1 | // Copyright (C) 2002, International Business Machines |
---|
2 | // Corporation and others. All Rights Reserved. |
---|
3 | #if defined(_MSC_VER) |
---|
4 | // Turn off compiler warning about long names |
---|
5 | # pragma warning(disable:4786) |
---|
6 | #endif |
---|
7 | |
---|
8 | #include "CbcConfig.h" |
---|
9 | //static int nXXXXXX=0; |
---|
10 | |
---|
11 | #include <string> |
---|
12 | //#define CBC_DEBUG 1 |
---|
13 | //#define CHECK_CUT_COUNTS |
---|
14 | //#define CHECK_NODE_FULL |
---|
15 | //#define NODE_LOG |
---|
16 | //#define GLOBAL_CUTS_JUST_POINTERS |
---|
17 | #ifndef CLP_FAST_CODE |
---|
18 | #ifdef NDEBUG |
---|
19 | #undef NDEBUG |
---|
20 | #endif |
---|
21 | #endif |
---|
22 | #include <cassert> |
---|
23 | #include <cmath> |
---|
24 | #include <cfloat> |
---|
25 | |
---|
26 | |
---|
27 | #ifdef COIN_HAS_CLP |
---|
28 | // include Presolve from Clp |
---|
29 | #include "ClpPresolve.hpp" |
---|
30 | #include "OsiClpSolverInterface.hpp" |
---|
31 | #endif |
---|
32 | |
---|
33 | #include "CbcEventHandler.hpp" |
---|
34 | |
---|
35 | #include "OsiSolverInterface.hpp" |
---|
36 | #include "OsiAuxInfo.hpp" |
---|
37 | #include "OsiSolverBranch.hpp" |
---|
38 | #include "OsiChooseVariable.hpp" |
---|
39 | #include "CoinWarmStartBasis.hpp" |
---|
40 | #include "CoinPackedMatrix.hpp" |
---|
41 | #include "CoinHelperFunctions.hpp" |
---|
42 | #include "CbcBranchActual.hpp" |
---|
43 | #include "CbcBranchDynamic.hpp" |
---|
44 | #include "CbcHeuristic.hpp" |
---|
45 | #include "CbcHeuristicFPump.hpp" |
---|
46 | #include "CbcModel.hpp" |
---|
47 | #include "CbcTreeLocal.hpp" |
---|
48 | #include "CbcStatistics.hpp" |
---|
49 | #include "CbcStrategy.hpp" |
---|
50 | #include "CbcMessage.hpp" |
---|
51 | #include "OsiRowCut.hpp" |
---|
52 | #include "OsiColCut.hpp" |
---|
53 | #include "OsiRowCutDebugger.hpp" |
---|
54 | #include "OsiCuts.hpp" |
---|
55 | #include "CbcCountRowCut.hpp" |
---|
56 | #include "CbcCutGenerator.hpp" |
---|
57 | #include "CbcFeasibilityBase.hpp" |
---|
58 | #include "CbcFathom.hpp" |
---|
59 | // include Probing |
---|
60 | #include "CglProbing.hpp" |
---|
61 | // include preprocessing |
---|
62 | #include "CglPreProcess.hpp" |
---|
63 | #include "CglDuplicateRow.hpp" |
---|
64 | #include "CglStored.hpp" |
---|
65 | #include "CglClique.hpp" |
---|
66 | |
---|
67 | #include "CoinTime.hpp" |
---|
68 | #include "CoinMpsIO.hpp" |
---|
69 | |
---|
70 | #include "CbcCompareActual.hpp" |
---|
71 | #include "CbcTree.hpp" |
---|
72 | //#define CBC_DETERMINISTIC_THREAD |
---|
73 | #ifdef CBC_THREAD |
---|
74 | |
---|
75 | #ifdef CBC_DETERMINISTIC_THREAD |
---|
76 | //#define DELETE_OUTSIDE |
---|
77 | #else |
---|
78 | #define CBC_NORMAL_THREAD |
---|
79 | #endif |
---|
80 | #include <pthread.h> |
---|
81 | //#include "clocktime.hpp" |
---|
82 | //#undef small |
---|
83 | |
---|
84 | struct Coin_pthread_t { |
---|
85 | pthread_t thr; |
---|
86 | long status; |
---|
87 | }; |
---|
88 | #ifndef CLP_FAST_CODE |
---|
89 | #define CBC_THREAD_DEBUG 1 |
---|
90 | #endif |
---|
91 | #ifdef CBC_THREAD_DEBUG |
---|
92 | #ifdef NDEBUG |
---|
93 | #undef NDEBUG |
---|
94 | #undef assert |
---|
95 | # define assert(expression) { \ |
