1 | <?xml version="1.0" encoding="ISO-8859-1"?> |
---|
2 | <chapter id="otherclasses"> |
---|
3 | <title> |
---|
4 | Selecting the Next Node in the Search Tree |
---|
5 | </title> |
---|
6 | <section id="comparison"> |
---|
7 | <title>CbcCompare - Comparison Methods</title> |
---|
8 | <para> |
---|
9 | The order in which the nodes of the search tree are explored can strongly influence the performance of branch-and-cut algorithms. CBC give users complete control over the search order. The search order is controlled via the <classname>CbcCompare...</classname> class. CBC provides an abstract base class, <classname>CbcCompareBase</classname>, and several commonly used instances which are described in <xref linkend="compareTable"/>. |
---|
10 | </para> |
---|
11 | <table frame="none" id="compareTable"> |
---|
12 | <title>Compare Classes Provided</title> |
---|
13 | <tgroup cols="2"> |
---|
14 | <thead> |
---|
15 | <row> |
---|
16 | <entry> |
---|
17 | Class name |
---|
18 | </entry> |
---|
19 | <entry> |
---|
20 | Description |
---|
21 | </entry> |
---|
22 | </row> |
---|
23 | </thead> |
---|
24 | <tbody> |
---|
25 | <row> |
---|
26 | <entry align="left" valign="top"> |
---|
27 | <classname>CbcCompareDepth</classname> |
---|
28 | </entry> |
---|
29 | <entry align="left" valign="top"> |
---|
30 | This will always choose the node deepest in tree. It gives minimum |
---|
31 | tree size but may take a long time to find the best solution. |
---|
32 | </entry> |
---|
33 | </row> |
---|
34 | <row> |
---|
35 | <entry align="left" valign="top"> |
---|
36 | <classname>CbcCompareObjective</classname> |
---|
37 | </entry> |
---|
38 | <entry align="left" valign="top"> |
---|
39 | This will always choose the node with the best objective value. This may |
---|
40 | give a very large tree. It is likely that the first solution found |
---|
41 | will be the best and the search should finish soon after the first solution |
---|
42 | is found. |
---|
43 | </entry> |
---|
44 | </row> |
---|
45 | <row> |
---|
46 | <entry align="left" valign="top"> |
---|
47 | <classname>CbcCompareDefault</classname> |
---|
48 | </entry> |
---|
49 | <entry align="left" valign="top"> |
---|
50 | This is designed to do a mostly depth-first search until a solution has |
---|
51 | been found. It then use estimates that are designed to give a slightly better solution. |
---|
52 | If a reasonable number of nodes have been explored (or a reasonable number of |
---|
53 | solutions found), then this class will adopt a breadth-first search (i.e., making a comparison based strictly on objective function values) unless the tree is very large when it will revert to depth-first search. A better description of <classname>CbcCompareUser</classname> is given below. |
---|
54 | </entry> |
---|
55 | </row> |
---|
56 | <row> |
---|
57 | <entry align="left" valign="top"> |
---|
58 | <classname>CbcCompareEstimate</classname> |
---|
59 | </entry> |
---|
60 | <entry align="left" valign="top"> |
---|
61 | When pseudo costs are invoked, they can be used to guess a solution. This class uses the guessed solution. |
---|
62 | </entry> |
---|
63 | </row> |
---|
64 | </tbody> |
---|
65 | </tgroup> |
---|
66 | </table> |
---|
67 | <para> |
---|
68 | It is relatively simple for an experienced user to create new compare class instances. The code in <xref linkend="test"/> describes how to build a new comparison class and the reasoning behind it. The complete source can be found in <filename>CbcCompareUser.hpp</filename> and <filename>CbcCompareUser.cpp</filename>, located in the CBC Samples directory. See <xref linkend="moreexamples"/>. The key method in <classname>CbcCompare</classname> is <function>bool test(CbcNode* x, CbcNode* y))</function> which returns <parameter>true</parameter> if node <parameter>y</parameter> is preferred over node <parameter>x</parameter>. In the <function>test()</function> method, information from <classname>CbcNode</classname> can easily be used. <xref linkend="nodeTable"/> list some commonly used methods to access information at a node. |
---|
69 | <table frame="none" id="nodeTable"> |
---|
70 | <title>Information Available from <classname>CbcNode</classname></title> |
---|
71 | <tgroup cols="2"> |
---|
72 | <tbody> |
---|
73 | <row> |
---|
74 | <entry align="left" valign="top"> |
---|
75 | <function>double objectiveValue() const</function> |
---|
76 | </entry> |
---|
77 | <entry align="left" valign="top"> |
---|
78 | Value of objective at the node. |
---|
79 | </entry> |
---|
80 | </row> |
---|
81 | <row> |
---|
82 | <entry align="left" valign="top"> |
---|
83 | <function>int numberUnsatisfied() const</function> |
---|
84 | </entry> |
---|
85 | <entry align="left" valign="top"> |
---|
86 | Number of unsatisfied integers (assuming branching |
---|
87 | object is an integer - otherwise it might be number of unsatisfied sets). |
---|
88 | </entry> |
---|
89 | </row> |
---|
90 | <row> |
---|
91 | <entry align="left" valign="top"> |
---|
92 | <function>int depth() const</function> |
---|
93 | </entry> |
---|
94 | <entry align="left" valign="top"> |
---|
95 | Depth of the node in the search tree. |
---|
96 | </entry> |
---|
97 | </row> |
---|
98 | <row> |
---|
99 | <entry align="left" valign="top"> |
---|
100 | <function>double guessedObjectiveValue() const</function> |
---|
101 | </entry> |
---|
102 | <entry align="left" valign="top"> |
---|
103 | If user was setting this (e.g., if using pseudo costs). |
