source: stable/2.7/Cbc/src/CbcModel.hpp @ 1732

Last change on this file since 1732 was 1732, checked in by stefan, 8 years ago

add CbcModel::getExtraNodeCount to get number of nodes enumerated by CLP

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 97.4 KB
Line 
1/* $Id: CbcModel.hpp 1732 2011-09-25 15:25:22Z stefan $ */
2// Copyright (C) 2002, International Business Machines
3// Corporation and others.  All Rights Reserved.
4// This code is licensed under the terms of the Eclipse Public License (EPL).
5
6#ifndef CbcModel_H
7#define CbcModel_H
8#include <string>
9#include <vector>
10#include "CoinMessageHandler.hpp"
11#include "OsiSolverInterface.hpp"
12#include "OsiBranchingObject.hpp"
13#include "OsiCuts.hpp"
14#include "CoinWarmStartBasis.hpp"
15#include "CbcCompareBase.hpp"
16#include "CbcMessage.hpp"
17#include "CbcEventHandler.hpp"
18#include "ClpDualRowPivot.hpp"
19
20
21class CbcCutGenerator;
22class CbcBaseModel;
23class OsiRowCut;
24class OsiBabSolver;
25class OsiRowCutDebugger;
26class CglCutGenerator;
27class CglStored;
28class CbcCutModifier;
29class CglTreeProbingInfo;
30class CbcHeuristic;
31class OsiObject;
32class CbcThread;
33class CbcTree;
34class CbcStrategy;
35class CbcFeasibilityBase;
36class CbcStatistics;
37class CbcEventHandler ;
38class CglPreProcess;
39# ifdef COIN_HAS_CLP
40class OsiClpSolverInterface;
41class ClpNodeStuff;
42#endif
43// #define CBC_CHECK_BASIS 1
44
45//#############################################################################
46
47/** Simple Branch and bound class
48
49  The initialSolve() method solves the initial LP relaxation of the MIP
50  problem. The branchAndBound() method can then be called to finish using
51  a branch and cut algorithm.
52
53  <h3>Search Tree Traversal</h3>
54
55  Subproblems (aka nodes) requiring additional evaluation are stored using
56  the CbcNode and CbcNodeInfo objects. Ancestry linkage is maintained in the
57  CbcNodeInfo object. Evaluation of a subproblem within branchAndBound()
58  proceeds as follows:
59  <ul>
60    <li> The node representing the most promising parent subproblem is popped
61         from the heap which holds the set of subproblems requiring further
62         evaluation.
63    <li> Using branching instructions stored in the node, and information in
64         its ancestors, the model and solver are adjusted to create the
65         active subproblem.
66    <li> If the parent subproblem will require further evaluation
67         (<i>i.e.</i>, there are branches remaining) its node is pushed back
68         on the heap. Otherwise, the node is deleted.  This may trigger
69         recursive deletion of ancestors.
70    <li> The newly created subproblem is evaluated.
71    <li> If the subproblem requires further evaluation, a node is created.
72         All information needed to recreate the subproblem (branching
73         information, row and column cuts) is placed in the node and the node
74         is added to the set of subproblems awaiting further evaluation.
75  </ul>
76  Note that there is never a node representing the active subproblem; the model
77  and solver represent the active subproblem.
78
79  <h3>Row (Constraint) Cut Handling</h3>
80
81  For a typical subproblem, the sequence of events is as follows:
82  <ul>
83    <li> The subproblem is rebuilt for further evaluation: One result of a
84         call to addCuts() is a traversal of ancestors, leaving a list of all
85         cuts used in the ancestors in #addedCuts_. This list is then scanned
86         to construct a basis that includes only tight cuts. Entries for
87         loose cuts are set to NULL.
88    <li> The subproblem is evaluated: One result of a call to solveWithCuts()
89         is the return of a set of newly generated cuts for the subproblem.
90         #addedCuts_ is also kept up-to-date as old cuts become loose.
91    <li> The subproblem is stored for further processing: A call to
92         CbcNodeInfo::addCuts() adds the newly generated cuts to the
93         CbcNodeInfo object associated with this node.
94  </ul>
95  See CbcCountRowCut for details of the bookkeeping associated with cut
96  management.
97*/
98
99class CbcModel  {
100
101public:
102
103    enum CbcIntParam {
104        /** The maximum number of nodes before terminating */
105        CbcMaxNumNode = 0,
106        /** The maximum number of solutions before terminating */
107        CbcMaxNumSol,
108        /** Fathoming discipline
109
110          Controls objective function comparisons for purposes of fathoming by bound
111          or determining monotonic variables.
112
113          If 1, action is taken only when the current objective is strictly worse
114          than the target. Implementation is handled by adding a small tolerance to
115          the target.
116        */
117        CbcFathomDiscipline,
118        /** Adjusts printout
119            1 does different node message with number unsatisfied on last branch
120        */
121        CbcPrinting,
122        /** Number of branches (may be more than number of nodes as may
123            include strong branching) */
124        CbcNumberBranches,
125        /** Just a marker, so that a static sized array can store parameters. */
126        CbcLastIntParam
127    };
128
129    enum CbcDblParam {
130        /** The maximum amount the value of an integer variable can vary from
131            integer and still be considered feasible. */
132        CbcIntegerTolerance = 0,
133        /** The objective is assumed to worsen by this amount for each
134            integer infeasibility. */
135        CbcInfeasibilityWeight,
136        /** The amount by which to tighten the objective function cutoff when
137            a new solution is discovered. */
138        CbcCutoffIncrement,
139        /** Stop when the gap between the objective value of the best known solution
140          and the best bound on the objective of any solution is less than this.
141
142          This is an absolute value. Conversion from a percentage is left to the
143          client.
144        */
145        CbcAllowableGap,
146        /** Stop when the gap between the objective value of the best known solution
147          and the best bound on the objective of any solution is less than this
148          fraction of of the absolute value of best known solution.
149
150          Code stops if either this test or CbcAllowableGap test succeeds
151        */
152        CbcAllowableFractionGap,
153        /** \brief The maximum number of seconds before terminating.
154               A double should be adequate! */
155        CbcMaximumSeconds,
156        /// Cutoff - stored for speed
157        CbcCurrentCutoff,
158        /// Optimization direction - stored for speed
159        CbcOptimizationDirection,
160        /// Current objective value
161        CbcCurrentObjectiveValue,
162        /// Current minimization objective value
163        CbcCurrentMinimizationObjectiveValue,
164        /** \brief The time at start of model.
165               So that other pieces of code can access */
166        CbcStartSeconds,
167        /** Stop doing heuristics when the gap between the objective value of the
168            best known solution and the best bound on the objective of any solution
169            is less than this.
170
171          This is an absolute value. Conversion from a percentage is left to the
172          client.
173        */
174        CbcHeuristicGap,
175        /** Stop doing heuristics when the gap between the objective value of the
176            best known solution and the best bound on the objective of any solution
177            is less than this fraction of of the absolute value of best known
178            solution.
179
180          Code stops if either this test or CbcAllowableGap test succeeds
181        */
182        CbcHeuristicFractionGap,
183        /// Smallest non-zero change on a branch
184        CbcSmallestChange,
185        /// Sum of non-zero changes on a branch
186        CbcSumChange,
187        /// Largest non-zero change on a branch
188        CbcLargestChange,
189        /// Small non-zero change on a branch to be used as guess
190        CbcSmallChange,
191        /** Just a marker, so that a static sized array can store parameters. */
192        CbcLastDblParam
193    };
194
195    //---------------------------------------------------------------------------
196
197public:
198    ///@name Solve methods
199    //@{
200    /** \brief Solve the initial LP relaxation
201
202      Invoke the solver's %initialSolve() method.
203    */
204    void initialSolve();
205
206    /** \brief Invoke the branch \& cut algorithm
207
208      The method assumes that initialSolve() has been called to solve the
209      LP relaxation. It processes the root node, then proceeds to explore the
210      branch & cut search tree. The search ends when the tree is exhausted or
211      one of several execution limits is reached.
212      If doStatistics is 1 summary statistics are printed
213      if 2 then also the path to best solution (if found by branching)
214      if 3 then also one line per node
215    */
216    void branchAndBound(int doStatistics = 0);
217private:
218
219    /** \brief Evaluate a subproblem using cutting planes and heuristics
220
221      The method invokes a main loop which generates cuts, applies heuristics,
222      and reoptimises using the solver's native %resolve() method.
223      It returns true if the subproblem remains feasible at the end of the
224      evaluation.
225    */
226    bool solveWithCuts(OsiCuts & cuts, int numberTries, CbcNode * node);
227    /** Generate one round of cuts - serial mode
228      returns -
229      0 - normal
230      1 - must keep going
231      2 - set numberTries to zero
232      -1 - infeasible
233    */
234    int serialCuts(OsiCuts & cuts, CbcNode * node, OsiCuts & slackCuts, int lastNumberCuts);
235    /** Generate one round of cuts - parallel mode
236        returns -
237        0 - normal
238        1 - must keep going
239        2 - set numberTries to zero
240        -1 - infeasible
241    */
242    int parallelCuts(CbcBaseModel * master, OsiCuts & cuts, CbcNode * node, OsiCuts & slackCuts, int lastNumberCuts);
243    /** Input one node output N nodes to put on tree and optional solution update
244        This should be able to operate in parallel so is given a solver and is const(ish)
245        However we will need to keep an array of solver_ and bases and more
246        status is 0 for normal, 1 if solution
247        Calling code should always push nodes back on tree
248    */
249    CbcNode ** solveOneNode(int whichSolver, CbcNode * node,
250                            int & numberNodesOutput, int & status) ;
251    /// Update size of whichGenerator
252    void resizeWhichGenerator(int numberNow, int numberAfter);
253public:
254#ifdef CBC_KEEP_DEPRECATED
255    // See if anyone is using these any more!!
256    /** \brief create a clean model from partially fixed problem
257
258      The method creates a new model with given bounds and with no tree.
259    */
260    CbcModel *  cleanModel(const double * lower, const double * upper);
261    /** \brief Invoke the branch \& cut algorithm on partially fixed problem
262
263      The method presolves the given model and does branch and cut. The search
264      ends when the tree is exhausted or maximum nodes is reached.
265
266      If better solution found then it is saved.
267
268      Returns 0 if search completed and solution, 1 if not completed and solution,
269      2 if completed and no solution, 3 if not completed and no solution.
270
271      Normally okay to do cleanModel immediately followed by subBranchandBound
272      (== other form of subBranchAndBound)
273      but may need to get at model for advanced features.
274
275      Deletes model2
276    */
277    int subBranchAndBound(CbcModel * model2,
278                          CbcModel * presolvedModel,
279                          int maximumNodes);
280    /** \brief Invoke the branch \& cut algorithm on partially fixed problem
281
282      The method creates a new model with given bounds, presolves it
283      then proceeds to explore the branch & cut search tree. The search
284      ends when the tree is exhausted or maximum nodes is reached.
285
286      If better solution found then it is saved.
287
288      Returns 0 if search completed and solution, 1 if not completed and solution,
289      2 if completed and no solution, 3 if not completed and no solution.
290
291      This is just subModel immediately followed by other version of
292      subBranchandBound.
293
294    */
295    int subBranchAndBound(const double * lower, const double * upper,
296                          int maximumNodes);
297
298    /** \brief Process root node and return a strengthened model
299
300      The method assumes that initialSolve() has been called to solve the
301      LP relaxation. It processes the root node and then returns a pointer
302      to the strengthened model (or NULL if infeasible)
303    */
304    OsiSolverInterface *  strengthenedModel();
305    /** preProcess problem - replacing solver
306        If makeEquality true then <= cliques converted to ==.
307        Presolve will be done numberPasses times.
308
309        Returns NULL if infeasible
310
311        If makeEquality is 1 add slacks to get cliques,
312        if 2 add slacks to get sos (but only if looks plausible) and keep sos info
313    */
314    CglPreProcess * preProcess( int makeEquality = 0, int numberPasses = 5,
315                                int tuning = 5);
316    /** Does postprocessing - original solver back.
317        User has to delete process */
318    void postProcess(CglPreProcess * process);
319#endif
320    /// Adds an update information object
321    void addUpdateInformation(const CbcObjectUpdateData & data);
322    /** Do one node - broken out for clarity?