---|
96 | if (!(expression)) { \ |
---|
97 | throw CoinError(__STRING(expression), __PRETTY_FUNCTION__, \ |
---|
98 | "", __FILE__, __LINE__); \ |
---|
99 | } \ |
---|
100 | } |
---|
101 | #endif |
---|
102 | #endif |
---|
103 | // To Pass across to doOneNode |
---|
104 | typedef struct { |
---|
105 | CbcModel * baseModel; |
---|
106 | CbcModel * thisModel; |
---|
107 | CbcNode * node; // filled in every time |
---|
108 | CbcNode * createdNode; // filled in every time on return |
---|
109 | Coin_pthread_t threadIdOfBase; |
---|
110 | pthread_mutex_t * mutex; // for locking data |
---|
111 | pthread_mutex_t * mutex2; // for waking up threads |
---|
112 | pthread_cond_t * condition2; // for waking up thread |
---|
113 | int returnCode; // -1 available, 0 busy, 1 finished , 2?? |
---|
114 | double timeLocked; |
---|
115 | double timeWaitingToLock; |
---|
116 | double timeWaitingToStart; |
---|
117 | double timeInThread; |
---|
118 | int numberTimesLocked; |
---|
119 | int numberTimesUnlocked; |
---|
120 | int numberTimesWaitingToStart; |
---|
121 | int saveStuff[2]; |
---|
122 | struct timespec absTime; |
---|
123 | bool locked; |
---|
124 | #if CBC_THREAD_DEBUG |
---|
125 | int threadNumber; |
---|
126 | #endif |
---|
127 | #ifdef CBC_DETERMINISTIC_THREAD |
---|
128 | CbcNode ** delNode; |
---|
129 | int maxDeleteNode; |
---|
130 | int nDeleteNode; |
---|
131 | int nodesThisTime; |
---|
132 | int iterationsThisTime; |
---|
133 | #endif |
---|
134 | } threadStruct; |
---|
135 | static void * doNodesThread(void * voidInfo); |
---|
136 | static void * doCutsThread(void * voidInfo); |
---|
137 | #endif |
---|
138 | /* Various functions local to CbcModel.cpp */ |
---|
139 | |
---|
140 | namespace { |
---|
141 | |
---|
142 | //------------------------------------------------------------------- |
---|
143 | // Returns the greatest common denominator of two |
---|
144 | // positive integers, a and b, found using Euclid's algorithm |
---|
145 | //------------------------------------------------------------------- |
---|
146 | static int gcd(int a, int b) |
---|
147 | { |
---|
148 | int remainder = -1; |
---|
149 | // make sure a<=b (will always remain so) |
---|
150 | if(a > b) { |
---|
151 | // Swap a and b |
---|
152 | int temp = a; |
---|
153 | a = b; |
---|
154 | b = temp; |
---|
155 | } |
---|
156 | // if zero then gcd is nonzero (zero may occur in rhs of packed) |
---|
157 | if (!a) { |
---|
158 | if (b) { |
---|
159 | return b; |
---|
160 | } else { |
---|
161 | printf("**** gcd given two zeros!!\n"); |
---|
162 | abort(); |
---|
163 | } |
---|
164 | } |
---|
165 | while (remainder) { |
---|
166 | remainder = b % a; |
---|
167 | b = a; |
---|
168 | a = remainder; |
---|
169 | } |
---|
170 | return b; |
---|
171 | } |
---|
172 | |
---|
173 | |
---|
174 | |
---|
175 | #ifdef CHECK_NODE_FULL |
---|
176 | |
---|
177 | /* |
---|
178 | Routine to verify that tree linkage is correct. The invariant that is tested |
---|
179 | is |
---|
180 | |
---|
181 | reference count = (number of actual references) + (number of branches left) |
---|
182 | |
---|
183 | The routine builds a set of paired arrays, info and count, by traversing the |
---|