---|
104 | </entry> |
---|
105 | </row> |
---|
106 | <row> |
---|
107 | <entry align="left" valign="top"> |
---|
108 | <function>int way() const</function> |
---|
109 | </entry> |
---|
110 | <entry align="left" valign="top"> |
---|
111 | The way which branching would next occur from this node |
---|
112 | (for more advanced use). |
---|
113 | </entry> |
---|
114 | </row> |
---|
115 | <row> |
---|
116 | <entry align="left" valign="top"> |
---|
117 | <function>int variable() const</function> |
---|
118 | </entry> |
---|
119 | <entry align="left" valign="top"> |
---|
120 | The branching "variable" (associated with the <classname>CbcBranchingObject</classname> -- for more advanced use). |
---|
121 | </entry> |
---|
122 | </row> |
---|
123 | </tbody> |
---|
124 | </tgroup> |
---|
125 | </table> |
---|
126 | </para> |
---|
127 | |
---|
128 | <para> |
---|
129 | The node desired in the tree is often a function of the how the search is progressing. In the design of CBC, there is no information on the state of the tree. The CBC is designed so that the method |
---|
130 | <function>newSolution()</function> is called whenever a solution is found and the method <function>every1000Nodes()</function> is called every 1000 nodes. When these methods are called, the user has the opportunity to modify the |
---|
131 | behavior of <function>test()</function> by adjusting their common variables (e.g., <varname>weight_</varname>). Because <classname>CbcNode</classname> has a pointer to the model, the user can also influence the search through actions such as changing the maximum time CBC is allowed, once a solution has been found (e.g., <function>CbcModel::setMaximumSeconds(double value)</function>). In <filename>CbcCompareUser.cpp</filename> of the <filename>COIN/Cbc/Samples</filename> directory, four items of data are used. |
---|
132 | </para> |
---|
133 | <itemizedlist> |
---|
134 | <listitem> |
---|
135 | <para> |
---|
136 | 1) The number of solutions found so far |
---|
137 | </para> |
---|
138 | </listitem> |
---|
139 | <listitem> |
---|
140 | <para> |
---|
141 | 2) The size of the tree (defined to be the number of active nodes) |
---|
142 | </para> |
---|
143 | </listitem> |
---|
144 | <listitem> |
---|
145 | <para> |
---|
146 | 3) A weight, <varname>weight_</varname>, which is initialized to -1.0 |
---|
147 | </para> |
---|
148 | </listitem> |
---|
149 | <listitem> |
---|
150 | <para> |
---|
151 | 4) A saved value of weight, <varname>saveWeight_</varname> (for when weight is set back to -1.0 for special reason) |
---|
152 | </para> |
---|
153 | </listitem> |
---|
154 | </itemizedlist> |
---|
155 | <para> |
---|
156 | The full code for the <function>CbcCompareUser::test()</function> method is given in <xref linkend="test"/>. |
---|
157 | </para> |
---|
158 | <example id="test"> |
---|
159 | <title><function>CbcCompareUser::test()</function></title> |
---|
160 | <programlisting> |
---|
161 | <![CDATA[ |
---|
162 | // Returns true if y better than x |
---|
163 | bool |
---|
164 | CbcCompareUser::test (CbcNode * x, CbcNode * y) |
---|
165 | { |
---|
166 | if (weight_==-1.0) { |
---|
167 | // before solution |
---|
168 | if (x->numberUnsatisfied() > y->numberUnsatisfied()) |
---|
169 | return true; |
---|
170 | else if (x->numberUnsatisfied() < y->numberUnsatisfied()) |
---|
171 | return false; |
---|
172 | else |
---|
173 | return x->depth() < y->depth(); |
---|
174 | } else { |
---|
175 | // after solution. |
---|
176 | // note: if weight_=0, comparison is based |
---|
177 | // solely on objective value |
---|
178 | double weight = CoinMax(weight_,0.0); |
---|
179 | return x->objectiveValue()+ weight*x->numberUnsatisfied() > |
---|
180 | y->objectiveValue() + weight*y->numberUnsatisfied(); |
---|
181 | } |
---|
182 | } |
---|
183 | ]]> |
---|
184 | </programlisting> |
---|
185 | </example> |
---|
186 | <para> |
---|
187 | Initially, <varname>weight</varname>_ is -1.0 and the search is biased towards depth first. In |
---|
188 | fact, <function>test()</function> prefers <parameter>y</parameter> if <parameter>y</parameter> has fewer unsatisfied variables. In the case of a tie, <function>test()</function> prefers the node with the greater depth in tree. Once a solution is found, <function>newSolution()</function> is called. The method <function>newSolution()</function> interacts with <function>test()</function> by means of the variable <varname>weight_</varname>. If the solution was achieved by branching, <!-- how do can you determine that? --> a calculation is made to determine the cost per unsatisfied integer variable to go from the continuous solution to an integer solution. The variable <varname>weight_</varname> is then set to aim at a slightly better solution. From then on, <function>test()</function> returns <parameter>true</parameter> if it seems that <parameter>y</parameter> will lead to a better solution than <parameter>x</parameter>. This source for <function>newSolution()</function> in given in <xref linkend="newSolution"/>. |
---|
189 | </para> |
---|
190 | <example id="newSolution"> |
---|
191 | <title><function>CbcCompareUser::newSolution()</function></title> |
---|
192 | <programlisting> |
---|
193 | <![CDATA[ |
---|
194 | // This allows the test() method to change behavior by resetting weight_. |
---|
195 | // It is called after each new solution is found. |
---|
196 | void |
---|
197 | CbcCompareUser::newSolution(CbcModel * model, |