323        also for parallel (when baseModel!=this)
324        Returns 1 if solution found
325        node NULL on return if no branches left
326        newNode NULL if no new node created
327    */
328    int doOneNode(CbcModel * baseModel, CbcNode * & node, CbcNode * & newNode);
329
330public:
331    /** \brief Reoptimise an LP relaxation
332
333      Invoke the solver's %resolve() method.
334      whereFrom -
335      0 - initial continuous
336      1 - resolve on branch (before new cuts)
337      2 - after new cuts
338      3  - obsolete code or something modified problem in unexpected way
339      10 - after strong branching has fixed variables at root
340      11 - after strong branching has fixed variables in tree
341
342      returns 1 feasible, 0 infeasible, -1 feasible but skip cuts
343    */
344    int resolve(CbcNodeInfo * parent, int whereFrom,
345                double * saveSolution = NULL,
346                double * saveLower = NULL,
347                double * saveUpper = NULL);
348    /// Make given rows (L or G) into global cuts and remove from lp
349    void makeGlobalCuts(int numberRows, const int * which);
350    /// Make given cut into a global cut
351    void makeGlobalCut(const OsiRowCut * cut);
352    /// Make given cut into a global cut
353    void makeGlobalCut(const OsiRowCut & cut);
354    /// Make given column cut into a global cut
355    void makeGlobalCut(const OsiColCut * cut);
356    /// Make given column cut into a global cut
357    void makeGlobalCut(const OsiColCut & cut);
358    //@}
359
360    /** \name Presolve methods */
361    //@{
362
363    /** Identify cliques and construct corresponding objects.
364
365        Find cliques with size in the range
366        [\p atLeastThisMany, \p lessThanThis] and construct corresponding
367        CbcClique objects.
368        If \p makeEquality is true then a new model may be returned if
369        modifications had to be made, otherwise \c this is returned.
370        If the problem is infeasible #numberObjects_ is set to -1.
371        A client must use deleteObjects() before a second call to findCliques().
372        If priorities exist, clique priority is set to the default.
373    */
374    CbcModel * findCliques(bool makeEquality, int atLeastThisMany,
375                           int lessThanThis, int defaultValue = 1000);
376
377    /** Do integer presolve, creating a new (presolved) model.
378
379      Returns the new model, or NULL if feasibility is lost.
380      If weak is true then just does a normal presolve
381
382      \todo It remains to work out the cleanest way of getting a solution to
383            the original problem at the end. So this is very preliminary.
384     */
385    CbcModel * integerPresolve(bool weak = false);
386
387    /** Do integer presolve, modifying the current model.
388
389        Returns true if the model remains feasible after presolve.
390    */
391    bool integerPresolveThisModel(OsiSolverInterface * originalSolver, bool weak = false);
392
393
394    /// Put back information into the original model after integer presolve.
395    void originalModel(CbcModel * presolvedModel, bool weak);
396
397    /** \brief For variables involved in VUB constraints, see if we can tighten
398           bounds by solving lp's
399
400        Returns false if feasibility is lost.
401        If CglProbing is available, it will be tried as well to see if it can
402        tighten bounds.
403        This routine is just a front end for tightenVubs(int,const int*,double).
404
405        If <tt>type = -1</tt> all variables are processed (could be very slow).
406        If <tt>type = 0</tt> only variables involved in VUBs are processed.
407        If <tt>type = n > 0</tt>, only the n most expensive VUB variables
408        are processed, where it is assumed that x is at its maximum so delta
409        would have to go to 1 (if x not at bound).
410
411        If \p allowMultipleBinary is true, then a VUB constraint is a row with
412        one continuous variable and any number of binary variables.
413
414        If <tt>useCutoff < 1.0e30</tt>, the original objective is installed as a
415        constraint with \p useCutoff as a bound.
416    */
417    bool tightenVubs(int type, bool allowMultipleBinary = false,
418                     double useCutoff = 1.0e50);
419
420    /** \brief For variables involved in VUB constraints, see if we can tighten
421           bounds by solving lp's
422
423      This version is just handed a list of variables to be processed.
424    */
425    bool tightenVubs(int numberVubs, const int * which,
426                     double useCutoff = 1.0e50);
427    /**
428      Analyze problem to find a minimum change in the objective function.
429    */
430    void analyzeObjective();
431
432    /**
433      Add additional integers.
434    */
435    void AddIntegers();
436
437    /**
438      Save copy of the model.
439    */
440    void saveModel(OsiSolverInterface * saveSolver, double * checkCutoffForRestart, bool * feasible);
441
442    //@}
443
444    /** \name Object manipulation routines
445
446      See OsiObject for an explanation of `object' in the context of CbcModel.
447    */
448    //@{
449
450    /// Get the number of objects
451    inline int numberObjects() const {
452        return numberObjects_;
453    }
454    /// Set the number of objects
455    inline void setNumberObjects(int number) {
456        numberObjects_ = number;
457    }
458
459    /// Get the array of objects
460    inline OsiObject ** objects() const {
461        return object_;
462    }
463
464    /// Get the specified object
465    const inline OsiObject * object(int which) const {
466        return object_[which];
467    }
468    /// Get the specified object
469    inline OsiObject * modifiableObject(int which) const {
470        return object_[which];
471    }
472
473    void setOptionalInteger(int index);
474
475    /// Delete all object information (and just back to integers if true)
476    void deleteObjects(bool findIntegers = true);
477
478    /** Add in object information.
479
480      Objects are cloned; the owner can delete the originals.
481    */
482    void addObjects(int numberObjects, OsiObject ** objects);
483
484    /** Add in object information.
485
486      Objects are cloned; the owner can delete the originals.
487    */
488    void addObjects(int numberObjects, CbcObject ** objects);
489
490    /// Ensure attached objects point to this model.
491    void synchronizeModel() ;
492
493    /** \brief Identify integer variables and create corresponding objects.
494
495      Record integer variables and create an CbcSimpleInteger object for each
496      one.
497      If \p startAgain is true, a new scan is forced, overwriting any existing
498      integer variable information.
499      If type > 0 then 1==PseudoCost, 2 new ones low priority
500    */
501
502    void findIntegers(bool startAgain, int type = 0);
503
504    //@}
505
506    //---------------------------------------------------------------------------
507
508    /**@name Parameter set/get methods
509
510       The set methods return true if the parameter was set to the given value,
511       false if the value of the parameter is out of range.
512
513       The get methods return the value of the parameter.
514
515    */
516    //@{
517    /// Set an integer parameter
518    inline bool setIntParam(CbcIntParam key, int value) {
519        intParam_[key] = value;
520        return true;
521    }
522    /// Set a double parameter
523    inline bool setDblParam(CbcDblParam key, double value) {
524        dblParam_[key] = value;
525        return true;
526    }
527    /// Get an integer parameter
528    inline int getIntParam(CbcIntParam key) const {
529        return intParam_[key];
530    }
531    /// Get a double parameter
532    inline double getDblParam(CbcDblParam key) const {
533        return dblParam_[key];
534    }
535    /*! \brief Set cutoff bound on the objective function.
536
537      When using strict comparison, the bound is adjusted by a tolerance to
538      avoid accidentally cutting off the optimal solution.
539    */
540    void setCutoff(double value) ;
541
542    /// Get the cutoff bound on the objective function - always as minimize
543    inline double getCutoff() const { //double value ;
544        //solver_->getDblParam(OsiDualObjectiveLimit,value) ;
545        //assert( dblParam_[CbcCurrentCutoff]== value * solver_->getObjSense());
546        return dblParam_[CbcCurrentCutoff];
547    }
548
549    /// Set the \link CbcModel::CbcMaxNumNode maximum node limit \endlink
550    inline bool setMaximumNodes( int value) {
551        return setIntParam(CbcMaxNumNode, value);
552    }
553
554    /// Get the \link CbcModel::CbcMaxNumNode maximum node limit \endlink
555    inline int getMaximumNodes() const {
556        return getIntParam(CbcMaxNumNode);
557    }
558
559    /** Set the
560        \link CbcModel::CbcMaxNumSol maximum number of solutions \endlink
561        desired.
562    */
563    inline bool setMaximumSolutions( int value) {
564        return setIntParam(CbcMaxNumSol, value);
565    }
566    /** Get the
567        \link CbcModel::CbcMaxNumSol maximum number of solutions \endlink
568        desired.
569    */
570    inline int getMaximumSolutions() const {
571        return getIntParam(CbcMaxNumSol);
572    }
573    /// Set the printing mode
574    inline bool setPrintingMode( int value) {
575        return setIntParam(CbcPrinting, value);
576    }
577
578    /// Get the printing mode
579    inline int getPrintingMode() const {
580        return getIntParam(CbcPrinting);
581    }
582
583    /** Set the
584        \link CbcModel::CbcMaximumSeconds maximum number of seconds \endlink
585        desired.
586    */
587    inline bool setMaximumSeconds( double value) {
588        return setDblParam(CbcMaximumSeconds, value);
589    }
590    /** Get the
591        \link CbcModel::CbcMaximumSeconds maximum number of seconds \endlink
592        desired.
593    */
594    inline double getMaximumSeconds() const {
595        return getDblParam(CbcMaximumSeconds);
596    }
597    /// Current time since start of branchAndbound
598    double getCurrentSeconds() const ;
599
600    /// Return true if maximum time reached
601    bool maximumSecondsReached() const ;
602
603    /** Set the
604      \link CbcModel::CbcIntegerTolerance integrality tolerance \endlink
605    */
606    inline bool setIntegerTolerance( double value) {
607        return setDblParam(CbcIntegerTolerance, value);
608    }
609    /** Get the
610      \link CbcModel::CbcIntegerTolerance integrality tolerance \endlink
611    */
612    inline double getIntegerTolerance() const {
613        return getDblParam(CbcIntegerTolerance);
614    }
615
616    /** Set the
617        \link CbcModel::CbcInfeasibilityWeight
618          weight per integer infeasibility \endlink
619    */
620    inline bool setInfeasibilityWeight( double value) {
621        return setDblParam(CbcInfeasibilityWeight, value);
622    }
623    /** Get the
624        \link CbcModel::CbcInfeasibilityWeight
625          weight per integer infeasibility \endlink
626    */
627    inline double getInfeasibilityWeight() const {
628        return getDblParam(CbcInfeasibilityWeight);
629    }
630
631    /** Set the \link CbcModel::CbcAllowableGap allowable gap \endlink
632        between the best known solution and the best possible solution.
633    */
634    inline bool setAllowableGap( double value) {
635        return setDblParam(CbcAllowableGap, value);
636    }
637    /** Get the \link CbcModel::CbcAllowableGap allowable gap \endlink
638        between the best known solution and the best possible solution.
639    */
640    inline double getAllowableGap() const {
641        return getDblParam(CbcAllowableGap);
642    }
643
644    /** Set the \link CbcModel::CbcAllowableFractionGap fraction allowable gap \endlink
645        between the best known solution and the best possible solution.
646    */
647    inline bool setAllowableFractionGap( double value) {
648        return setDblParam(CbcAllowableFractionGap, value);
649    }
650    /** Get the \link CbcModel::CbcAllowableFractionGap fraction allowable gap \endlink
651        between the best known solution and the best possible solution.
652    */
653    inline double getAllowableFractionGap() const {
654        return getDblParam(CbcAllowableFractionGap);
655    }
656    /** Set the \link CbcModel::CbcAllowableFractionGap percentage allowable gap \endlink
657        between the best known solution and the best possible solution.
658    */
659    inline bool setAllowablePercentageGap( double value) {
660        return setDblParam(CbcAllowableFractionGap, value*0.01);
661    }
662    /** Get the \link CbcModel::CbcAllowableFractionGap percentage allowable gap \endlink
663        between the best known solution and the best possible solution.
664    */
665    inline double getAllowablePercentageGap() const {
666        return 100.0*getDblParam(CbcAllowableFractionGap);
667    }
668    /** Set the \link CbcModel::CbcHeuristicGap heuristic gap \endlink
669        between the best known solution and the best possible solution.
670    */
671    inline bool setHeuristicGap( double value) {
672        return setDblParam(CbcHeuristicGap, value);
673    }
674    /** Get the \link CbcModel::CbcHeuristicGap heuristic gap \endlink
675        between the best known solution and the best possible solution.
676    */
677    inline double getHeuristicGap() const {
678        return getDblParam(CbcHeuristicGap);
679    }
680
681    /** Set the \link CbcModel::CbcHeuristicFractionGap fraction heuristic gap \endlink
682        between the best known solution and the best possible solution.
683    */
684    inline bool setHeuristicFractionGap( double value) {
685        return setDblParam(CbcHeuristicFractionGap, value);
686    }
687    /** Get the \link CbcModel::CbcHeuristicFractionGap fraction heuristic gap \endlink
688        between the best known solution and the best possible solution.
689    */
690    inline double getHeuristicFractionGap() const {
691        return getDblParam(CbcHeuristicFractionGap);
692    }
693    /** Set the
694        \link CbcModel::CbcCutoffIncrement  \endlink
695        desired.
696    */
697    inline bool setCutoffIncrement( double value) {
698        return setDblParam(CbcCutoffIncrement, value);
699    }
700    /** Get the
701        \link CbcModel::CbcCutoffIncrement  \endlink
702        desired.