184 | tree. Each CbcNodeInfo is recorded in info, and the number of times it is |
---|
185 | referenced (via the parent field) is recorded in count. Then a final check is |
---|
186 | made to see if the numberPointingToThis_ field agrees. |
---|
187 | */ |
---|
188 | |
---|
189 | void verifyTreeNodes (const CbcTree * branchingTree, const CbcModel &model) |
---|
190 | |
---|
191 | {if (model.getNodeCount()==661) return; printf("*** CHECKING tree after %d nodes\n",model.getNodeCount()) ; |
---|
192 | |
---|
193 | int j ; |
---|
194 | int nNodes = branchingTree->size() ; |
---|
195 | # define MAXINFO 1000 |
---|
196 | int *count = new int [MAXINFO] ; |
---|
197 | CbcNodeInfo **info = new CbcNodeInfo*[MAXINFO] ; |
---|
198 | int nInfo = 0 ; |
---|
199 | /* |
---|
200 | Collect all CbcNodeInfo objects in info, by starting from each live node and |
---|
201 | traversing back to the root. Nodes in the live set should have unexplored |
---|
202 | branches remaining. |
---|
203 | |
---|
204 | TODO: The `while (nodeInfo)' loop could be made to break on reaching a |
---|
205 | common ancester (nodeInfo is found in info[k]). Alternatively, the |
---|
206 | check could change to signal an error if nodeInfo is not found above a |
---|
207 | common ancestor. |
---|
208 | */ |
---|
209 | for (j = 0 ; j < nNodes ; j++) |
---|
210 | { CbcNode *node = branchingTree->nodePointer(j) ; |
---|
211 | if (!node) |
---|
212 | continue; |
---|
213 | CbcNodeInfo *nodeInfo = node->nodeInfo() ; |
---|
214 | int change = node->nodeInfo()->numberBranchesLeft() ; |
---|
215 | assert(change) ; |
---|
216 | while (nodeInfo) |
---|
217 | { int k ; |
---|
218 | for (k = 0 ; k < nInfo ; k++) |
---|
219 | { if (nodeInfo == info[k]) break ; } |
---|
220 | if (k == nInfo) |
---|
221 | { assert(nInfo < MAXINFO) ; |
---|
222 | nInfo++ ; |
---|
223 | info[k] = nodeInfo ; |
---|
224 | count[k] = 0 ; } |
---|
225 | nodeInfo = nodeInfo->parent() ; } } |
---|
226 | /* |
---|
227 | Walk the info array. For each nodeInfo, look up its parent in info and |
---|
228 | increment the corresponding count. |
---|
229 | */ |
---|
230 | for (j = 0 ; j < nInfo ; j++) |
---|
231 | { CbcNodeInfo *nodeInfo = info[j] ; |
---|
232 | nodeInfo = nodeInfo->parent() ; |
---|
233 | if (nodeInfo) |
---|
234 | { int k ; |
---|
235 | for (k = 0 ; k < nInfo ; k++) |
---|
236 | { if (nodeInfo == info[k]) break ; } |
---|
237 | assert (k < nInfo) ; |
---|
238 | count[k]++ ; } } |
---|
239 | /* |
---|
240 | Walk the info array one more time and check that the invariant holds. The |
---|
241 | number of references (numberPointingToThis()) should equal the sum of the |
---|
242 | number of actual references (held in count[]) plus the number of potential |
---|
243 | references (unexplored branches, numberBranchesLeft()). |
---|
244 | */ |
---|
245 | for (j = 0;j < nInfo;j++) { |
---|
246 | CbcNodeInfo * nodeInfo = info[j] ; |
---|
247 | if (nodeInfo) { |
---|
248 | int k ; |
---|
249 | for (k = 0;k < nInfo;k++) |
---|
250 | if (nodeInfo == info[k]) |
---|
251 | break ; |
---|
252 | printf("Nodeinfo %x - %d left, %d count\n", |
---|
253 | nodeInfo, |
---|
254 | nodeInfo->numberBranchesLeft(), |
---|
255 | nodeInfo->numberPointingToThis()) ; |
---|