---|
198 | double objectiveAtContinuous, |
---|
199 | int numberInfeasibilitiesAtContinuous) |
---|
200 | { |
---|
201 | if (model->getSolutionCount()==model->getNumberHeuristicSolutions()) |
---|
202 | return; // solution was found by rounding so ignore it. |
---|
203 | |
---|
204 | // set weight_ to get close to this solution |
---|
205 | double costPerInteger = |
---|
206 | (model->getObjValue()-objectiveAtContinuous)/ |
---|
207 | ((double) numberInfeasibilitiesAtContinuous); |
---|
208 | weight_ = 0.98*costPerInteger; |
---|
209 | saveWeight_=weight_; |
---|
210 | numberSolutions_++; |
---|
211 | if (numberSolutions_>5) |
---|
212 | weight_ =0.0; // comparison in test() will be |
---|
213 | // based strictly on objective value. |
---|
214 | } |
---|
215 | ]]> |
---|
216 | </programlisting> |
---|
217 | </example> |
---|
218 | <para> |
---|
219 | |
---|
220 | As the search progresses, the comparison can be <!-- what? is "this"? -->modified. If many nodes (or many solutions) have been genereated, then <varname>weight_</varname> is set to 0.0 leading to a breadth-first search. Breadth-first search can lead to an enormous tree. If the tree size is exceeds 10000, it may be desirable to return to a search biased towards depth first. Changing the behavior in this manner is done by the method <function>every1000Nodes</function> shown in <xref linkend="everyK"/>. |
---|
221 | </para> |
---|
222 | <example id="everyK"> |
---|
223 | <title><function>CbcCompareUser::every1000Nodes()</function></title> |
---|
224 | <programlisting> |
---|
225 | <![CDATA[ |
---|
226 | // This allows the test() method to change behavior every so often |
---|
227 | bool |
---|
228 | CbcCompareUser::every1000Nodes(CbcModel * model, int numberNodes) |
---|
229 | { |
---|
230 | if (numberNodes>10000) |
---|
231 | weight_ =0.0; // compare nodes based on objective value |
---|
232 | else if (numberNodes==1000&&weight_==-2.0) |
---|
233 | weight_=-1.0; // Go to depth first |
---|
234 | // get size of tree |
---|
235 | treeSize_ = model->tree()->size(); |
---|
236 | if (treeSize_>10000) { |
---|
237 | // set weight to reduce size most of time |
---|
238 | if (treeSize_>20000) |
---|
239 | weight_=-1.0; |
---|
240 | else if ((numberNodes%4000)!=0) |
---|
241 | weight_=-1.0; |
---|
242 | else |
---|
243 | weight_=saveWeight_; |
---|
244 | } |
---|
245 | return numberNodes==11000; // resort if first time |
---|
246 | } |
---|
247 | ]]> |
---|
248 | </programlisting> |
---|
249 | </example> |
---|
250 | </section> |
---|
251 | </chapter> |
---|
252 | <chapter id="hueristicChap"> |
---|
253 | <title> |
---|
254 | Getting Good Bounds in CBC |
---|
255 | </title> |
---|
256 | <section id="heuristics"> |
---|
257 | <title>CbcHeuristic - Heuristic Methods</title> |
---|
258 | <para> |
---|
259 | In practice, it is very useful to get a good solution reasonably fast. Any MIP-feasible solution produces an upper bound, and a good bound will greatly reduce the run time. Good solutions can satisfy the user |
---|
260 | on very large problems where a complete search is impossible. Obviously, heuristics are |
---|
261 | problem dependent, although some do have more general use. |
---|
262 | At present there is only one heuristic in CBC itself, <classname>CbcRounding</classname>. Hopefully, the number will grow. Other heuristics are in the <filename>COIN/Cbc/Samples</filename> |
---|
263 | directory. A heuristic tries to obtain a solution to the original |
---|
264 | problem so it only needs to consider the original rows and does not have to use the |
---|
265 | current bounds. CBC provides an abstract base class <classname>CbcHeuristic</classname> and a rounding heuristic in CBC. <!-- rlh: we need an example of using an existing heuristic --> |
---|
266 | </para> |
---|
267 | <para> |
---|
268 | This chapter describes how to build a greedy heuristic for a set covering problem, e.g., the miplib problem fast0507. A more general (and efficient) version of the heuristic is in <filename>CbcHeuristicGreedy.hpp</filename> and <filename>CbcHeuristicGreedy.cpp</filename> located in the <filename>COIN/Cbc/Samples</filename> directory, see <xref linkend="moreexamples"/>. |
---|
269 | </para> |
---|
270 | <para> |
---|
271 | The greedy heuristic will leave all variables taking value one at this node of the |
---|
272 | tree at value one, and will initially set all other variable to value zero. |
---|
273 | All variables are then sorted in order of their cost |
---|
274 | divided by the number of entries in rows which are not yet covered. (We may randomize that |
---|
275 | value a bit so that ties will be broken in different ways on different runs of the heuristic.) |
---|
276 | The best one is choosen, and set to one. The process is repeated. Because this is |
---|
277 | a set covering problem (i.e., all constraints are ≥), the heuristic is guaranteed to find a solution (but not necessarily an improved solution). The speed of the heuristic could be improved by just redoing those affected, but for illustrative purposes we will keep it simple.(The speed could also be improved if all elements are 1.0). |
---|
278 | </para> |
---|
279 | <para> |
---|
280 | The key <classname>CbcHeuristic</classname> method is <function>int solution(double & solutionValue, |
---|
281 | double * betterSolution)</function>. |
---|