703    */
704    inline double getCutoffIncrement() const {
705        return getDblParam(CbcCutoffIncrement);
706    }
707
708    /** Pass in target solution and optional priorities.
709        If priorities then >0 means only branch if incorrect
710        while <0 means branch even if correct. +1 or -1 are
711        highest priority */
712    void setHotstartSolution(const double * solution, const int * priorities = NULL) ;
713
714    /// Set the minimum drop to continue cuts
715    inline void setMinimumDrop(double value) {
716        minimumDrop_ = value;
717    }
718    /// Get the minimum drop to continue cuts
719    inline double getMinimumDrop() const {
720        return minimumDrop_;
721    }
722
723    /** Set the maximum number of cut passes at root node (default 20)
724        Minimum drop can also be used for fine tuning */
725    inline void setMaximumCutPassesAtRoot(int value) {
726        maximumCutPassesAtRoot_ = value;
727    }
728    /** Get the maximum number of cut passes at root node */
729    inline int getMaximumCutPassesAtRoot() const {
730        return maximumCutPassesAtRoot_;
731    }
732
733    /** Set the maximum number of cut passes at other nodes (default 10)
734        Minimum drop can also be used for fine tuning */
735    inline void setMaximumCutPasses(int value) {
736        maximumCutPasses_ = value;
737    }
738    /** Get the maximum number of cut passes at other nodes (default 10) */
739    inline int getMaximumCutPasses() const {
740        return maximumCutPasses_;
741    }
742    /** Get current cut pass number in this round of cuts.
743        (1 is first pass) */
744    inline int getCurrentPassNumber() const {
745        return currentPassNumber_;
746    }
747
748    /** Set the maximum number of candidates to be evaluated for strong
749      branching.
750
751      A value of 0 disables strong branching.
752    */
753    void setNumberStrong(int number);
754    /** Get the maximum number of candidates to be evaluated for strong
755      branching.
756    */
757    inline int numberStrong() const {
758        return numberStrong_;
759    }
760    /** Set global preferred way to branch
761        -1 down, +1 up, 0 no preference */
762    inline void setPreferredWay(int value) {
763        preferredWay_ = value;
764    }
765    /** Get the preferred way to branch (default 0) */
766    inline int getPreferredWay() const {
767        return preferredWay_;
768    }
769    /// Get at which depths to do cuts
770    inline int whenCuts() const {
771        return whenCuts_;
772    }
773    /// Set at which depths to do cuts
774    inline void setWhenCuts(int value) {
775        whenCuts_ = value;
776    }
777    /** Return true if we want to do cuts
778        If allowForTopOfTree zero then just does on multiples of depth
779        if 1 then allows for doing at top of tree
780        if 2 then says if cuts allowed anywhere apart from root
781    */
782    bool doCutsNow(int allowForTopOfTree) const;
783
784    /** Set the number of branches before pseudo costs believed
785        in dynamic strong branching.
786
787      A value of 0 disables dynamic strong branching.
788    */
789    void setNumberBeforeTrust(int number);
790    /** get the number of branches before pseudo costs believed
791        in dynamic strong branching. */
792    inline int numberBeforeTrust() const {
793        return numberBeforeTrust_;
794    }
795    /** Set the number of variables for which to compute penalties
796        in dynamic strong branching.
797
798      A value of 0 disables penalties.
799    */
800    void setNumberPenalties(int number);
801    /** get the number of variables for which to compute penalties
802        in dynamic strong branching. */
803    inline int numberPenalties() const {
804        return numberPenalties_;
805    }
806    /// Number of analyze iterations to do
807    inline void setNumberAnalyzeIterations(int number) {
808        numberAnalyzeIterations_ = number;
809    }
810    inline int numberAnalyzeIterations() const {
811        return numberAnalyzeIterations_;
812    }
813    /** Get scale factor to make penalties match strong.
814        Should/will be computed */
815    inline double penaltyScaleFactor() const {
816        return penaltyScaleFactor_;
817    }
818    /** Set scale factor to make penalties match strong.
819        Should/will be computed */
820    void setPenaltyScaleFactor(double value);
821    /** Problem type as set by user or found by analysis.  This will be extended
822        0 - not known
823        1 - Set partitioning <=
824        2 - Set partitioning ==
825        3 - Set covering
826        4 - all +- 1 or all +1 and odd
827    */
828    void inline setProblemType(int number) {
829        problemType_ = number;
830    }
831    inline int problemType() const {
832        return problemType_;
833    }
834    /// Current depth
835    inline int currentDepth() const {
836        return currentDepth_;
837    }
838
839    /// Set how often to scan global cuts
840    void setHowOftenGlobalScan(int number);
841    /// Get how often to scan global cuts
842    inline int howOftenGlobalScan() const {
843        return howOftenGlobalScan_;
844    }
845    /// Original columns as created by integerPresolve or preprocessing
846    inline int * originalColumns() const {
847        return originalColumns_;
848    }
849    /// Set original columns as created by preprocessing
850    void setOriginalColumns(const int * originalColumns) ;
851
852    /** Set the print frequency.
853
854      Controls the number of nodes evaluated between status prints.
855      If <tt>number <=0</tt> the print frequency is set to 100 nodes for large
856      problems, 1000 for small problems.
857      Print frequency has very slight overhead if small.
858    */
859    inline void setPrintFrequency(int number) {
860        printFrequency_ = number;
861    }
862    /// Get the print frequency
863    inline int printFrequency() const {
864        return printFrequency_;
865    }
866    //@}
867
868    //---------------------------------------------------------------------------
869    ///@name Methods returning info on how the solution process terminated
870    //@{
871    /// Are there a numerical difficulties?
872    bool isAbandoned() const;
873    /// Is optimality proven?
874    bool isProvenOptimal() const;
875    /// Is  infeasiblity proven (or none better than cutoff)?
876    bool isProvenInfeasible() const;
877    /// Was continuous solution unbounded
878    bool isContinuousUnbounded() const;
879    /// Was continuous solution unbounded
880    bool isProvenDualInfeasible() const;
881    /// Node limit reached?
882    bool isNodeLimitReached() const;
883    /// Time limit reached?
884    bool isSecondsLimitReached() const;
885    /// Solution limit reached?
886    bool isSolutionLimitReached() const;
887    /// Get how many iterations it took to solve the problem.
888    inline int getIterationCount() const {
889        return numberIterations_;
890    }
891    /// Increment how many iterations it took to solve the problem.
892    inline void incrementIterationCount(int value) {
893        numberIterations_ += value;
894    }
895    /// Get how many Nodes it took to solve the problem (including those in complete fathoming B&B inside CLP).
896    inline int getNodeCount() const {
897        return numberNodes_;
898    }
899    /// Increment how many nodes it took to solve the problem.
900    inline void incrementNodeCount(int value) {
901        numberNodes_ += value;
902    }
903    /// Get how many Nodes were enumerated in complete fathoming B&B inside CLP
904    inline int getExtraNodeCount() const {
905       return numberExtraNodes_;
906    }
907    /** Final status of problem
908        Some of these can be found out by is...... functions
909        -1 before branchAndBound
910        0 finished - check isProvenOptimal or isProvenInfeasible to see if solution found
911        (or check value of best solution)
912        1 stopped - on maxnodes, maxsols, maxtime
913        2 difficulties so run was abandoned
914        (5 event user programmed event occurred)
915    */
916    inline int status() const {
917        return status_;
918    }
919    inline void setProblemStatus(int value) {
920        status_ = value;
921    }
922    /** Secondary status of problem
923        -1 unset (status_ will also be -1)
924        0 search completed with solution
925        1 linear relaxation not feasible (or worse than cutoff)
926        2 stopped on gap
927        3 stopped on nodes
928        4 stopped on time
929        5 stopped on user event
930        6 stopped on solutions
931        7 linear relaxation unbounded
932    */
933    inline int secondaryStatus() const {
934        return secondaryStatus_;
935    }
936    inline void setSecondaryStatus(int value) {
937        secondaryStatus_ = value;
938    }
939    /// Are there numerical difficulties (for initialSolve) ?
940    bool isInitialSolveAbandoned() const ;
941    /// Is optimality proven (for initialSolve) ?
942    bool isInitialSolveProvenOptimal() const ;
943    /// Is primal infeasiblity proven (for initialSolve) ?
944    bool isInitialSolveProvenPrimalInfeasible() const ;
945    /// Is dual infeasiblity proven (for initialSolve) ?
946    bool isInitialSolveProvenDualInfeasible() const ;
947
948    //@}
949
950    //---------------------------------------------------------------------------
951    /**@name Problem information methods
952
953       These methods call the solver's query routines to return
954       information about the problem referred to by the current object.
955       Querying a problem that has no data associated with it result in
956       zeros for the number of rows and columns, and NULL pointers from
957       the methods that return vectors.
958
959       Const pointers returned from any data-query method are valid as
960       long as the data is unchanged and the solver is not called.
961    */
962    //@{
963    /// Number of rows in continuous (root) problem.
964    inline int numberRowsAtContinuous() const {
965        return numberRowsAtContinuous_;
966    }
967
968    /// Get number of columns
969    inline int getNumCols() const {
970        return solver_->getNumCols();
971    }
972
973    /// Get number of rows
974    inline int getNumRows() const {
975        return solver_->getNumRows();
976    }
977
978    /// Get number of nonzero elements
979    inline CoinBigIndex getNumElements() const {
980        return solver_->getNumElements();
981    }
982
983    /// Number of integers in problem
984    inline int numberIntegers() const {
985        return numberIntegers_;
986    }
987    // Integer variables
988    inline const int * integerVariable() const {
989        return integerVariable_;
990    }
991    /// Whether or not integer
992    inline char integerType(int i) const {
993        assert (integerInfo_);
994        assert (integerInfo_[i] == 0 || integerInfo_[i] == 1);
995        return integerInfo_[i];
996    }
997    /// Whether or not integer
998    inline const char * integerType() const {
999        return integerInfo_;
1000    }
1001
1002    /// Get pointer to array[getNumCols()] of column lower bounds
1003    inline const double * getColLower() const {
1004        return solver_->getColLower();
1005    }
1006
1007    /// Get pointer to array[getNumCols()] of column upper bounds
1008    inline const double * getColUpper() const {
1009        return solver_->getColUpper();
1010    }
1011
1012    /** Get pointer to array[getNumRows()] of row constraint senses.
1013        <ul>
1014        <li>'L': <= constraint
1015        <li>'E': =  constraint
1016        <li>'G': >= constraint
1017        <li>'R': ranged constraint
1018        <li>'N': free constraint
1019        </ul>
1020    */
1021    inline const char * getRowSense() const {
1022        return solver_->getRowSense();
1023    }
1024
1025    /** Get pointer to array[getNumRows()] of rows right-hand sides
1026        <ul>
1027        <li> if rowsense()[i] == 'L' then rhs()[i] == rowupper()[i]
1028        <li> if rowsense()[i] == 'G' then rhs()[i] == rowlower()[i]
1029        <li> if rowsense()[i] == 'R' then rhs()[i] == rowupper()[i]
1030        <li> if rowsense()[i] == 'N' then rhs()[i] == 0.0
1031        </ul>
1032    */
1033    inline const double * getRightHandSide() const {
1034        return solver_->getRightHandSide();
1035    }
1036
1037    /** Get pointer to array[getNumRows()] of row ranges.
1038        <ul>
1039        <li> if rowsense()[i] == 'R' then
1040        rowrange()[i] == rowupper()[i] - rowlower()[i]
1041        <li> if rowsense()[i] != 'R' then
1042        rowrange()[i] is 0.0
1043        </ul>
1044    */
1045    inline const double * getRowRange() const {
1046        return solver_->getRowRange();
1047    }
1048
1049    /// Get pointer to array[getNumRows()] of row lower bounds
1050    inline const double * getRowLower() const {
1051        return solver_->getRowLower();
1052    }
1053
1054    /// Get pointer to array[getNumRows()] of row upper bounds
1055    inline const double * getRowUpper() const {
1056        return solver_->getRowUpper();
1057    }
1058
1059    /// Get pointer to array[getNumCols()] of objective function coefficients
1060    inline const double * getObjCoefficients() const {
1061        return solver_->getObjCoefficients();
1062    }
1063
1064    /// Get objective function sense (1 for min (default), -1 for max)
1065    inline double getObjSense() const {
1066        //assert (dblParam_[CbcOptimizationDirection]== solver_->getObjSense());
1067        return dblParam_[CbcOptimizationDirection];
1068    }
1069
1070    /// Return true if variable is continuous
1071    inline bool isContinuous(int colIndex) const {
1072        return solver_->isContinuous(colIndex);
1073    }
1074
1075    /// Return true if variable is binary
1076    inline bool isBinary(int colIndex) const {
1077        return solver_->isBinary(colIndex);
1078    }
1079
1080    /** Return true if column is integer.