256 | assert(nodeInfo->numberPointingToThis() == |
---|
257 | count[k]+nodeInfo->numberBranchesLeft()) ; } } |
---|
258 | |
---|
259 | delete [] count ; |
---|
260 | delete [] info ; |
---|
261 | |
---|
262 | return ; } |
---|
263 | |
---|
264 | #endif /* CHECK_NODE_FULL */ |
---|
265 | |
---|
266 | |
---|
267 | |
---|
268 | #ifdef CHECK_CUT_COUNTS |
---|
269 | |
---|
270 | /* |
---|
271 | Routine to verify that cut reference counts are correct. |
---|
272 | */ |
---|
273 | void verifyCutCounts (const CbcTree * branchingTree, CbcModel &model) |
---|
274 | |
---|
275 | { printf("*** CHECKING cuts after %d nodes\n",model.getNodeCount()) ; |
---|
276 | |
---|
277 | int j ; |
---|
278 | int nNodes = branchingTree->size() ; |
---|
279 | |
---|
280 | /* |
---|
281 | cut.tempNumber_ exists for the purpose of doing this verification. Clear it |
---|
282 | in all cuts. We traverse the tree by starting from each live node and working |
---|
283 | back to the root. At each CbcNodeInfo, check for cuts. |
---|
284 | */ |
---|
285 | for (j = 0 ; j < nNodes ; j++) |
---|
286 | { CbcNode *node = branchingTree->nodePointer(j) ; |
---|
287 | CbcNodeInfo * nodeInfo = node->nodeInfo() ; |
---|
288 | assert (node->nodeInfo()->numberBranchesLeft()) ; |
---|
289 | while (nodeInfo) |
---|
290 | { int k ; |
---|
291 | for (k = 0 ; k < nodeInfo->numberCuts() ; k++) |
---|
292 | { CbcCountRowCut *cut = nodeInfo->cuts()[k] ; |
---|
293 | if (cut) cut->tempNumber_ = 0; } |
---|
294 | nodeInfo = nodeInfo->parent() ; } } |
---|
295 | /* |
---|
296 | Walk the live set again, this time collecting the list of cuts in use at each |
---|
297 | node. addCuts1 will collect the cuts in model.addedCuts_. Take into account |
---|
298 | that when we recreate the basis for a node, we compress out the slack cuts. |
---|
299 | */ |
---|
300 | for (j = 0 ; j < nNodes ; j++) |
---|
301 | { CoinWarmStartBasis *debugws = model.getEmptyBasis() ; |
---|
302 | CbcNode *node = branchingTree->nodePointer(j) ; |
---|
303 | CbcNodeInfo *nodeInfo = node->nodeInfo(); |
---|
304 | int change = node->nodeInfo()->numberBranchesLeft() ; |
---|
305 | printf("Node %d %x (info %x) var %d way %d obj %g",j,node, |
---|
306 | node->nodeInfo(),node->columnNumber(),node->way(), |
---|
307 | node->objectiveValue()) ; |
---|
308 | |
---|
309 | model.addCuts1(node,debugws) ; |
---|
310 | |
---|
311 | int i ; |
---|
312 | int numberRowsAtContinuous = model.numberRowsAtContinuous() ; |
---|
313 | CbcCountRowCut **addedCuts = model.addedCuts() ; |
---|
314 | for (i = 0 ; i < model.currentNumberCuts() ; i++) |
---|
315 | { CoinWarmStartBasis::Status status = |
---|
316 | debugws->getArtifStatus(i+numberRowsAtContinuous) ; |
---|
317 | if (status != CoinWarmStartBasis::basic && addedCuts[i]) |
---|
318 | { addedCuts[i]->tempNumber_ += change ; } } |
---|
319 | |
---|
320 | while (nodeInfo) |
---|
321 | { nodeInfo = nodeInfo->parent() ; |
---|
322 | if (nodeInfo) printf(" -> %x",nodeInfo); } |
---|
323 | printf("\n") ; |
---|
324 | delete debugws ; } |
---|
325 | /* |
---|
326 | The moment of truth: We've tallied up the references by direct scan of the |
---|
327 | search tree. Check for agreement with the count in the cut. |
---|