282 | The <function>solution()</function> method returns 0 if no solution found, and returns 1 if a solution is found, in which case it fills in the objective value and primal solution. The code in <filename>CbcHeuristicGreedy.cpp</filename> is a little more complicated than this following example. For instance, the code here assumes all variables are integer. The important bit of data is a copy of the matrix (stored by column) before any cuts have been made. The data used are bounds, objective and the matrix plus two work arrays. |
---|
283 | </para> |
---|
284 | <example> |
---|
285 | <title>Data</title> |
---|
286 | <programlisting> |
---|
287 | <![CDATA[ |
---|
288 | OsiSolverInterface * solver = model_->solver(); // Get solver from CbcModel |
---|
289 | const double * columnLower = solver->getColLower(); // Column Bounds |
---|
290 | const double * columnUpper = solver->getColUpper(); |
---|
291 | const double * rowLower = solver->getRowLower(); // We know we only need lower bounds |
---|
292 | const double * solution = solver->getColSolution(); |
---|
293 | const double * objective = solver->getObjCoefficients(); // In code we also use min/max |
---|
294 | double integerTolerance = model_->getDblParam(CbcModel::CbcIntegerTolerance); |
---|
295 | double primalTolerance; |
---|
296 | solver->getDblParam(OsiPrimalTolerance,primalTolerance); |
---|
297 | int numberRows = originalNumberRows_; // This is number of rows when matrix was passed in |
---|
298 | // Column copy of matrix (before cuts) |
---|
299 | const double * element = matrix_.getElements(); |
---|
300 | const int * row = matrix_.getIndices(); |
---|
301 | const CoinBigIndex * columnStart = matrix_.getVectorStarts(); |
---|
302 | const int * columnLength = matrix_.getVectorLengths(); |
---|
303 | |
---|
304 | // Get solution array for heuristic solution |
---|
305 | int numberColumns = solver->getNumCols(); |
---|
306 | double * newSolution = new double [numberColumns]; |
---|
307 | // And to sum row activities |
---|
308 | double * rowActivity = new double[numberRows]; |
---|
309 | ]]> |
---|
310 | </programlisting> |
---|
311 | </example> |
---|
312 | <para> |
---|
313 | The <varname>newSolution</varname> is then initialized to the rounded down solution. |
---|
314 | </para> |
---|
315 | <example> |
---|
316 | <title>Initialize <varname>newSolution</varname></title> |
---|
317 | <programlisting> |
---|
318 | <![CDATA[ |
---|
319 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
---|
320 | CoinBigIndex j; |
---|
321 | double value = solution[iColumn]; |
---|
322 | // Round down integer |
---|
323 | if (fabs(floor(value+0.5)-value)<integerTolerance) |
---|
324 | value=floor(CoinMax(value+1.0e-3,columnLower[iColumn])); |
---|
325 | // make sure clean |
---|
326 | value = CoinMin(value,columnUpper[iColumn]); |
---|
327 | value = CoinMax(value,columnLower[iColumn]); |
---|
328 | newSolution[iColumn]=value; |
---|
329 | if (value) { |
---|
330 | double cost = direction * objective[iColumn]; |
---|
331 | newSolutionValue += value*cost; |
---|
332 | for (j=columnStart[iColumn]; |
---|
333 | j<columnStart[iColumn]+columnLength[iColumn];j++) { |
---|
334 | int iRow=row[j]; |
---|
335 | rowActivity[iRow] += value*element[j]; |
---|
336 | } |
---|
337 | } |
---|
338 | } |
---|
339 | ]]> |
---|
340 | </programlisting> |
---|
341 | </example> |
---|
342 | <para> |
---|
343 | <!-- rlh: where is "direction" from? --> |
---|
344 | |
---|
345 | At this point some row activities may be below their lower bound. To correct this infeasibility, the variable which is cheapest in reducing the sum of infeasibilities is found and updated, and the process repeats. This is a finite process. (Theimplementation could be faster, but is kept simple for illustrative purposes.) |
---|
346 | </para> |
---|
347 | <example> |
---|
348 | <title>Create Feasible <varname>newSolution</varname> from Initial <varname>newSolution</varname></title> |
---|
349 | <programlisting> |
---|
350 | <![CDATA[ |
---|
351 | while (true) { |
---|
352 | // Get column with best ratio |
---|
353 | int bestColumn=-1; |
---|
354 | double bestRatio=COIN_DBL_MAX; |
---|
355 | for (int iColumn=0;iColumn<numberColumns;iColumn++) { |
---|
356 | CoinBigIndex j; |
---|
357 | double value = newSolution[iColumn]; |
---|
358 | double cost = direction * objective[iColumn]; |
---|
359 | // we could use original upper rather than current |
---|
360 | if (value+0.99<columnUpper[iColumn]) { |
---|
361 | double sum=0.0; // Compute how much we will reduce infeasibility by |
---|
362 | for (j=columnStart[iColumn]; |
---|
363 | j<columnStart[iColumn]+columnLength[iColumn];j++) { |
---|
364 | int iRow=row[j]; |
---|
365 | double gap = rowLower[iRow]-rowActivity[iRow]; |
---|
366 | if (gap>1.0e-7) { |
---|
367 | sum += CoinMin(element[j],gap); |
---|
368 | if (element[j]+rowActivity[iRow]<rowLower[iRow]+1.0e-7) { |
---|
369 | sum += element[j]; |
---|
370 | } |
---|
371 | } |
---|
372 | if (sum>0.0) { |
---|
373 | double ratio = (cost/sum)*(1.0+0.1*CoinDrand48()); |
---|
374 | if (ratio<bestRatio) { |
---|
375 | bestRatio=ratio; |
---|
376 | bestColumn=iColumn; |
---|
377 | } |
---|
378 | } |
---|
379 | } |
---|
380 | } |
---|
381 | if (bestColumn<0) |
---|
382 | break; // we have finished |
---|
383 | // Increase chosen column |
---|
384 | newSolution[bestColumn] += 1.0; |
---|
385 | double cost = direction * objective[bestColumn]; |
---|
386 | newSolutionValue += cost; |
---|
387 | for (CoinBigIndex j=columnStart[bestColumn]; |