1081        Note: This function returns true if the the column
1082        is binary or a general integer.
1083    */
1084    inline bool isInteger(int colIndex) const {
1085        return solver_->isInteger(colIndex);
1086    }
1087
1088    /// Return true if variable is general integer
1089    inline bool isIntegerNonBinary(int colIndex) const {
1090        return solver_->isIntegerNonBinary(colIndex);
1091    }
1092
1093    /// Return true if variable is binary and not fixed at either bound
1094    inline bool isFreeBinary(int colIndex) const {
1095        return solver_->isFreeBinary(colIndex) ;
1096    }
1097
1098    /// Get pointer to row-wise copy of matrix
1099    inline const CoinPackedMatrix * getMatrixByRow() const {
1100        return solver_->getMatrixByRow();
1101    }
1102
1103    /// Get pointer to column-wise copy of matrix
1104    inline const CoinPackedMatrix * getMatrixByCol() const {
1105        return solver_->getMatrixByCol();
1106    }
1107
1108    /// Get solver's value for infinity
1109    inline double getInfinity() const {
1110        return solver_->getInfinity();
1111    }
1112    /// Get pointer to array[getNumCols()] (for speed) of column lower bounds
1113    inline const double * getCbcColLower() const {
1114        return cbcColLower_;
1115    }
1116    /// Get pointer to array[getNumCols()] (for speed) of column upper bounds
1117    inline const double * getCbcColUpper() const {
1118        return cbcColUpper_;
1119    }
1120    /// Get pointer to array[getNumRows()] (for speed) of row lower bounds
1121    inline const double * getCbcRowLower() const {
1122        return cbcRowLower_;
1123    }
1124    /// Get pointer to array[getNumRows()] (for speed) of row upper bounds
1125    inline const double * getCbcRowUpper() const {
1126        return cbcRowUpper_;
1127    }
1128    /// Get pointer to array[getNumCols()] (for speed) of primal solution vector
1129    inline const double * getCbcColSolution() const {
1130        return cbcColSolution_;
1131    }
1132    /// Get pointer to array[getNumRows()] (for speed) of dual prices
1133    inline const double * getCbcRowPrice() const {
1134        return cbcRowPrice_;
1135    }
1136    /// Get a pointer to array[getNumCols()] (for speed) of reduced costs
1137    inline const double * getCbcReducedCost() const {
1138        return cbcReducedCost_;
1139    }
1140    /// Get pointer to array[getNumRows()] (for speed) of row activity levels.
1141    inline const double * getCbcRowActivity() const {
1142        return cbcRowActivity_;
1143    }
1144    //@}
1145
1146
1147    /**@name Methods related to querying the solution */
1148    //@{
1149    /// Holds solution at continuous (after cuts if branchAndBound called)
1150    inline double * continuousSolution() const {
1151        return continuousSolution_;
1152    }
1153    /** Array marked whenever a solution is found if non-zero.
1154        Code marks if heuristic returns better so heuristic
1155        need only mark if it wants to on solutions which
1156        are worse than current */
1157    inline int * usedInSolution() const {
1158        return usedInSolution_;
1159    }
1160    /// Increases usedInSolution for nonzeros
1161    void incrementUsed(const double * solution);
1162    /// Record a new incumbent solution and update objectiveValue
1163    void setBestSolution(CBC_Message how,
1164                         double & objectiveValue, const double *solution,
1165                         int fixVariables = 0);
1166    /// Just update objectiveValue
1167    void setBestObjectiveValue( double objectiveValue);
1168    /// Deals with event handler and solution
1169    CbcEventHandler::CbcAction dealWithEventHandler(CbcEventHandler::CbcEvent event,
1170            double objValue,
1171            const double * solution);
1172
1173    /** Call this to really test if a valid solution can be feasible
1174        Solution is number columns in size.
1175        If fixVariables true then bounds of continuous solver updated.
1176        Returns objective value (worse than cutoff if not feasible)
1177        Previously computed objective value is now passed in (in case user does not do solve)
1178    */
1179    double checkSolution(double cutoff, double * solution,
1180                         int fixVariables, double originalObjValue);
1181    /** Test the current solution for feasiblility.
1182
1183      Scan all objects for indications of infeasibility. This is broken down
1184      into simple integer infeasibility (\p numberIntegerInfeasibilities)
1185      and all other reports of infeasibility (\p numberObjectInfeasibilities).
1186    */
1187    bool feasibleSolution(int & numberIntegerInfeasibilities,
1188                          int & numberObjectInfeasibilities) const;
1189
1190    /** Solution to the most recent lp relaxation.
1191
1192      The solver's solution to the most recent lp relaxation.
1193    */
1194
1195    inline double * currentSolution() const {
1196        return currentSolution_;
1197    }
1198    /** For testing infeasibilities - will point to
1199        currentSolution_ or solver-->getColSolution()
1200    */
1201    inline const double * testSolution() const {
1202        return testSolution_;
1203    }
1204    inline void setTestSolution(const double * solution) {
1205        testSolution_ = solution;
1206    }
1207    /// Make sure region there and optionally copy solution
1208    void reserveCurrentSolution(const double * solution = NULL);
1209
1210    /// Get pointer to array[getNumCols()] of primal solution vector
1211    inline const double * getColSolution() const {
1212        return solver_->getColSolution();
1213    }
1214
1215    /// Get pointer to array[getNumRows()] of dual prices
1216    inline const double * getRowPrice() const {
1217        return solver_->getRowPrice();
1218    }
1219
1220    /// Get a pointer to array[getNumCols()] of reduced costs
1221    inline const double * getReducedCost() const {
1222        return solver_->getReducedCost();
1223    }
1224
1225    /// Get pointer to array[getNumRows()] of row activity levels.
1226    inline const double * getRowActivity() const {
1227        return solver_->getRowActivity();
1228    }
1229
1230    /// Get current objective function value
1231    inline double getCurrentObjValue() const {
1232        return dblParam_[CbcCurrentObjectiveValue];
1233    }
1234    /// Get current minimization objective function value
1235    inline double getCurrentMinimizationObjValue() const {
1236        return dblParam_[CbcCurrentMinimizationObjectiveValue];
1237    }
1238
1239    /// Get best objective function value as minimization
1240    inline double getMinimizationObjValue() const {
1241        return bestObjective_;
1242    }
1243    /// Set best objective function value as minimization
1244    inline void setMinimizationObjValue(double value) {
1245        bestObjective_ = value;
1246    }
1247
1248    /// Get best objective function value
1249    inline double getObjValue() const {
1250        return bestObjective_ * solver_->getObjSense() ;
1251    }
1252    /** Get best possible objective function value.
1253        This is better of best possible left on tree
1254        and best solution found.
1255        If called from within branch and cut may be optimistic.
1256    */
1257    double getBestPossibleObjValue() const;
1258    /// Set best objective function value
1259    inline void setObjValue(double value) {
1260        bestObjective_ = value * solver_->getObjSense() ;
1261    }
1262    /// Get solver objective function value (as minimization)
1263    inline double getSolverObjValue() const {
1264        return solver_->getObjValue() * solver_->getObjSense() ;
1265    }
1266
1267    /** The best solution to the integer programming problem.
1268
1269      The best solution to the integer programming problem found during
1270      the search. If no solution is found, the method returns null.
1271    */
1272
1273    inline double * bestSolution() const {
1274        return bestSolution_;
1275    }
1276    /** User callable setBestSolution.
1277        If check false does not check valid
1278        If true then sees if feasible and warns if objective value
1279        worse than given (so just set to COIN_DBL_MAX if you don't care).
1280        If check true then does not save solution if not feasible
1281    */
1282    void setBestSolution(const double * solution, int numberColumns,
1283                         double objectiveValue, bool check = false);
1284
1285    /// Get number of solutions
1286    inline int getSolutionCount() const {
1287        return numberSolutions_;
1288    }
1289
1290    /// Set number of solutions (so heuristics will be different)
1291    inline void setSolutionCount(int value) {
1292        numberSolutions_ = value;
1293    }
1294    /// Number of saved solutions (including best)
1295    int numberSavedSolutions() const;
1296    /// Maximum number of extra saved solutions
1297    inline int maximumSavedSolutions() const {
1298        return maximumSavedSolutions_;
1299    }
1300    /// Set maximum number of extra saved solutions
1301    void setMaximumSavedSolutions(int value);
1302    /// Return a saved solution (0==best) - NULL if off end
1303    const double * savedSolution(int which) const;
1304    /// Return a saved solution objective (0==best) - COIN_DBL_MAX if off end
1305    double savedSolutionObjective(int which) const;
1306
1307    /** Current phase (so heuristics etc etc can find out).
1308        0 - initial solve
1309        1 - solve with cuts at root
1310        2 - solve with cuts
1311        3 - other e.g. strong branching
1312        4 - trying to validate a solution
1313        5 - at end of search
1314    */
1315    inline int phase() const {
1316        return phase_;
1317    }
1318
1319    /// Get number of heuristic solutions
1320    inline int getNumberHeuristicSolutions() const {
1321        return numberHeuristicSolutions_;
1322    }
1323    /// Set number of heuristic solutions
1324    inline void setNumberHeuristicSolutions(int value) {
1325        numberHeuristicSolutions_ = value;
1326    }
1327
1328    /// Set objective function sense (1 for min (default), -1 for max,)
1329    inline void setObjSense(double s) {
1330        dblParam_[CbcOptimizationDirection] = s;
1331        solver_->setObjSense(s);
1332    }
1333
1334    /// Value of objective at continuous
1335    inline double getContinuousObjective() const {
1336        return originalContinuousObjective_;
1337    }
1338    inline void setContinuousObjective(double value) {
1339        originalContinuousObjective_ = value;
1340    }
1341    /// Number of infeasibilities at continuous
1342    inline int getContinuousInfeasibilities() const {
1343        return continuousInfeasibilities_;
1344    }
1345    inline void setContinuousInfeasibilities(int value) {
1346        continuousInfeasibilities_ = value;
1347    }
1348    /// Value of objective after root node cuts added
1349    inline double rootObjectiveAfterCuts() const {
1350        return continuousObjective_;
1351    }
1352    /// Sum of Changes to objective by first solve
1353    inline double sumChangeObjective() const {
1354        return sumChangeObjective1_;
1355    }
1356    /** Number of times global cuts violated.  When global cut pool then this
1357        should be kept for each cut and type of cut */
1358    inline int numberGlobalViolations() const {
1359        return numberGlobalViolations_;
1360    }
1361    inline void clearNumberGlobalViolations() {
1362        numberGlobalViolations_ = 0;
1363    }
1364    /// Whether to force a resolve after takeOffCuts
1365    inline bool resolveAfterTakeOffCuts() const {
1366        return resolveAfterTakeOffCuts_;
1367    }
1368    inline void setResolveAfterTakeOffCuts(bool yesNo) {
1369        resolveAfterTakeOffCuts_ = yesNo;
1370    }
1371    /// Maximum number of rows
1372    inline int maximumRows() const {
1373        return maximumRows_;
1374    }
1375    /// Work basis for temporary use
1376    inline CoinWarmStartBasis & workingBasis() {
1377        return workingBasis_;
1378    }
1379    /// Get number of "iterations" to stop after
1380    inline int getStopNumberIterations() const {
1381        return stopNumberIterations_;
1382    }
1383    /// Set number of "iterations" to stop after
1384    inline void setStopNumberIterations(int value) {
1385        stopNumberIterations_ = value;
1386    }
1387    //@}
1388
1389    /** \name Node selection */
1390    //@{
1391    // Comparison functions (which may be overridden by inheritance)
1392    inline CbcCompareBase * nodeComparison() const {
1393        return nodeCompare_;
1394    }
1395    void setNodeComparison(CbcCompareBase * compare);
1396    void setNodeComparison(CbcCompareBase & compare);
1397    //@}
1398
1399    /** \name Problem feasibility checking */
1400    //@{
1401    // Feasibility functions (which may be overridden by inheritance)
1402    inline CbcFeasibilityBase * problemFeasibility() const {
1403        return problemFeasibility_;
1404    }
1405    void setProblemFeasibility(CbcFeasibilityBase * feasibility);
1406    void setProblemFeasibility(CbcFeasibilityBase & feasibility);
1407    //@}
1408
1409    /** \name Tree methods and subtree methods */
1410    //@{
1411    /// Tree method e.g. heap (which may be overridden by inheritance)
1412    inline CbcTree * tree() const {
1413        return tree_;
1414    }
1415    /// For modifying tree handling (original is cloned)
1416    void passInTreeHandler(CbcTree & tree);
1417    /** For passing in an CbcModel to do a sub Tree (with derived tree handlers).