328 | |
---|
329 | TODO: Rewrite to check and print mismatch only when tempNumber_ == 0? |
---|
330 | */ |
---|
331 | for (j = 0 ; j < nNodes ; j++) |
---|
332 | { CbcNode *node = branchingTree->nodePointer(j) ; |
---|
333 | CbcNodeInfo *nodeInfo = node->nodeInfo(); |
---|
334 | while (nodeInfo) |
---|
335 | { int k ; |
---|
336 | for (k = 0 ; k < nodeInfo->numberCuts() ; k++) |
---|
337 | { CbcCountRowCut *cut = nodeInfo->cuts()[k] ; |
---|
338 | if (cut && cut->tempNumber_ >= 0) |
---|
339 | { if (cut->tempNumber_ != cut->numberPointingToThis()) |
---|
340 | printf("mismatch %x %d %x %d %d\n",nodeInfo,k, |
---|
341 | cut,cut->tempNumber_,cut->numberPointingToThis()) ; |
---|
342 | else |
---|
343 | printf(" match %x %d %x %d %d\n", nodeInfo,k, |
---|
344 | cut,cut->tempNumber_,cut->numberPointingToThis()) ; |
---|
345 | cut->tempNumber_ = -1 ; } } |
---|
346 | nodeInfo = nodeInfo->parent() ; } } |
---|
347 | |
---|
348 | return ; } |
---|
349 | |
---|
350 | #endif /* CHECK_CUT_COUNTS */ |
---|
351 | |
---|
352 | |
---|
353 | //#define CHECK_CUT_SIZE |
---|
354 | #ifdef CHECK_CUT_SIZE |
---|
355 | |
---|
356 | /* |
---|
357 | Routine to verify that cut reference counts are correct. |
---|
358 | */ |
---|
359 | void verifyCutSize (const CbcTree * branchingTree, CbcModel &model) |
---|
360 | { |
---|
361 | |
---|
362 | int j ; |
---|
363 | int nNodes = branchingTree->size() ; |
---|
364 | int totalCuts=0; |
---|
365 | |
---|
366 | /* |
---|
367 | cut.tempNumber_ exists for the purpose of doing this verification. Clear it |
---|
368 | in all cuts. We traverse the tree by starting from each live node and working |
---|
369 | back to the root. At each CbcNodeInfo, check for cuts. |
---|
370 | */ |
---|
371 | for (j = 0 ; j < nNodes ; j++) { |
---|
372 | CbcNode *node = branchingTree->nodePointer(j) ; |
---|
373 | CbcNodeInfo * nodeInfo = node->nodeInfo() ; |
---|
374 | assert (node->nodeInfo()->numberBranchesLeft()) ; |
---|
375 | while (nodeInfo) { |
---|
376 | totalCuts += nodeInfo->numberCuts(); |
---|
377 | nodeInfo = nodeInfo->parent() ; |
---|
378 | } |
---|
379 | } |
---|
380 | printf("*** CHECKING cuts (size) after %d nodes - %d cuts\n",model.getNodeCount(),totalCuts) ; |
---|
381 | return ; |
---|
382 | } |
---|
383 | |
---|
384 | #endif /* CHECK_CUT_SIZE */ |
---|
385 | |
---|
386 | } |
---|
387 | |
---|
388 | /* End unnamed namespace for CbcModel.cpp */ |
---|
389 | |
---|
390 | |
---|
391 | static double trueIncrement=0.0; |
---|
392 | void |
---|
393 | CbcModel::analyzeObjective () |
---|
394 | /* |
---|
395 | Try to find a minimum change in the objective function. The first scan |
---|
396 | checks that there are no continuous variables with non-zero coefficients, |
---|
397 | and grabs the largest objective coefficient associated with an unfixed |
---|
398 | integer variable. The second scan attempts to scale up the objective |
---|
399 | coefficients to a point where they are sufficiently close to integer that |
---|
400 | we can pretend they are integer, and calculate a gcd over the coefficients |
---|
401 | of interest. This will be the minimum increment for the scaled coefficients. |
---|
402 | The final action is to scale the increment back for the original coefficients |