---|
388 | j<columnStart[bestColumn]+columnLength[bestColumn];j++) { |
---|
389 | int iRow = row[j]; |
---|
390 | rowActivity[iRow] += element[j]; |
---|
391 | } |
---|
392 | } |
---|
393 | ]]> |
---|
394 | </programlisting> |
---|
395 | </example> |
---|
396 | <para> |
---|
397 | A solution value of <varname>newSolution</varname> is compared to the best solution value. If <varname>newSolution</varname> is an improvement, its feasibility is validated. |
---|
398 | </para> |
---|
399 | <example> |
---|
400 | <title>Check Solution Quality of <varname>newSolution</varname></title> |
---|
401 | <programlisting> |
---|
402 | <![CDATA[ |
---|
403 | returnCode=0; // 0 means no good solution |
---|
404 | if (newSolutionValue<solutionValue) { // minimization |
---|
405 | // check feasible |
---|
406 | memset(rowActivity,0,numberRows*sizeof(double)); |
---|
407 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
---|
408 | CoinBigIndex j; |
---|
409 | double value = newSolution[iColumn]; |
---|
410 | if (value) { |
---|
411 | for (j=columnStart[iColumn]; |
---|
412 | j<columnStart[iColumn]+columnLength[iColumn];j++) { |
---|
413 | int iRow=row[j]; |
---|
414 | rowActivity[iRow] += value*element[j]; |
---|
415 | } |
---|
416 | } |
---|
417 | } |
---|
418 | // check was approximately feasible |
---|
419 | bool feasible=true; |
---|
420 | for (iRow=0;iRow<numberRows;iRow++) { |
---|
421 | if(rowActivity[iRow]<rowLower[iRow]) { |
---|
422 | if (rowActivity[iRow]<rowLower[iRow]-10.0*primalTolerance) |
---|
423 | feasible = false; |
---|
424 | } |
---|
425 | } |
---|
426 | if (feasible) { |
---|
427 | // new solution |
---|
428 | memcpy(betterSolution,newSolution,numberColumns*sizeof(double)); |
---|
429 | solutionValue = newSolutionValue; |
---|
430 | // We have good solution |
---|
431 | returnCode=1; |
---|
432 | } |
---|
433 | } |
---|
434 | ]]> |
---|
435 | </programlisting> |
---|
436 | </example> |
---|
437 | </section> |
---|
438 | </chapter> |
---|
439 | |
---|
440 | <chapter id="branchChapter"> |
---|
441 | <title> |
---|
442 | Branching |
---|
443 | </title> |
---|
444 | <section id="branching"> |
---|
445 | <title>Pseudo Cost Branching</title> |
---|
446 | <para> |
---|
447 | <!-- rlh: need a description of "objects" --> |
---|
448 | If the user declares variables as integer but does no more, then CBC will treat them |
---|
449 | as simple integer variables. In many cases the user would like to do some more fine tuning. This section shows how to create integer variables with pseudo costs. When pseudo costs are given then |
---|
450 | it is assumed that if a variable is at 1.3 then the cost of branching that variable down will be 0.3 times the down pseudo cost and the cost of branching up would be 0.7 times the up pseudo cost. Pseudo costs can be used both for branching and for choosing a node. |
---|
451 | The full code is in <filename>longthin.cpp</filename> located in the CBC Samples directory, see |
---|
452 | <xref linkend="moreexamples"/>. |
---|
453 | </para> |
---|
454 | <para> |
---|
455 | The idea is simple for set covering problems. |
---|
456 | Branching up gets us much closer to an integer solution so we will encourage that direction by branch up if variable value > 0.333333. |
---|
457 | The expected cost of going up obviously depends on the cost of the |
---|
458 | variable. The pseudo costs are choosen to reflect that fact. |
---|
459 | <!-- rlh: what's the difference between simple var objects and pseudo cost objects? explain. --> |
---|
460 | </para> |
---|
461 | <example id="pseudo"> |
---|
462 | <title><classname>CbcSimpleIntegerPseudoCosts</classname></title> |
---|
463 | <programlisting> |
---|
464 | <![CDATA[ |
---|
465 | int iColumn; |
---|
466 | int numberColumns = solver3->getNumCols(); |
---|
467 | // do pseudo costs |
---|
468 | CbcObject ** objects = new CbcObject * [numberColumns]; |
---|
469 | // Point to objective |
---|
470 | const double * objective = model.getObjCoefficients(); |
---|
471 | int numberIntegers=0; |
---|
472 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
---|
473 | if (solver3->isInteger(iColumn)) { |
---|
474 | double cost = objective[iColumn]; |
---|
475 | CbcSimpleIntegerPseudoCost * newObject = |
---|
476 | new CbcSimpleIntegerPseudoCost(&model,numberIntegers,iColumn, |
---|
477 | 2.0*cost,cost); |
---|
478 | newObject->setMethod(3); |
---|
479 | objects[numberIntegers++]= newObject; |
---|
480 | } |
---|
481 | } |
---|
482 | // Now add in objects (they will replace simple integers) |
---|
483 | model.addObjects(numberIntegers,objects); |
---|
484 | for (iColumn=0;iColumn<numberIntegers;iColumn++) |
---|
485 | delete objects[iColumn]; |
---|
486 | delete [] objects; |
---|
487 | ]]> |
---|
488 | </programlisting> |
---|
489 | </example> |
---|
490 | <para> |
---|
491 | The code in <xref linkend="pseudo"/> also tries to give more importance to variables with more |
---|
492 | coefficients. Whether this sort of thing is worthwhile should be the subject of experimentation. |
---|
493 | <!-- needs more explaination, e.g., why do you have to delete objects? --> |
---|
494 | <!-- what does a pseudo cost object do for you? and how does it do it? --> |
---|
495 | </para> |
---|
496 | </section> |
---|
497 | <section id="followOn"> |
---|
498 | <title>Follow-On Branching</title> |
---|
499 | <para> |
---|