1418        Passed in model must exist for duration of branch and bound
1419    */
1420    void passInSubTreeModel(CbcModel & model);
1421    /** For retrieving a copy of subtree model with given OsiSolver.
1422        If no subtree model will use self (up to user to reset cutoff etc).
1423        If solver NULL uses current
1424    */
1425    CbcModel * subTreeModel(OsiSolverInterface * solver = NULL) const;
1426    /// Returns number of times any subtree stopped on nodes, time etc
1427    inline int numberStoppedSubTrees() const {
1428        return numberStoppedSubTrees_;
1429    }
1430    /// Says a sub tree was stopped
1431    inline void incrementSubTreeStopped() {
1432        numberStoppedSubTrees_++;
1433    }
1434    /** Whether to automatically do presolve before branch and bound (subTrees).
1435        0 - no
1436        1 - ordinary presolve
1437        2 - integer presolve (dodgy)
1438    */
1439    inline int typePresolve() const {
1440        return presolve_;
1441    }
1442    inline void setTypePresolve(int value) {
1443        presolve_ = value;
1444    }
1445
1446    //@}
1447
1448    /** \name Branching Decisions
1449
1450      See the CbcBranchDecision class for additional information.
1451    */
1452    //@{
1453
1454    /// Get the current branching decision method.
1455    inline CbcBranchDecision * branchingMethod() const {
1456        return branchingMethod_;
1457    }
1458    /// Set the branching decision method.
1459    inline void setBranchingMethod(CbcBranchDecision * method) {
1460        delete branchingMethod_;
1461        branchingMethod_ = method->clone();
1462    }
1463    /** Set the branching method
1464
1465      \overload
1466    */
1467    inline void setBranchingMethod(CbcBranchDecision & method) {
1468        delete branchingMethod_;
1469        branchingMethod_ = method.clone();
1470    }
1471    /// Get the current cut modifier method
1472    inline CbcCutModifier * cutModifier() const {
1473        return cutModifier_;
1474    }
1475    /// Set the cut modifier method
1476    void setCutModifier(CbcCutModifier * modifier);
1477    /** Set the cut modifier method
1478
1479      \overload
1480    */
1481    void setCutModifier(CbcCutModifier & modifier);
1482    //@}
1483
1484    /** \name Row (constraint) and Column (variable) cut generation */
1485    //@{
1486
1487    /** State of search
1488        0 - no solution
1489        1 - only heuristic solutions
1490        2 - branched to a solution
1491        3 - no solution but many nodes
1492    */
1493    inline int stateOfSearch() const {
1494        return stateOfSearch_;
1495    }
1496    inline void setStateOfSearch(int state) {
1497        stateOfSearch_ = state;
1498    }
1499    /// Strategy worked out - mainly at root node for use by CbcNode
1500    inline int searchStrategy() const {
1501        return searchStrategy_;
1502    }
1503    /// Set strategy worked out - mainly at root node for use by CbcNode
1504    inline void setSearchStrategy(int value) {
1505        searchStrategy_ = value;
1506    }
1507
1508    /// Get the number of cut generators
1509    inline int numberCutGenerators() const {
1510        return numberCutGenerators_;
1511    }
1512    /// Get the list of cut generators
1513    inline CbcCutGenerator ** cutGenerators() const {
1514        return generator_;
1515    }
1516    ///Get the specified cut generator
1517    inline CbcCutGenerator * cutGenerator(int i) const {
1518        return generator_[i];
1519    }
1520    ///Get the specified cut generator before any changes
1521    inline CbcCutGenerator * virginCutGenerator(int i) const {
1522        return virginGenerator_[i];
1523    }
1524    /** Add one generator - up to user to delete generators.
1525        howoften affects how generator is used. 0 or 1 means always,
1526        >1 means every that number of nodes.  Negative values have same
1527        meaning as positive but they may be switched off (-> -100) by code if
1528        not many cuts generated at continuous.  -99 is just done at root.
1529        Name is just for printout.
1530        If depth >0 overrides how often generator is called (if howOften==-1 or >0).
1531    */
1532    void addCutGenerator(CglCutGenerator * generator,
1533                         int howOften = 1, const char * name = NULL,
1534                         bool normal = true, bool atSolution = false,
1535                         bool infeasible = false, int howOftenInSub = -100,
1536                         int whatDepth = -1, int whatDepthInSub = -1);
1537//@}
1538    /** \name Strategy and sub models
1539
1540      See the CbcStrategy class for additional information.
1541    */
1542    //@{
1543
1544    /// Get the current strategy
1545    inline CbcStrategy * strategy() const {
1546        return strategy_;
1547    }
1548    /// Set the strategy. Clones
1549    void setStrategy(CbcStrategy & strategy);
1550    /// Set the strategy. assigns
1551    inline void setStrategy(CbcStrategy * strategy) {
1552        strategy_ = strategy;
1553    }
1554    /// Get the current parent model
1555    inline CbcModel * parentModel() const {
1556        return parentModel_;
1557    }
1558    /// Set the parent model
1559    inline void setParentModel(CbcModel & parentModel) {
1560        parentModel_ = &parentModel;
1561    }
1562    //@}
1563
1564
1565    /** \name Heuristics and priorities */
1566    //@{
1567    /*! \brief Add one heuristic - up to user to delete
1568
1569      The name is just used for print messages.
1570    */
1571    void addHeuristic(CbcHeuristic * generator, const char *name = NULL,
1572                      int before = -1);
1573    ///Get the specified heuristic
1574    inline CbcHeuristic * heuristic(int i) const {
1575        return heuristic_[i];
1576    }
1577    /// Get the number of heuristics
1578    inline int numberHeuristics() const {
1579        return numberHeuristics_;
1580    }
1581    /// Pointer to heuristic solver which found last solution (or NULL)
1582    inline CbcHeuristic * lastHeuristic() const {
1583        return lastHeuristic_;
1584    }
1585    /// set last heuristic which found a solution
1586    inline void setLastHeuristic(CbcHeuristic * last) {
1587        lastHeuristic_ = last;
1588    }
1589
1590    /** Pass in branching priorities.
1591
1592        If ifClique then priorities are on cliques otherwise priorities are
1593        on integer variables.
1594        Other type (if exists set to default)
1595        1 is highest priority. (well actually -INT_MAX is but that's ugly)
1596        If hotstart > 0 then branches are created to force
1597        the variable to the value given by best solution.  This enables a
1598        sort of hot start.  The node choice should be greatest depth
1599        and hotstart should normally be switched off after a solution.
1600
1601        If ifNotSimpleIntegers true then appended to normal integers
1602
1603        This is now deprecated except for simple usage.  If user
1604        creates Cbcobjects then set priority in them
1605
1606        \internal Added for Kurt Spielberg.
1607    */
1608    void passInPriorities(const int * priorities, bool ifNotSimpleIntegers);
1609
1610    /// Returns priority level for an object (or 1000 if no priorities exist)
1611    inline int priority(int sequence) const {
1612        return object_[sequence]->priority();
1613    }
1614
1615    /*! \brief Set an event handler
1616
1617      A clone of the handler passed as a parameter is stored in CbcModel.
1618    */
1619    void passInEventHandler(const CbcEventHandler *eventHandler) ;
1620
1621    /*! \brief Retrieve a pointer to the event handler */
1622    inline CbcEventHandler* getEventHandler() const {
1623        return (eventHandler_) ;
1624    }
1625
1626    //@}
1627
1628    /**@name Setting/Accessing application data */
1629    //@{
1630    /** Set application data.
1631
1632    This is a pointer that the application can store into and
1633    retrieve from the solver interface.
1634    This field is available for the application to optionally
1635    define and use.
1636    */
1637    void setApplicationData (void * appData);
1638
1639    /// Get application data
1640    void * getApplicationData() const;
1641    /**
1642        For advanced applications you may wish to modify the behavior of Cbc
1643        e.g. if the solver is a NLP solver then you may not have an exact
1644        optimum solution at each step.  Information could be built into
1645        OsiSolverInterface but this is an alternative so that that interface
1646        does not have to be changed.  If something similar is useful to
1647        enough solvers then it could be migrated
1648        You can also pass in by using solver->setAuxiliaryInfo.
1649        You should do that if solver is odd - if solver is normal simplex
1650        then use this.
1651        NOTE - characteristics are not cloned
1652    */
1653    void passInSolverCharacteristics(OsiBabSolver * solverCharacteristics);
1654    /// Get solver characteristics
1655    inline const OsiBabSolver * solverCharacteristics() const {
1656        return solverCharacteristics_;
1657    }
1658    //@}
1659
1660    //---------------------------------------------------------------------------
1661
1662    /**@name Message handling etc */
1663    //@{
1664    /// Pass in Message handler (not deleted at end)
1665    void passInMessageHandler(CoinMessageHandler * handler);
1666    /// Set language
1667    void newLanguage(CoinMessages::Language language);
1668    inline void setLanguage(CoinMessages::Language language) {
1669        newLanguage(language);
1670    }
1671    /// Return handler
1672    inline CoinMessageHandler * messageHandler() const {
1673        return handler_;
1674    }
1675    /// Return messages
1676    inline CoinMessages & messages() {
1677        return messages_;
1678    }
1679    /// Return pointer to messages
1680    inline CoinMessages * messagesPointer() {
1681        return &messages_;
1682    }
1683    /// Set log level
1684    void setLogLevel(int value);
1685    /// Get log level
1686    inline int logLevel() const {
1687        return handler_->logLevel();
1688    }
1689    /** Set flag to say if handler_ is the default handler.
1690
1691      The default handler is deleted when the model is deleted. Other
1692      handlers (supplied by the client) will not be deleted.
1693    */
1694    inline void setDefaultHandler(bool yesNo) {
1695        defaultHandler_ = yesNo;
1696    }
1697    //@}
1698    //---------------------------------------------------------------------------
1699    ///@name Specialized
1700    //@{
1701
1702    /**
1703        Set special options
1704        0 bit (1) - check if cuts valid (if on debugger list)
1705        1 bit (2) - use current basis to check integer solution (rather than all slack)
1706        2 bit (4) - don't check integer solution (by solving LP)
1707        3 bit (8) - fast analyze
1708        4 bit (16) - non-linear model - so no well defined CoinPackedMatrix
1709        5 bit (32) - keep names
1710        6 bit (64) - try for dominated columns
1711        7 bit (128) - SOS type 1 but all declared integer
1712        8 bit (256) - Set to say solution just found, unset by doing cuts
1713        9 bit (512) - Try reduced model after 100 nodes
1714        10 bit (1024) - Switch on some heuristics even if seems unlikely
1715        11 bit (2048) - Mark as in small branch and bound
1716        12 bit (4096) - Funny cuts so do slow way (in some places)
1717        13 bit (8192) - Funny cuts so do slow way (in other places)
1718        14 bit (16384) - Use Cplex! for fathoming
1719        15 bit (32768) - Try reduced model after 0 nodes
1720        16 bit (65536) - Original model had integer bounds
1721        17 bit (131072) - Perturbation switched off
1722        18 bit (262144) - donor CbcModel
1723        19 bit (524288) - recipient CbcModel
1724        20 bit (1048576) - waiting for sub model to return
1725    */
1726    inline void setSpecialOptions(int value) {
1727        specialOptions_ = value;
1728    }
1729    /// Get special options
1730    inline int specialOptions() const {
1731        return specialOptions_;
1732    }
1733    /// Says if normal solver i.e. has well defined CoinPackedMatrix
1734    inline bool normalSolver() const {
1735        return (specialOptions_&16) == 0;
1736    }
1737    /** Says if model is sitting there waiting for mini branch and bound to finish
1738        This is because an event handler may only have access to parent model in
1739        mini branch and bound
1740    */
1741    inline bool waitingForMiniBranchAndBound() const {
1742        return (specialOptions_&1048576) != 0;
1743    }
1744    /** Set more special options
1745        at present bottom 6 bits used for shadow price mode
1746        1024 for experimental hotstart
1747        2048,4096 breaking out of cuts
1748        8192 slowly increase minimum drop
1749        16384 gomory
1750        32768 more heuristics in sub trees
1751        65536 no cuts in preprocessing
1752        131072 Time limits elapsed
1753        18 bit (262144) - Perturb fathom nodes
1754        19 bit (524288) - No limit on fathom nodes
1755        20 bit (1048576) - Reduce sum of infeasibilities before cuts
1756        21 bit (2097152) - Reduce sum of infeasibilities after cuts
1757    */
1758    inline void setMoreSpecialOptions(int value) {
1759        moreSpecialOptions_ = value;
1760    }
1761    /// Get more special options
1762    inline int moreSpecialOptions() const {
1763        return moreSpecialOptions_;
1764    }
1765  /// Set time method
1766    inline void setUseElapsedTime(bool yesNo) {
1767        if (yesNo)
1768          moreSpecialOptions_ |= 131072;
1769        else
1770          moreSpecialOptions_ &= ~131072;
1771    }
1772    /// Get time method
1773    inline bool useElapsedTime() const {
1774        return (moreSpecialOptions_&131072)!=0;
1775    }
1776    /// Go to dantzig pivot selection if easy problem (clp only)
1777#ifdef COIN_HAS_CLP
1778    void goToDantzig(int numberNodes, ClpDualRowPivot *& savePivotMethod);
1779#endif
1780    /// Now we may not own objects - just point to solver's objects
1781    inline bool ownObjects() const {
1782        return ownObjects_;
1783    }
1784    /// Check original model before it gets messed up
1785    void checkModel();
1786    //@}
1787    //---------------------------------------------------------------------------
1788
1789    ///@name Constructors and destructors etc
1790    //@{
1791    /// Default Constructor
1792    CbcModel();
1793
1794    /// Constructor from solver
1795    CbcModel(const OsiSolverInterface &);
1796
1797    /** Assign a solver to the model (model assumes ownership)
1798
1799      On return, \p solver will be NULL.
1800      If deleteSolver then current solver deleted (if model owned)
1801
1802      \note Parameter settings in the outgoing solver are not inherited by
1803        the incoming solver.
