinThreadRandom randomNumberGenerator_;
2641    /// Work basis for temporary use
2642    CoinWarmStartBasis workingBasis_;
2643    /// Which cut generator generated this cut
2644    int * whichGenerator_;
2645    /// Maximum number of statistics
2646    int maximumStatistics_;
2647    /// statistics
2648    CbcStatistics ** statistics_;
2649    /// Maximum depth reached
2650    int maximumDepthActual_;
2651    /// Number of reduced cost fixings
2652    double numberDJFixed_;
2653    /// Probing info
2654    CglTreeProbingInfo * probingInfo_;
2655    /// Number of fixed by analyze at root
2656    int numberFixedAtRoot_;
2657    /// Number fixed by analyze so far
2658    int numberFixedNow_;
2659    /// Whether stopping on gap
2660    bool stoppedOnGap_;
2661    /// Whether event happened
2662    mutable bool eventHappened_;
2663    /// Number of long strong goes
2664    int numberLongStrong_;
2665    /// Number of old active cuts
2666    int numberOldActiveCuts_;
2667    /// Number of new cuts
2668    int numberNewCuts_;
2669    /// Strategy worked out - mainly at root node
2670    int searchStrategy_;
2671    /// Number of iterations in strong branching
2672    int numberStrongIterations_;
2673    /** 0 - number times strong branching done, 1 - number fixed, 2 - number infeasible
2674        Second group of three is a snapshot at node [6] */
2675    int strongInfo_[7];
2676    /**
2677        For advanced applications you may wish to modify the behavior of Cbc
2678        e.g. if the solver is a NLP solver then you may not have an exact
2679        optimum solution at each step.  This gives characteristics - just for one BAB.
2680        For actually saving/restoring a solution you need the actual solver one.
2681    */
2682    OsiBabSolver * solverCharacteristics_;
2683    /// Whether to force a resolve after takeOffCuts
2684    bool resolveAfterTakeOffCuts_;
2685    /// Maximum number of iterations (designed to be used in heuristics)
2686    int maximumNumberIterations_;
2687    /// Anything with priority >= this can be treated as continuous
2688    int continuousPriority_;
2689    /// Number of outstanding update information items
2690    int numberUpdateItems_;
2691    /// Maximum number of outstanding update information items
2692    int maximumNumberUpdateItems_;
2693    /// Update items
2694    CbcObjectUpdateData * updateItems_;
2695    /// Stored row cuts for donor/recipient CbcModel
2696    CglStored * storedRowCuts_;
2697    /**
2698       Parallel
2699       0 - off
2700       1 - testing
2701       2-99 threads
2702       other special meanings
2703    */
2704    int numberThreads_;
2705    /** thread mode
2706        always use numberThreads for branching
2707        1 set then deterministic
2708        2 set then use numberThreads for root cuts
2709        4 set then use numberThreads in root mini branch and bound
2710        default is 0
2711    */
2712    int threadMode_;
2713    /// Thread stuff for master
2714    CbcBaseModel * master_;
2715    /// Pointer to masterthread
2716    CbcThread * masterThread_;
2717//@}
2718};
2719/// So we can use osiObject or CbcObject during transition
2720void getIntegerInformation(const OsiObject * object, double & originalLower,
2721                           double & originalUpper) ;
2722// So we can call from other programs
2723// Real main program
2724class OsiClpSolverInterface;
2725int CbcMain (int argc, const char *argv[], OsiClpSolverInterface & solver, CbcModel ** babSolver);
2726int CbcMain (int argc, const char *argv[], CbcModel & babSolver);
2727// four ways of calling
2728int callCbc(const char * input2, OsiClpSolverInterface& solver1);
2729int callCbc(const char * input2);
2730int callCbc(const std::string input2, OsiClpSolverInterface& solver1);
2731int callCbc(const std::string input2) ;
2732// When we want to load up CbcModel with options first
2733void CbcMain0 (CbcModel & babSolver);
2734int CbcMain1 (int argc, const char *argv[], CbcModel & babSolver);
2735// two ways of calling
2736int callCbc(const char * input2, CbcModel & babSolver);
2737int callCbc(const std::string input2, CbcModel & babSolver);
2738// And when CbcMain0 already called to initialize
2739int callCbc1(const char * input2, CbcModel & babSolver);
2740int callCbc1(const std::string input2, CbcModel & babSolver);
2741// And when CbcMain0 already called to initialize (with call back) (see CbcMain1 for whereFrom)
2742int callCbc1(const char * input2, CbcModel & babSolver, int (CbcModel * currentSolver, int whereFrom));
2743int callCbc1(const std::string input2, CbcModel & babSolver, int (CbcModel * currentSolver, int whereFrom));
2744int CbcMain1 (int argc, const char *argv[], CbcModel & babSolver, int (CbcModel * currentSolver, int whereFrom));
2745// For uniform setting of cut and heuristic options
2746void setCutAndHeuristicOptions(CbcModel & model);
2747#endif
2748
Note: See TracBrowser for help on using the repository browser.