500 | In crew scheduling, the problems are long and thin. A problem may have a few rows but many thousands of variables. Branching a variable to 1 is very powerful as it fixes many other variables to zero, but branching to zero is very weak as thousands of variables can increase from zero. In crew scheduling problems, each constraint is a flight leg, e.g., JFK airport to DFW airport. |
---|
501 | From DFW there may be several flights the crew could take next - suppose one flight is |
---|
502 | the 9:30 flight from DFW to LAX airport. A binary branch is that the crew arriving |
---|
503 | at DFW either take the 9:30 flight to LAX or they don't. This "follow-on" branching does not |
---|
504 | fix individual variables. Instead this branching divides all the variables with entries in the JFK-DFW |
---|
505 | constraint into two groups - those with entries in the DFW-LAX constraint and those without |
---|
506 | entries. |
---|
507 | </para> |
---|
508 | <para> |
---|
509 | The full sample code for follow-on brancing is in <filename>crew.cpp</filename> |
---|
510 | located in the CBC Samples directory, see |
---|
511 | <xref linkend="moreexamples"/>). In this case, the simple integer |
---|
512 | variables are left which may be necessary if other sorts of constraints exist. Follow-on branching rules are to be considered first, so the priorities are set to indicated the follow-on rules take precedence. Priority 1 is the highest priority. |
---|
513 | <!-- rlh:need to explain how *priorities* work, and where they are used --> |
---|
514 | </para> |
---|
515 | <example> |
---|
516 | <title><classname>CbcFollowOn</classname></title> |
---|
517 | <programlisting> |
---|
518 | <![CDATA[ |
---|
519 | int iColumn; |
---|
520 | int numberColumns = solver3->getNumCols(); |
---|
521 | /* We are going to add a single follow-on object but we |
---|
522 | want to give low priority to existing integers |
---|
523 | As the default priority is 1000 we don't actually need to give |
---|
524 | integer priorities but it is here to show how. |
---|
525 | */ |
---|
526 | // Normal integer priorities |
---|
527 | int * priority = new int [numberColumns]; |
---|
528 | int numberIntegers=0; |
---|
529 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
---|
530 | if (solver3->isInteger(iColumn)) { |
---|
531 | priority[numberIntegers++]= 100; // low priority |
---|
532 | } |
---|
533 | } |
---|
534 | /* Second parameter is set to true for objects, |
---|
535 | and false for integers. This indicates integers */ |
---|
536 | model.passInPriorities(priority,false); |
---|
537 | delete [] priority; |
---|
538 | /* Add in objects before we can give them a priority. |
---|
539 | In this case just one object |
---|
540 | - but it shows the general method |
---|
541 | */ |
---|
542 | CbcObject ** objects = new CbcObject * [1]; |
---|
543 | objects[0]=new CbcFollowOn(&model); |
---|
544 | model.addObjects(1,objects); |
---|
545 | delete objects[0]; |
---|
546 | delete [] objects; |
---|
547 | // High priority |
---|
548 | int followPriority=1; |
---|
549 | model.passInPriorities(&followPriority,true); |
---|
550 | ]]> |
---|
551 | </programlisting> |
---|
552 | </example> |
---|
553 | <!-- rlh: need to explain the CbcFollowOn object --> |
---|
554 | </section> |
---|
555 | </chapter> |
---|
556 | <chapter id="SolverChap"> |
---|
557 | <title> |
---|
558 | Advance Solver Uses |
---|
559 | </title> |
---|
560 | <section id="solver"> |
---|
561 | <title>Creating a Solver via Inheritance</title> |
---|
562 | <para> |
---|
563 | CBC uses a generic <classname>OsiSolverInterface</classname> and its <function>resolve</function> capability. |
---|
564 | This does not give much flexibility so advanced users can inherit from their interface |
---|
565 | of choice. This section illustrates how to implement such a solver for a long thin problem, e.g., fast0507 again. As with the other examples in the Guide, the sample code is not guaranteed to be the fastest way to solve the problem. The main purpose of the example is to illustrate techniques. The full source is in <filename>CbcSolver2.hpp</filename> and <filename>CbcSolver2.cpp</filename> located in the CBC Samples directory, see |
---|
566 | <xref linkend="moreexamples"/>. |
---|
567 | </para> |
---|
568 | <para> |
---|
569 | The method <function>initialSolve</function> is called a few times in CBC, and provides a convenient starting point. The <varname>modelPtr_</varname> derives from <classname>OsiClpSolverInterface</classname>. |
---|
570 | </para> |
---|
571 | <example id="initialSolve"> |
---|
572 | <title><function>initialSolve()</function></title> |
---|
573 | <programlisting> |
---|
574 | <![CDATA[ |
---|
575 | // modelPtr_ is of type ClpSimplex * |
---|
576 | modelPtr_->setLogLevel(1); // switch on a bit of printout |
---|
577 | modelPtr_->scaling(0); // We don't want scaling for fast0507 |
---|
578 | setBasis(basis_,modelPtr_); // Put basis into ClpSimplex |
---|
579 | // Do long thin by sprint |
---|
580 | ClpSolve options; |
---|
581 | options.setSolveType(ClpSolve::usePrimalorSprint); |
---|
582 | options.setPresolveType(ClpSolve::presolveOff); |
---|
583 | options.setSpecialOption(1,3,15); // Do 15 sprint iterations |
---|
584 | modelPtr_->initialSolve(options); // solve problem |
---|
585 | basis_ = getBasis(modelPtr_); // save basis |
---|
586 | modelPtr_->setLogLevel(0); // switch off printout |
---|
587 | ]]> |
---|
588 | </programlisting> |
---|
589 | </example> |
---|