1804    */
1805    void assignSolver(OsiSolverInterface *&solver, bool deleteSolver = true);
1806
1807    /** \brief Set ownership of solver
1808
1809      A parameter of false tells CbcModel it does not own the solver and
1810      should not delete it. Once you claim ownership of the solver, you're
1811      responsible for eventually deleting it. Note that CbcModel clones
1812      solvers with abandon.  Unless you have a deep understanding of the
1813      workings of CbcModel, the only time you want to claim ownership is when
1814      you're about to delete the CbcModel object but want the solver to
1815      continue to exist (as, for example, when branchAndBound has finished
1816      and you want to hang on to the answer).
1817    */
1818    inline void setModelOwnsSolver (bool ourSolver) {
1819        ownership_ = ourSolver ? (ownership_ | 0x80000000) : (ownership_ & (~0x80000000)) ;
1820    }
1821
1822    /*! \brief Get ownership of solver
1823
1824      A return value of true means that CbcModel owns the solver and will
1825      take responsibility for deleting it when that becomes necessary.
1826    */
1827    inline bool modelOwnsSolver () {
1828        return ((ownership_&0x80000000) != 0) ;
1829    }
1830
1831    /** Copy constructor .
1832      If cloneHandler is true then message handler is cloned
1833    */
1834    CbcModel(const CbcModel & rhs, bool cloneHandler = false);
1835
1836    /// Assignment operator
1837    CbcModel & operator=(const CbcModel& rhs);
1838
1839    /// Destructor
1840    ~CbcModel ();
1841
1842    /// Returns solver - has current state
1843    inline OsiSolverInterface * solver() const {
1844        return solver_;
1845    }
1846
1847    /// Returns current solver - sets new one
1848    inline OsiSolverInterface * swapSolver(OsiSolverInterface * solver) {
1849        OsiSolverInterface * returnSolver = solver_;
1850        solver_ = solver;
1851        return returnSolver;
1852    }
1853
1854    /// Returns solver with continuous state
1855    inline OsiSolverInterface * continuousSolver() const {
1856        return continuousSolver_;
1857    }
1858
1859    /// Create solver with continuous state
1860    inline void createContinuousSolver() {
1861        continuousSolver_ = solver_->clone();
1862    }
1863    /// Clear solver with continuous state
1864    inline void clearContinuousSolver() {
1865        delete continuousSolver_;
1866        continuousSolver_ = NULL;
1867    }
1868
1869    /// A copy of the solver, taken at constructor or by saveReferenceSolver
1870    inline OsiSolverInterface * referenceSolver() const {
1871        return referenceSolver_;
1872    }
1873
1874    /// Save a copy of the current solver so can be reset to
1875    void saveReferenceSolver();
1876
1877    /** Uses a copy of reference solver to be current solver.
1878        Because of possible mismatches all exotic integer information is loat
1879        (apart from normal information in OsiSolverInterface)
1880        so SOS etc and priorities will have to be redone
1881    */
1882    void resetToReferenceSolver();
1883
1884    /// Clears out as much as possible (except solver)
1885    void gutsOfDestructor();
1886    /** Clears out enough to reset CbcModel as if no branch and bound done
1887     */
1888    void gutsOfDestructor2();
1889    /** Clears out enough to reset CbcModel cutoff etc
1890     */
1891    void resetModel();
1892    /** Most of copy constructor
1893        mode - 0 copy but don't delete before
1894               1 copy and delete before
1895           2 copy and delete before (but use virgin generators)
1896    */
1897    void gutsOfCopy(const CbcModel & rhs, int mode = 0);
1898    /// Move status, nodes etc etc across
1899    void moveInfo(const CbcModel & rhs);
1900    //@}
1901
1902    ///@name Multithreading
1903    //@{
1904    /// Indicates whether Cbc library has been compiled with multithreading support
1905    static bool haveMultiThreadSupport();
1906    /// Get pointer to masterthread
1907    CbcThread * masterThread() const {
1908        return masterThread_;
1909    }
1910    /// Get pointer to walkback
1911    CbcNodeInfo ** walkback() const {
1912        return walkback_;
1913    }
1914    /// Get number of threads
1915    inline int getNumberThreads() const {
1916        return numberThreads_;
1917    }
1918    /// Set number of threads
1919    inline void setNumberThreads(int value) {
1920        numberThreads_ = value;
1921    }
1922    /// Get thread mode
1923    inline int getThreadMode() const {
1924        return threadMode_;
1925    }
1926    /** Set thread mode
1927        always use numberThreads for branching
1928        1 set then deterministic
1929        2 set then use numberThreads for root cuts
1930        4 set then use numberThreads in root mini branch and bound
1931        8 set and numberThreads - do heuristics numberThreads at a time
1932        8 set and numberThreads==0 do all heuristics at once
1933        default is 0
1934    */
1935    inline void setThreadMode(int value) {
1936        threadMode_ = value;
1937    }
1938    /** Return
1939        -2 if deterministic threaded and main thread
1940        -1 if deterministic threaded and serial thread
1941        0 if serial
1942        1 if opportunistic threaded
1943    */
1944    inline int parallelMode() const {
1945        if (!numberThreads_) {
1946            if ((threadMode_&1) == 0)
1947                return 0;
1948            else
1949                return -1;
1950            return 0;
1951        } else {
1952            if ((threadMode_&1) == 0)
1953                return 1;
1954            else
1955                return -2;
1956        }
1957    }
1958    /// From here to end of section - code in CbcThread.cpp until class changed
1959    /// Returns true if locked
1960    bool isLocked() const;
1961#ifdef CBC_THREAD
1962    /**
1963       Locks a thread if parallel so that stuff like cut pool
1964       can be updated and/or used.
1965    */
1966    void lockThread();
1967    /**
1968       Unlocks a thread if parallel to say cut pool stuff not needed
1969    */
1970    void unlockThread();
1971#else
1972    inline void lockThread() {}
1973    inline void unlockThread() {}
1974#endif
1975    /** Set information in a child
1976        -3 pass pointer to child thread info
1977        -2 just stop
1978        -1 delete simple child stuff
1979        0 delete opportunistic child stuff
1980        1 delete deterministic child stuff
1981    */
1982    void setInfoInChild(int type, CbcThread * info);
1983    /** Move/copy information from one model to another
1984        -1 - initialization
1985        0 - from base model
1986        1 - to base model (and reset)
1987        2 - add in final statistics etc (and reset so can do clean destruction)
1988    */
1989    void moveToModel(CbcModel * baseModel, int mode);
1990    /// Split up nodes
1991    int splitModel(int numberModels, CbcModel ** model,
1992                   int numberNodes);
1993    /// Start threads
1994    void startSplitModel(int numberIterations);
1995    /// Merge models
1996    void mergeModels(int numberModel, CbcModel ** model,
1997                     int numberNodes);
1998    //@}
1999
2000    ///@name semi-private i.e. users should not use
2001    //@{
2002    /// Get how many Nodes it took to solve the problem.
2003    int getNodeCount2() const {
2004        return numberNodes2_;
2005    }
2006    /// Set pointers for speed
2007    void setPointers(const OsiSolverInterface * solver);
2008    /** Perform reduced cost fixing
2009
2010      Fixes integer variables at their current value based on reduced cost
2011      penalties.  Returns number fixed
2012    */
2013    int reducedCostFix() ;
2014    /** Makes all handlers same.  If makeDefault 1 then makes top level
2015        default and rest point to that.  If 2 then each is copy
2016    */
2017    void synchronizeHandlers(int makeDefault);
2018    /// Save a solution to saved list
2019    void saveExtraSolution(const double * solution, double objectiveValue);
2020    /// Save a solution to best and move current to saved
2021    void saveBestSolution(const double * solution, double objectiveValue);
2022    /// Delete best and saved solutions
2023    void deleteSolutions();
2024    /// Encapsulates solver resolve
2025    int resolve(OsiSolverInterface * solver);
2026#ifdef CLP_RESOLVE
2027    /// Special purpose resolve
2028    int resolveClp(OsiClpSolverInterface * solver, int type);
2029#endif
2030
2031    /** Encapsulates choosing a variable -
2032        anyAction -2, infeasible (-1 round again), 0 done
2033    */
2034    int chooseBranch(CbcNode * & newNode, int numberPassesLeft,
2035                     CbcNode * oldNode, OsiCuts & cuts,
2036                     bool & resolved, CoinWarmStartBasis *lastws,
2037                     const double * lowerBefore, const double * upperBefore,
2038                     OsiSolverBranch * & branches);
2039    int chooseBranch(CbcNode * newNode, int numberPassesLeft, bool & resolved);
2040
2041    /** Return an empty basis object of the specified size
2042
2043      A useful utility when constructing a basis for a subproblem from scratch.
2044      The object returned will be of the requested capacity and appropriate for
2045      the solver attached to the model.
2046    */
2047    CoinWarmStartBasis *getEmptyBasis(int ns = 0, int na = 0) const ;
2048
2049    /** Remove inactive cuts from the model
2050
2051      An OsiSolverInterface is expected to maintain a valid basis, but not a
2052      valid solution, when loose cuts are deleted. Restoring a valid solution
2053      requires calling the solver to reoptimise. If it's certain the solution
2054      will not be required, set allowResolve to false to suppress
2055      reoptimisation.
2056      If saveCuts then slack cuts will be saved
2057      On input current cuts are cuts and newCuts
2058      on exit current cuts will be correct.  Returns number dropped
2059    */
2060    int takeOffCuts(OsiCuts &cuts,
2061                    bool allowResolve, OsiCuts * saveCuts,
2062                    int numberNewCuts = 0, const OsiRowCut ** newCuts = NULL) ;
2063
2064    /** Determine and install the active cuts that need to be added for
2065      the current subproblem
2066
2067      The whole truth is a bit more complicated. The first action is a call to
2068      addCuts1(). addCuts() then sorts through the list, installs the tight
2069      cuts in the model, and does bookkeeping (adjusts reference counts).
2070      The basis returned from addCuts1() is adjusted accordingly.
2071
2072      If it turns out that the node should really be fathomed by bound,
2073      addCuts() simply treats all the cuts as loose as it does the bookkeeping.
2074
2075      canFix true if extra information being passed
2076    */
2077    int addCuts(CbcNode * node, CoinWarmStartBasis *&lastws, bool canFix);
2078
2079    /** Traverse the tree from node to root and prep the model
2080
2081      addCuts1() begins the job of prepping the model to match the current
2082      subproblem. The model is stripped of all cuts, and the search tree is
2083      traversed from node to root to determine the changes required. Appropriate
2084      bounds changes are installed, a list of cuts is collected but not
2085      installed, and an appropriate basis (minus the cuts, but big enough to
2086      accommodate them) is constructed.
2087
2088      Returns true if new problem similar to old
2089
2090      \todo addCuts1() is called in contexts where it's known in advance that
2091        all that's desired is to determine a list of cuts and do the
2092        bookkeeping (adjust the reference counts). The work of installing
2093        bounds and building a basis goes to waste.
2094    */
2095    bool addCuts1(CbcNode * node, CoinWarmStartBasis *&lastws);
2096    /** Returns bounds just before where - initially original bounds.
2097        Also sets downstream nodes (lower if force 1, upper if 2)
2098    */
2099    void previousBounds (CbcNode * node, CbcNodeInfo * where, int iColumn,
2100                         double & lower, double & upper, int force);
2101    /** Set objective value in a node.  This is separated out so that
2102       odd solvers can use.  It may look at extra information in
2103       solverCharacteriscs_ and will also use bound from parent node
2104    */
2105    void setObjectiveValue(CbcNode * thisNode, const CbcNode * parentNode) const;
2106
2107    /** If numberBeforeTrust >0 then we are going to use CbcBranchDynamic.