---|
403 | and install it, if it's better than the existing value. |
---|
404 | |
---|
405 | John's note: We could do better than this. |
---|
406 | |
---|
407 | John's second note - apologies for changing s to z |
---|
408 | */ |
---|
409 | { const double *objective = getObjCoefficients() ; |
---|
410 | const double *lower = getColLower() ; |
---|
411 | const double *upper = getColUpper() ; |
---|
412 | /* |
---|
413 | Scan continuous and integer variables to see if continuous |
---|
414 | are cover or network with integral rhs. |
---|
415 | */ |
---|
416 | double continuousMultiplier = 1.0; |
---|
417 | double * coeffMultiplier=NULL; |
---|
418 | { |
---|
419 | const double *rowLower = getRowLower() ; |
---|
420 | const double *rowUpper = getRowUpper() ; |
---|
421 | int numberRows = solver_->getNumRows() ; |
---|
422 | double * rhs = new double [numberRows]; |
---|
423 | memset(rhs,0,numberRows*sizeof(double)); |
---|
424 | int iColumn; |
---|
425 | int numberColumns = solver_->getNumCols() ; |
---|
426 | // Column copy of matrix |
---|
427 | bool allPlusOnes=true; |
---|
428 | bool allOnes=true; |
---|
429 | int problemType=-1; |
---|
430 | const double * element = solver_->getMatrixByCol()->getElements(); |
---|
431 | const int * row = solver_->getMatrixByCol()->getIndices(); |
---|
432 | const CoinBigIndex * columnStart = solver_->getMatrixByCol()->getVectorStarts(); |
---|
433 | const int * columnLength = solver_->getMatrixByCol()->getVectorLengths(); |
---|
434 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
---|
435 | if (upper[iColumn]==lower[iColumn]) { |
---|
436 | CoinBigIndex start = columnStart[iColumn]; |
---|
437 | CoinBigIndex end = start + columnLength[iColumn]; |
---|
438 | for (CoinBigIndex j=start;j<end;j++) { |
---|
439 | int iRow = row[j]; |
---|
440 | rhs[iRow] += lower[iColumn]*element[j]; |
---|
441 | } |
---|
442 | } |
---|
443 | } |
---|
444 | int iRow; |
---|
445 | for (iRow=0;iRow<numberRows;iRow++) { |
---|
446 | if (rowLower[iRow]>-1.0e20&& |
---|
447 | fabs(rowLower[iRow]-rhs[iRow]-floor(rowLower[iRow]-rhs[iRow]+0.5))>1.0e-10) { |
---|
448 | continuousMultiplier=0.0; |
---|
449 | break; |
---|
450 | } |
---|
451 | if (rowUpper[iRow]<1.0e20&& |
---|
452 | fabs(rowUpper[iRow]-rhs[iRow]-floor(rowUpper[iRow]-rhs[iRow]+0.5))>1.0e-10) { |
---|
453 | continuousMultiplier=0.0; |
---|
454 | break; |
---|
455 | } |
---|
456 | // set rhs to limiting value |
---|
457 | if (rowLower[iRow]!=rowUpper[iRow]) { |
---|
458 | if(rowLower[iRow]>-1.0e20) { |
---|
459 | if (rowUpper[iRow]<1.0e20) { |
---|
460 | // no good |
---|
461 | continuousMultiplier=0.0; |
---|
462 | break; |
---|
463 | } else { |
---|
464 | rhs[iRow] = rowLower[iRow]-rhs[iRow]; |
---|
465 | if (problemType<0) |
---|
466 | problemType=3; // set cover |
---|
467 | else if (problemType!=3) |
---|
468 | problemType=4; |
---|
469 | } |
---|
470 | } else { |
---|
471 | rhs[iRow] = rowUpper[iRow]-rhs[iRow]; |
---|
472 | if (problemType<0) |
---|
473 | problemType=1; // set partitioning <= |
---|
474 | else if (problemType!=1) |
---|
475 | problemType=4; |
---|
476 | } |
---|
477 | } else { |
---|
478 | rhs[iRow] = rowUpper[iRow]-rhs[iRow]; |