590 | <!-- rlh: need a verbal description to go with the intialSolve() code --> |
---|
591 | <para> |
---|
592 | The <function>resolve()</function> method is more complicated than <function>initialSolve()</function>. The main pieces of data are a counter <varname>count_</varname> which is incremented each solve and an integer array <varname>node_</varname> which stores the last time |
---|
593 | a variable was active in a solution. For the first few times, the normal Dual Simplex is called and |
---|
594 | <varname>node_</varname> array is updated. |
---|
595 | </para> |
---|
596 | <example> |
---|
597 | <title>First Few Solves</title> |
---|
598 | <programlisting> |
---|
599 | <![CDATA[ |
---|
600 | if (count_<10) { |
---|
601 | OsiClpSolverInterface::resolve(); // Normal resolve |
---|
602 | if (modelPtr_->status()==0) { |
---|
603 | count_++; // feasible - save any nonzero or basic |
---|
604 | const double * solution = modelPtr_->primalColumnSolution(); |
---|
605 | for (int i=0;i<numberColumns;i++) { |
---|
606 | if (solution[i]>1.0e-6||modelPtr_->getStatus(i)==ClpSimplex::basic) { |
---|
607 | node_[i]=CoinMax(count_,node_[i]); |
---|
608 | howMany_[i]++; |
---|
609 | } |
---|
610 | } |
---|
611 | } else { |
---|
612 | printf("infeasible early on\n"); |
---|
613 | } |
---|
614 | } |
---|
615 | ]]> |
---|
616 | </programlisting> |
---|
617 | </example> |
---|
618 | <!-- rlh: need more explanation of what's being illustrated in the code --> |
---|
619 | <para> |
---|
620 | After the first few solves, only those variables which took part in a solution in the last so many |
---|
621 | solves are used. As fast0507 is a set covering problem, any rows which are already covered can be taken out. |
---|
622 | </para> |
---|
623 | <example> |
---|
624 | <title>Create Small Problem</title> |
---|
625 | <programlisting> |
---|
626 | <![CDATA[ |
---|
627 | int * whichRow = new int[numberRows]; // Array to say which rows used |
---|
628 | int * whichColumn = new int [numberColumns]; // Array to say which columns used |
---|
629 | int i; |
---|
630 | const double * lower = modelPtr_->columnLower(); |
---|
631 | const double * upper = modelPtr_->columnUpper(); |
---|
632 | setBasis(basis_,modelPtr_); // Set basis |
---|
633 | int nNewCol=0; // Number of columns in small model |
---|
634 | // Column copy of matrix |
---|
635 | const double * element = modelPtr_->matrix()->getElements(); |
---|
636 | const int * row = modelPtr_->matrix()->getIndices(); |
---|
637 | const CoinBigIndex * columnStart = modelPtr_->matrix()->getVectorStarts(); |
---|
638 | const int * columnLength = modelPtr_->matrix()->getVectorLengths(); |
---|
639 | |
---|
640 | int * rowActivity = new int[numberRows]; // Number of columns with entries in each row |
---|
641 | memset(rowActivity,0,numberRows*sizeof(int)); |
---|
642 | int * rowActivity2 = new int[numberRows]; // Lower bound on row activity for each row |
---|
643 | memset(rowActivity2,0,numberRows*sizeof(int)); |
---|
644 | char * mark = (char *) modelPtr_->dualColumnSolution(); // Get some space to mark columns |
---|
645 | memset(mark,0,numberColumns); |
---|
646 | for (i=0;i<numberColumns;i++) { |
---|
647 | bool choose = (node_[i]>count_-memory_&&node_[i]>0); // Choose if used recently |
---|
648 | // Take if used recently or active in some sense |
---|
649 | if ((choose&&upper[i]) |
---|
650 | ||(modelPtr_->getStatus(i)!=ClpSimplex::atLowerBound&& |
---|
651 | modelPtr_->getStatus(i)!=ClpSimplex::isFixed) |
---|
652 | ||lower[i]>0.0) { |
---|
653 | mark[i]=1; // mark as used |
---|
654 | whichColumn[nNewCol++]=i; // add to list |
---|
655 | CoinBigIndex j; |
---|
656 | double value = upper[i]; |
---|
657 | if (value) { |
---|
658 | for (j=columnStart[i]; |
---|
659 | j<columnStart[i]+columnLength[i];j++) { |
---|
660 | int iRow=row[j]; |
---|
661 | assert (element[j]==1.0); |
---|
662 | rowActivity[iRow] ++; // This variable can cover this row |
---|
663 | } |
---|
664 | if (lower[i]>0.0) { |
---|
665 | for (j=columnStart[i]; |
---|
666 | j<columnStart[i]+columnLength[i];j++) { |
---|
667 | int iRow=row[j]; |
---|
668 | rowActivity2[iRow] ++; // This row redundant |
---|
669 | } |
---|
670 | } |
---|
671 | } |
---|
672 | } |
---|
673 | } |
---|
674 | int nOK=0; // Use to count rows which can be covered |
---|
675 | int nNewRow=0; // Use to make list of rows needed |
---|
676 | for (i=0;i<numberRows;i++) { |
---|
677 | if (rowActivity[i]) |
---|
678 | nOK++; |
---|
679 | if (!rowActivity2[i]) |
---|
680 | whichRow[nNewRow++]=i; // not satisfied |
---|
681 | else |
---|
682 | modelPtr_->setRowStatus(i,ClpSimplex::basic); // make slack basic |
---|
683 | } |
---|
684 | if (nOK<numberRows) { |
---|
685 | // The variables we have do not cover rows - see if we can find any that do |
---|
686 | for (i=0;i<numberColumns;i++) { |
---|
687 | if (!mark[i]&&upper[i]) { |
---|
688 | CoinBigIndex j; |
---|
689 | int good=0; |
---|
690 | for (j=columnStart[i]; |
---|
691 | j<columnStart[i]+columnLength[i];j++) { |
---|
692 | int iRow=row[j]; |
---|
693 | if (!rowActivity[iRow]) { |
---|
694 | rowActivity[iRow] ++; |
---|
695 | good++; |
---|
696 | } |
---|
697 | } |
---|
698 | if (good) { |
---|
699 | nOK+=good; // This covers - put in list |
---|
700 | whichColumn[nNewCol++]=i; |
---|
701 | } |
---|
702 | } |
---|
703 | } |
---|
704 | } |
---|
705 | delete [] rowActivity; |
---|
706 | delete [] rowActivity2; |
---|
707 | if (nOK<numberRows) { |