2108        Scan and convert CbcSimpleInteger objects
2109    */
2110    void convertToDynamic();
2111    /// Set numberBeforeTrust in all objects
2112    void synchronizeNumberBeforeTrust(int type = 0);
2113    /// Zap integer information in problem (may leave object info)
2114    void zapIntegerInformation(bool leaveObjects = true);
2115    /// Use cliques for pseudocost information - return nonzero if infeasible
2116    int cliquePseudoCosts(int doStatistics);
2117    /// Fill in useful estimates
2118    void pseudoShadow(int type);
2119    /** Return pseudo costs
2120        If not all integers or not pseudo costs - returns all zero
2121        Length of arrays are numberIntegers() and entries
2122        correspond to integerVariable()[i]
2123        User must allocate arrays before call
2124    */
2125    void fillPseudoCosts(double * downCosts, double * upCosts,
2126                         int * priority = NULL,
2127                         int * numberDown = NULL, int * numberUp = NULL,
2128                         int * numberDownInfeasible = NULL,
2129                         int * numberUpInfeasible = NULL) const;
2130    /** Do heuristics at root.
2131        0 - don't delete
2132        1 - delete
2133        2 - just delete - don't even use
2134    */
2135    void doHeuristicsAtRoot(int deleteHeuristicsAfterwards = 0);
2136    /// Adjust heuristics based on model
2137    void adjustHeuristics();
2138    /// Get the hotstart solution
2139    inline const double * hotstartSolution() const {
2140        return hotstartSolution_;
2141    }
2142    /// Get the hotstart priorities
2143    inline const int * hotstartPriorities() const {
2144        return hotstartPriorities_;
2145    }
2146
2147    /// Return the list of cuts initially collected for this subproblem
2148    inline CbcCountRowCut ** addedCuts() const {
2149        return addedCuts_;
2150    }
2151    /// Number of entries in the list returned by #addedCuts()
2152    inline int currentNumberCuts() const {
2153        return currentNumberCuts_;
2154    }
2155    /// Global cuts
2156    inline OsiCuts * globalCuts() {
2157        return &globalCuts_;
2158    }
2159    /// Copy and set a pointer to a row cut which will be added instead of normal branching.
2160    void setNextRowCut(const OsiRowCut & cut);
2161    /// Get a pointer to current node (be careful)
2162    inline CbcNode * currentNode() const {
2163        return currentNode_;
2164    }
2165    /// Get a pointer to probing info
2166    inline CglTreeProbingInfo * probingInfo() const {
2167        return probingInfo_;
2168    }
2169    /// Thread specific random number generator
2170    inline CoinThreadRandom * randomNumberGenerator() {
2171        return &randomNumberGenerator_;
2172    }
2173    /// Set the number of iterations done in strong branching.
2174    inline void setNumberStrongIterations(int number) {
2175        numberStrongIterations_ = number;
2176    }
2177    /// Get the number of iterations done in strong branching.
2178    inline int numberStrongIterations() const {
2179        return numberStrongIterations_;
2180    }
2181    /// Get maximum number of iterations (designed to be used in heuristics)
2182    inline int maximumNumberIterations() const {
2183        return maximumNumberIterations_;
2184    }
2185    /// Set maximum number of iterations (designed to be used in heuristics)
2186    inline void setMaximumNumberIterations(int value) {
2187        maximumNumberIterations_ = value;
2188    }
2189# ifdef COIN_HAS_CLP
2190    /// Set depth for fast nodes
2191    inline void setFastNodeDepth(int value) {
2192        fastNodeDepth_ = value;
2193    }
2194    /// Get depth for fast nodes
2195    inline int fastNodeDepth() const {
2196        return fastNodeDepth_;
2197    }
2198    /// Get anything with priority >= this can be treated as continuous
2199    inline int continuousPriority() const {
2200        return continuousPriority_;
2201    }
2202    /// Set anything with priority >= this can be treated as continuous
2203    inline void setContinuousPriority(int value) {
2204        continuousPriority_ = value;
2205    }
2206    inline void incrementExtra(int nodes, int iterations) {
2207        numberExtraNodes_ += nodes;
2208        numberExtraIterations_ += iterations;
2209    }
2210#endif
2211    /// Number of extra iterations
2212    inline int numberExtraIterations() const {
2213        return numberExtraIterations_;
2214    }
2215    /// Increment strong info
2216    void incrementStrongInfo(int numberTimes, int numberIterations,
2217                             int numberFixed, bool ifInfeasible);
2218    /// Return strong info
2219    inline const int * strongInfo() const {
2220        return strongInfo_;
2221    }
2222
2223    /// Return mutable strong info
2224    inline int * mutableStrongInfo() {
2225        return strongInfo_;
2226    }
2227    /// Get stored row cuts for donor/recipient CbcModel
2228    CglStored * storedRowCuts() const {
2229        return storedRowCuts_;
2230    }
2231    /// Set stored row cuts for donor/recipient CbcModel
2232    void setStoredRowCuts(CglStored * cuts) {
2233        storedRowCuts_ = cuts;
2234    }
2235    /// Says whether all dynamic integers
2236    inline bool allDynamic () const {
2237        return ((ownership_&0x40000000) != 0) ;
2238    }
2239    /// Create C++ lines to get to current state
2240    void generateCpp( FILE * fp, int options);
2241    /// Generate an OsiBranchingInformation object
2242    OsiBranchingInformation usefulInformation() const;
2243    /** Warm start object produced by heuristic or strong branching
2244
2245        If get a valid integer solution outside branch and bound then it can take
2246        a reasonable time to solve LP which produces clean solution.  If this object has
2247        any size then it will be used in solve.
2248    */
2249    inline void setBestSolutionBasis(const CoinWarmStartBasis & bestSolutionBasis) {
2250        bestSolutionBasis_ = bestSolutionBasis;
2251    }
2252    /// Redo walkback arrays
2253    void redoWalkBack();
2254    //@}
2255
2256//---------------------------------------------------------------------------
2257
2258private:
2259    ///@name Private member data
2260    //@{
2261
2262    /// The solver associated with this model.
2263    OsiSolverInterface * solver_;
2264
2265    /** Ownership of objects and other stuff
2266
2267        0x80000000 model owns solver
2268        0x40000000 all variables CbcDynamicPseudoCost
2269    */
2270    unsigned int ownership_ ;
2271
2272    /// A copy of the solver, taken at the continuous (root) node.
2273    OsiSolverInterface * continuousSolver_;
2274
2275    /// A copy of the solver, taken at constructor or by saveReferenceSolver
2276    OsiSolverInterface * referenceSolver_;
2277
2278    /// Message handler
2279    CoinMessageHandler * handler_;
2280
2281    /** Flag to say if handler_ is the default handler.
2282
2283      The default handler is deleted when the model is deleted. Other
2284      handlers (supplied by the client) will not be deleted.
2285    */
2286    bool defaultHandler_;
2287
2288    /// Cbc messages
2289    CoinMessages messages_;
2290
2291    /// Array for integer parameters
2292    int intParam_[CbcLastIntParam];
2293
2294    /// Array for double parameters
2295    double dblParam_[CbcLastDblParam];
2296
2297    /** Pointer to an empty warm start object
2298
2299      It turns out to be useful to have this available as a base from
2300      which to build custom warm start objects. This is typed as CoinWarmStart
2301      rather than CoinWarmStartBasis to allow for the possibility that a
2302      client might want to apply a solver that doesn't use a basis-based warm
2303      start. See getEmptyBasis for an example of how this field can be used.
2304    */
2305    mutable CoinWarmStart *emptyWarmStart_ ;
2306
2307    /// Best objective
2308    double bestObjective_;
2309    /// Best possible objective
2310    double bestPossibleObjective_;
2311    /// Sum of Changes to objective by first solve
2312    double sumChangeObjective1_;
2313    /// Sum of Changes to objective by subsequent solves
2314    double sumChangeObjective2_;
2315
2316    /// Array holding the incumbent (best) solution.
2317    double * bestSolution_;
2318    /// Arrays holding other solutions.
2319    double ** savedSolutions_;
2320
2321    /** Array holding the current solution.
2322
2323      This array is used more as a temporary.
2324    */
2325    double * currentSolution_;
2326    /** For testing infeasibilities - will point to
2327        currentSolution_ or solver-->getColSolution()
2328    */
2329    mutable const double * testSolution_;
2330    /** Warm start object produced by heuristic or strong branching
2331
2332        If get a valid integer solution outside branch and bound then it can take
2333        a reasonable time to solve LP which produces clean solution.  If this object has
2334        any size then it will be used in solve.
2335    */
2336    CoinWarmStartBasis bestSolutionBasis_ ;
2337    /// Global cuts
2338    OsiCuts globalCuts_;
2339
2340    /// Minimum degradation in objective value to continue cut generation
2341    double minimumDrop_;
2342    /// Number of solutions
2343    int numberSolutions_;
2344    /// Number of saved solutions
2345    int numberSavedSolutions_;
2346    /// Maximum number of saved solutions
2347    int maximumSavedSolutions_;
2348    /** State of search
2349        0 - no solution
2350        1 - only heuristic solutions
2351        2 - branched to a solution
2352        3 - no solution but many nodes
2353    */
2354    int stateOfSearch_;
2355    /// At which depths to do cuts
2356    int whenCuts_;
2357    /// Hotstart solution
2358    double * hotstartSolution_;
2359    /// Hotstart priorities
2360    int * hotstartPriorities_;
2361    /// Number of heuristic solutions
2362    int numberHeuristicSolutions_;
2363    /// Cumulative number of nodes
2364    int numberNodes_;
2365    /** Cumulative number of nodes for statistics.
2366        Must fix to match up
2367    */
2368    int numberNodes2_;
2369    /// Cumulative number of iterations
2370    int numberIterations_;
2371    /// Cumulative number of solves
2372    int numberSolves_;
2373    /// Status of problem - 0 finished, 1 stopped, 2 difficulties
2374    int status_;
2375    /** Secondary status of problem
2376        -1 unset (status_ will also be -1)
2377        0 search completed with solution
2378        1 linear relaxation not feasible (or worse than cutoff)
2379        2 stopped on gap
2380        3 stopped on nodes
2381        4 stopped on time
2382        5 stopped on user event
2383        6 stopped on solutions
2384     */
2385    int secondaryStatus_;
2386    /// Number of integers in problem
2387    int numberIntegers_;
2388    /// Number of rows at continuous
2389    int numberRowsAtContinuous_;
2390    /// Maximum number of cuts
2391    int maximumNumberCuts_;
2392    /** Current phase (so heuristics etc etc can find out).
2393        0 - initial solve
2394        1 - solve with cuts at root
2395        2 - solve with cuts
2396        3 - other e.g. strong branching
2397        4 - trying to validate a solution
2398        5 - at end of search
2399    */
2400    int phase_;
2401
2402    /// Number of entries in #addedCuts_
2403    int currentNumberCuts_;
2404
2405    /** Current limit on search tree depth
2406
2407      The allocated size of #walkback_. Increased as needed.
2408    */
2409    int maximumDepth_;
2410    /** Array used to assemble the path between a node and the search tree root
2411
2412      The array is resized when necessary. #maximumDepth_  is the current
2413      allocated size.
2414    */
2415    CbcNodeInfo ** walkback_;
2416    CbcNodeInfo ** lastNodeInfo_;
2417    const OsiRowCut ** lastCut_;
2418    int lastDepth_;
2419    int lastNumberCuts2_;
2420    int maximumCuts_;
2421    int * lastNumberCuts_;
2422
2423    /** The list of cuts initially collected for this subproblem
2424
2425      When the subproblem at this node is rebuilt, a set of cuts is collected
2426      for inclusion in the constraint system. If any of these cuts are
2427      subsequently removed because they have become loose, the corresponding
2428      entry is set to NULL.
2429    */
2430    CbcCountRowCut ** addedCuts_;
2431
2432    /** A pointer to a row cut which will be added instead of normal branching.