---|
708 | // By inspection the problem is infeasible - no need to solve |
---|
709 | modelPtr_->setProblemStatus(1); |
---|
710 | delete [] whichRow; |
---|
711 | delete [] whichColumn; |
---|
712 | printf("infeasible by inspection\n"); |
---|
713 | return; |
---|
714 | } |
---|
715 | // Now make up a small model with the right rows and columns |
---|
716 | ClpSimplex * temp = new ClpSimplex(modelPtr_,nNewRow,whichRow,nNewCol,whichColumn); |
---|
717 | ]]> |
---|
718 | </programlisting> |
---|
719 | </example> |
---|
720 | <para> |
---|
721 | If the variables cover the rows, then the problem is feasible (no cuts are being used). If the rows |
---|
722 | were equality constraints, then this might not be the case. More work would be needed. After the solution, the reduct costs are checked. If any reduced costs are negative, the code goes back to the full problem and cleans up with Primal Simplex. |
---|
723 | </para> |
---|
724 | <example> |
---|
725 | <title>Check Optimal Solution</title> |
---|
726 | <programlisting> |
---|
727 | <![CDATA[ |
---|
728 | temp->setDualObjectiveLimit(1.0e50); // Switch off dual cutoff as problem is restricted |
---|
729 | temp->dual(); // solve |
---|
730 | double * solution = modelPtr_->primalColumnSolution(); // put back solution |
---|
731 | const double * solution2 = temp->primalColumnSolution(); |
---|
732 | memset(solution,0,numberColumns*sizeof(double)); |
---|
733 | for (i=0;i<nNewCol;i++) { |
---|
734 | int iColumn = whichColumn[i]; |
---|
735 | solution[iColumn]=solution2[i]; |
---|
736 | modelPtr_->setStatus(iColumn,temp->getStatus(i)); |
---|
737 | } |
---|
738 | double * rowSolution = modelPtr_->primalRowSolution(); |
---|
739 | const double * rowSolution2 = temp->primalRowSolution(); |
---|
740 | double * dual = modelPtr_->dualRowSolution(); |
---|
741 | const double * dual2 = temp->dualRowSolution(); |
---|
742 | memset(dual,0,numberRows*sizeof(double)); |
---|
743 | for (i=0;i<nNewRow;i++) { |
---|
744 | int iRow=whichRow[i]; |
---|
745 | modelPtr_->setRowStatus(iRow,temp->getRowStatus(i)); |
---|
746 | rowSolution[iRow]=rowSolution2[i]; |
---|
747 | dual[iRow]=dual2[i]; |
---|
748 | } |
---|
749 | // See if optimal |
---|
750 | double * dj = modelPtr_->dualColumnSolution(); |
---|
751 | // get reduced cost for large problem |
---|
752 | // this assumes minimization |
---|
753 | memcpy(dj,modelPtr_->objective(),numberColumns*sizeof(double)); |
---|
754 | modelPtr_->transposeTimes(-1.0,dual,dj); |
---|
755 | modelPtr_->setObjectiveValue(temp->objectiveValue()); |
---|
756 | modelPtr_->setProblemStatus(0); |
---|
757 | int nBad=0; |
---|
758 | |
---|
759 | for (i=0;i<numberColumns;i++) { |
---|
760 | if (modelPtr_->getStatus(i)==ClpSimplex::atLowerBound |
---|
761 | &&upper[i]>lower[i]&&dj[i]<-1.0e-5) |
---|
762 | nBad++; |
---|
763 | } |
---|
764 | // If necessary clean up with primal (and save some statistics) |
---|
765 | if (nBad) { |
---|
766 | timesBad_++; |
---|
767 | modelPtr_->primal(1); |
---|
768 | iterationsBad_ += modelPtr_->numberIterations(); |
---|
769 | } |
---|
770 | ]]> |
---|
771 | </programlisting> |
---|
772 | </example> |
---|
773 | <para> |
---|
774 | The array <varname>node_</varname> is updated, as for the first few solves. To give some idea of the effect of this tactic, the problem fast0507 has 63,009 variables but the small problem never has more than 4,000 variables. In only about ten percent of solves was it necessary to resolve, and then the average number of iterations |
---|
775 | on full problem was less than 20. |
---|
776 | </para> |
---|
777 | </section> |
---|
778 | <section id="quadratic"> |
---|
779 | <title>Quadratic MIP</title> |
---|
780 | <para> |
---|
781 | To give another example - again only for illustrative purposes -- it is possible to do quadratic |
---|
782 | MIP with CBC. In this case, we make <function>resolve</function> the same as |
---|
783 | <function>initialSolve</function>. |
---|
784 | The full code is in <filename>ClpQuadInterface.hpp</filename> and |
---|
785 | <filename>ClpQuadInterface.cpp</filename> located in the CBC Samples directory, see |
---|
786 | <xref linkend="moreexamples"/>). |
---|
787 | </para> |
---|
788 | <example> |
---|
789 | <title>Solving a Quadratic MIP</title> |
---|
790 | <programlisting> |
---|
791 | <![CDATA[ |
---|
792 | // save cutoff |
---|
793 | double cutoff = modelPtr_->dualObjectiveLimit(); |
---|
794 | modelPtr_->setDualObjectiveLimit(1.0e50); |
---|
795 | modelPtr_->scaling(0); |
---|
796 | modelPtr_->setLogLevel(0); |
---|
797 | // solve with no objective to get feasible solution |
---|
798 | setBasis(basis_,modelPtr_); |
---|
799 | modelPtr_->dual(); |
---|
800 | basis_ = getBasis(modelPtr_); |
---|
801 | modelPtr_->setDualObjectiveLimit(cutoff); |
---|
802 | if (modelPtr_->problemStatus()) |
---|
803 | return; // problem was infeasible |
---|
804 | // Now pass in quadratic objective |
---|
805 | ClpObjective * saveObjective = modelPtr_->objectiveAsObject(); |
---|
806 | modelPtr_->setObjectivePointer(quadraticObjective_); |
---|
807 | modelPtr_->primal(); |
---|
808 | modelPtr_->setDualObjectiveLimit(cutoff); |
---|
809 | if (modelPtr_->objectiveValue()>cutoff) |
---|
810 | modelPtr_->setProblemStatus(1); |
---|
811 | modelPtr_->setObjectivePointer(saveObjective); |
---|
812 | ]]> |
---|
813 | </programlisting> |
---|
814 | </example> |
---|
815 | </section> |
---|
816 | </chapter> |
---|