2433        After use it should be set to NULL.
2434    */
2435    OsiRowCut * nextRowCut_;
2436
2437    /// Current node so can be used elsewhere
2438    CbcNode * currentNode_;
2439
2440    /// Indices of integer variables
2441    int * integerVariable_;
2442    /// Whether of not integer
2443    char * integerInfo_;
2444    /// Holds solution at continuous (after cuts)
2445    double * continuousSolution_;
2446    /// Array marked whenever a solution is found if non-zero
2447    int * usedInSolution_;
2448    /**
2449        Special options
2450        0 bit (1) - check if cuts valid (if on debugger list)
2451        1 bit (2) - use current basis to check integer solution (rather than all slack)
2452        2 bit (4) - don't check integer solution (by solving LP)
2453        3 bit (8) - fast analyze
2454        4 bit (16) - non-linear model - so no well defined CoinPackedMatrix
2455        5 bit (32) - keep names
2456        6 bit (64) - try for dominated columns
2457        7 bit (128) - SOS type 1 but all declared integer
2458        8 bit (256) - Set to say solution just found, unset by doing cuts
2459        9 bit (512) - Try reduced model after 100 nodes
2460        10 bit (1024) - Switch on some heuristics even if seems unlikely
2461        11 bit (2048) - Mark as in small branch and bound
2462        12 bit (4096) - Funny cuts so do slow way (in some places)
2463        13 bit (8192) - Funny cuts so do slow way (in other places)
2464        14 bit (16384) - Use Cplex! for fathoming
2465        15 bit (32768) - Try reduced model after 0 nodes
2466        16 bit (65536) - Original model had integer bounds
2467        17 bit (131072) - Perturbation switched off
2468        18 bit (262144) - donor CbcModel
2469        19 bit (524288) - recipient CbcModel
2470    */
2471    int specialOptions_;
2472    /** More special options
2473        at present bottom 6 bits used for shadow price mode
2474        1024 for experimental hotstart
2475        2048,4096 breaking out of cuts
2476        8192 slowly increase minimum drop
2477        16384 gomory
2478        32768 more heuristics in sub trees
2479        65536 no cuts in preprocessing
2480        131072 Time limits elapsed
2481        18 bit (262144) - Perturb fathom nodes
2482        19 bit (524288) - No limit on fathom nodes
2483        20 bit (1048576) - Reduce sum of infeasibilities before cuts
2484        21 bit (2097152) - Reduce sum of infeasibilities after cuts
2485    */
2486    int moreSpecialOptions_;
2487    /// User node comparison function
2488    CbcCompareBase * nodeCompare_;
2489    /// User feasibility function (see CbcFeasibleBase.hpp)
2490    CbcFeasibilityBase * problemFeasibility_;
2491    /// Tree
2492    CbcTree * tree_;
2493    /// A pointer to model to be used for subtrees
2494    CbcModel * subTreeModel_;
2495    /// Number of times any subtree stopped on nodes, time etc
2496    int numberStoppedSubTrees_;
2497    /// Variable selection function
2498    CbcBranchDecision * branchingMethod_;
2499    /// Cut modifier function
2500    CbcCutModifier * cutModifier_;
2501    /// Strategy
2502    CbcStrategy * strategy_;
2503    /// Parent model
2504    CbcModel * parentModel_;
2505    /** Whether to automatically do presolve before branch and bound.
2506        0 - no
2507        1 - ordinary presolve
2508        2 - integer presolve (dodgy)
2509    */
2510    /// Pointer to array[getNumCols()] (for speed) of column lower bounds
2511    const double * cbcColLower_;
2512    /// Pointer to array[getNumCols()] (for speed) of column upper bounds
2513    const double * cbcColUpper_;
2514    /// Pointer to array[getNumRows()] (for speed) of row lower bounds
2515    const double * cbcRowLower_;
2516    /// Pointer to array[getNumRows()] (for speed) of row upper bounds
2517    const double * cbcRowUpper_;
2518    /// Pointer to array[getNumCols()] (for speed) of primal solution vector
2519    const double * cbcColSolution_;
2520    /// Pointer to array[getNumRows()] (for speed) of dual prices
2521    const double * cbcRowPrice_;
2522    /// Get a pointer to array[getNumCols()] (for speed) of reduced costs
2523    const double * cbcReducedCost_;
2524    /// Pointer to array[getNumRows()] (for speed) of row activity levels.
2525    const double * cbcRowActivity_;
2526    /// Pointer to user-defined data structure
2527    void * appData_;
2528    /// Presolve for CbcTreeLocal
2529    int presolve_;
2530    /** Maximum number of candidates to consider for strong branching.
2531      To disable strong branching, set this to 0.
2532    */
2533    int numberStrong_;
2534    /** \brief The number of branches before pseudo costs believed
2535           in dynamic strong branching.
2536
2537      A value of 0 is  off.
2538    */
2539    int numberBeforeTrust_;
2540    /** \brief The number of variables for which to compute penalties
2541           in dynamic strong branching.
2542    */
2543    int numberPenalties_;
2544    /// For threads - stop after this many "iterations"
2545    int stopNumberIterations_;
2546    /** Scale factor to make penalties match strong.
2547        Should/will be computed */
2548    double penaltyScaleFactor_;
2549    /// Number of analyze iterations to do
2550    int numberAnalyzeIterations_;
2551    /// Arrays with analysis results
2552    double * analyzeResults_;
2553    /// Number of nodes infeasible by normal branching (before cuts)
2554    int numberInfeasibleNodes_;
2555    /** Problem type as set by user or found by analysis.  This will be extended
2556        0 - not known
2557        1 - Set partitioning <=
2558        2 - Set partitioning ==
2559        3 - Set covering
2560    */
2561    int problemType_;
2562    /// Print frequency
2563    int printFrequency_;
2564    /// Number of cut generators
2565    int numberCutGenerators_;
2566    // Cut generators
2567    CbcCutGenerator ** generator_;
2568    // Cut generators before any changes
2569    CbcCutGenerator ** virginGenerator_;
2570    /// Number of heuristics
2571    int numberHeuristics_;
2572    /// Heuristic solvers
2573    CbcHeuristic ** heuristic_;
2574    /// Pointer to heuristic solver which found last solution (or NULL)
2575    CbcHeuristic * lastHeuristic_;
2576    /// Depth for fast nodes
2577    int fastNodeDepth_;
2578    /*! Pointer to the event handler */
2579# ifdef CBC_ONLY_CLP
2580    ClpEventHandler *eventHandler_ ;
2581# else
2582    CbcEventHandler *eventHandler_ ;
2583# endif
2584
2585    /// Total number of objects
2586    int numberObjects_;
2587
2588    /** \brief Integer and Clique and ... information
2589
2590      \note The code assumes that the first objects on the list will be
2591        SimpleInteger objects for each integer variable, followed by
2592        Clique objects. Portions of the code that understand Clique objects
2593        will fail if they do not immediately follow the SimpleIntegers.
2594        Large chunks of the code will fail if the first objects are not
2595        SimpleInteger. As of 2003.08, SimpleIntegers and Cliques are the only
2596        objects.
2597    */
2598    OsiObject ** object_;
2599    /// Now we may not own objects - just point to solver's objects
2600    bool ownObjects_;
2601
2602    /// Original columns as created by integerPresolve or preprocessing
2603    int * originalColumns_;
2604    /// How often to scan global cuts
2605    int howOftenGlobalScan_;
2606    /** Number of times global cuts violated.  When global cut pool then this
2607        should be kept for each cut and type of cut */
2608    int numberGlobalViolations_;
2609    /// Number of extra iterations in fast lp
2610    int numberExtraIterations_;
2611    /// Number of extra nodes in fast lp
2612    int numberExtraNodes_;
2613    /** Value of objective at continuous
2614        (Well actually after initial round of cuts)
2615    */
2616    double continuousObjective_;
2617    /** Value of objective before root node cuts added
2618    */
2619    double originalContinuousObjective_;
2620    /// Number of infeasibilities at continuous
2621    int continuousInfeasibilities_;
2622    /// Maximum number of cut passes at root
2623    int maximumCutPassesAtRoot_;
2624    /// Maximum number of cut passes
2625    int maximumCutPasses_;
2626    /// Preferred way of branching
2627    int preferredWay_;
2628    /// Current cut pass number
2629    int currentPassNumber_;
2630    /// Maximum number of cuts (for whichGenerator_)
2631    int maximumWhich_;
2632    /// Maximum number of rows
2633    int maximumRows_;
2634    /// Current depth
2635    int currentDepth_;
2636    /// Thread specific random number generator
2637    mutable CoinThreadRandom randomNumberGenerator_;
2638    /// Work basis for temporary use
2639    CoinWarmStartBasis workingBasis_;
2640    /// Which cut generator generated this cut
2641    int * whichGenerator_;
2642    /// Maximum number of statistics
2643    int maximumStatistics_;
2644    /// statistics
2645    CbcStatistics ** statistics_;
2646    /// Maximum depth reached
2647    int maximumDepthActual_;
2648    /// Number of reduced cost fixings
2649    double numberDJFixed_;
2650    /// Probing info
2651    CglTreeProbingInfo * probingInfo_;
2652    /// Number of fixed by analyze at root
2653    int numberFixedAtRoot_;
2654    /// Number fixed by analyze so far
2655    int numberFixedNow_;
2656    /// Whether stopping on gap
2657    bool stoppedOnGap_;
2658    /// Whether event happened
2659    mutable bool eventHappened_;
2660    /// Number of long strong goes
2661    int numberLongStrong_;
2662    /// Number of old active cuts
2663    int numberOldActiveCuts_;
2664    /// Number of new cuts
2665    int numberNewCuts_;
2666    /// Strategy worked out - mainly at root node
2667    int searchStrategy_;
2668    /// Number of iterations in strong branching
2669    int numberStrongIterations_;
2670    /** 0 - number times strong branching done, 1 - number fixed, 2 - number infeasible
2671        Second group of three is a snapshot at node [6] */
2672    int strongInfo_[7];
2673    /**
2674        For advanced applications you may wish to modify the behavior of Cbc
2675        e.g. if the solver is a NLP solver then you may not have an exact
2676        optimum solution at each step.  This gives characteristics - just for one BAB.
2677        For actually saving/restoring a solution you need the actual solver one.
2678    */
2679    OsiBabSolver * solverCharacteristics_;
2680    /// Whether to force a resolve after takeOffCuts
2681    bool resolveAfterTakeOffCuts_;
2682    /// Maximum number of iterations (designed to be used in heuristics)
2683    int maximumNumberIterations_;
2684    /// Anything with priority >= this can be treated as continuous
2685    int continuousPriority_;
2686    /// Number of outstanding update information items
2687    int numberUpdateItems_;
2688    /// Maximum number of outstanding update information items
2689    int maximumNumberUpdateItems_;
2690    /// Update items
2691    CbcObjectUpdateData * updateItems_;
2692    /// Stored row cuts for donor/recipient CbcModel
2693    CglStored * storedRowCuts_;
2694    /**
2695       Parallel
2696       0 - off
2697       1 - testing
2698       2-99 threads
2699       other special meanings
2700    */
2701    int numberThreads_;
2702    /** thread mode
2703        always use numberThreads for branching
2704        1 set then deterministic
2705        2 set then use numberThreads for root cuts
2706        4 set then use numberThreads in root mini branch and bound
2707        default is 0
2708    */
2709    int threadMode_;
2710    /// Thread stuff for master
2711    CbcBaseModel * master_;
2712    /// Pointer to masterthread
2713    CbcThread * masterThread_;
2714//@}
2715};
2716/// So we can use osiObject or CbcObject during transition
2717void getIntegerInformation(const OsiObject * object, double & originalLower,
2718                           double & originalUpper) ;
2719// So we can call from other programs
2720// Real main program
2721class OsiClpSolverInterface;
2722int CbcMain (int argc, const char *argv[], OsiClpSolverInterface & solver, CbcModel ** babSolver);
2723int CbcMain (int argc, const char *argv[], CbcModel & babSolver);
2724// four ways of calling
2725int callCbc(const char * input2, OsiClpSolverInterface& solver1);
2726int callCbc(const char * input2);
2727int callCbc(const std::string input2, OsiClpSolverInterface& solver1);
2728int callCbc(const std::string input2) ;
2729// When we want to load up CbcModel with options first
2730void CbcMain0 (CbcModel & babSolver);
2731int CbcMain1 (int argc, const char *argv[], CbcModel & babSolver);
2732// two ways of calling
2733int callCbc(const char * input2, CbcModel & babSolver);
2734int callCbc(const std::string input2, CbcModel & babSolver);
2735// And when CbcMain0 already called to initialize
2736int callCbc1(const char * input2, CbcModel & babSolver);
2737int callCbc1(const std::string input2, CbcModel & babSolver);
2738// And when CbcMain0 already called to initialize (with call back) (see CbcMain1 for whereFrom)
2739int callCbc1(const char * input2, CbcModel & babSolver, int (CbcModel * currentSolver, int whereFrom));
2740int callCbc1(const std::string input2, CbcModel & babSolver, int (CbcModel * currentSolver, int whereFrom));
2741int CbcMain1 (int argc, const char *argv[], CbcModel & babSolver, int (CbcModel * currentSolver, int whereFrom));
2742// For uniform setting of cut and heuristic options
2743void setCutAndHeuristicOptions(CbcModel & model);
2744#endif
2745
Note: See TracBrowser for help on using the repository browser.