---|
479 | if (problemType<0) |
---|
480 | problemType=3; // set partitioning == |
---|
481 | else if (problemType!=2) |
---|
482 | problemType=2; |
---|
483 | } |
---|
484 | if (fabs(rhs[iRow]-1.0)>1.0e-12) |
---|
485 | problemType=4; |
---|
486 | } |
---|
487 | if (continuousMultiplier) { |
---|
488 | // 1 network, 2 cover, 4 negative cover |
---|
489 | int possible=7; |
---|
490 | bool unitRhs=true; |
---|
491 | // See which rows could be set cover |
---|
492 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
---|
493 | if (upper[iColumn] > lower[iColumn]+1.0e-8) { |
---|
494 | CoinBigIndex start = columnStart[iColumn]; |
---|
495 | CoinBigIndex end = start + columnLength[iColumn]; |
---|
496 | for (CoinBigIndex j=start;j<end;j++) { |
---|
497 | double value = element[j]; |
---|
498 | if (value==1.0) { |
---|
499 | } else if (value==-1.0) { |
---|
500 | rhs[row[j]]=-0.5; |
---|
501 | allPlusOnes=false; |
---|
502 | } else { |
---|
503 | rhs[row[j]]=-COIN_DBL_MAX; |
---|
504 | allOnes=false; |
---|
505 | } |
---|
506 | } |
---|
507 | } |
---|
508 | } |
---|
509 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
---|
510 | if (upper[iColumn] > lower[iColumn]+1.0e-8) { |
---|
511 | if (!isInteger(iColumn)) { |
---|
512 | CoinBigIndex start = columnStart[iColumn]; |
---|
513 | CoinBigIndex end = start + columnLength[iColumn]; |
---|
514 | double rhsValue=0.0; |
---|
515 | // 1 all ones, -1 all -1s, 2 all +- 1, 3 no good |
---|
516 | int type=0; |
---|
517 | for (CoinBigIndex j=start;j<end;j++) { |
---|
518 | double value = element[j]; |
---|
519 | if (fabs(value)!=1.0) { |
---|
520 | type=3; |
---|
521 | break; |
---|
522 | } else if (value==1.0) { |
---|
523 | if (!type) |
---|
524 | type=1; |
---|
525 | else if (type!=1) |
---|
526 | type=2; |
---|
527 | } else { |
---|
528 | if (!type) |
---|
529 | type=-1; |
---|
530 | else if (type!=-1) |
---|
531 | type=2; |
---|
532 | } |
---|
533 | int iRow = row[j]; |
---|
534 | if (rhs[iRow]==-COIN_DBL_MAX) { |
---|
535 | type=3; |
---|
536 | break; |
---|
537 | } else if (rhs[iRow]==-0.5) { |
---|
538 | // different values |
---|
539 | unitRhs=false; |
---|
540 | } else if (rhsValue) { |
---|
541 | if (rhsValue!=rhs[iRow]) |
---|
542 | unitRhs=false; |
---|
543 | } else { |
---|
544 | rhsValue=rhs[iRow]; |
---|
545 | } |
---|
546 | } |
---|
547 | // if no elements OK |
---|
548 | if (type==3) { |
---|
549 | // no good |
---|
550 | possible=0; |
---|
551 | break; |
---|
552 | } else if (type==2) { |
---|
553 | if (end-start>2) { |
---|
554 | // no good |
---|
555 | possible=0; |
---|
556 | break; |
---|
557 | } else { |
---|
558 | // only network |
---|
559 | possible &= 1; |
---|
560 | if (!possible) |
---|
561 | break; |
---|
562 | } |
---|
563 | } else if (type==1) { |
---|
564 | // only cover |
---|
565 | possible &= 2; |
---|
566 | if (!possible) |
---|
567 | break; |
---|
568 | } else if (type==-1) { |
---|
569 | // only negative cover |
---|
570 | possible &= 4; |
---|
571 | if (!possible) |
---|
572 | break; |
---|
573 | } |
---|
574 | } |
---|
575 | } |
---|
576 | } |
---|
577 | if ((possible==2||possible==4)&&!unitRhs) { |
---|
578 | #ifdef COIN_DEVELOP |
---|
579 | printf("XXXXXX Continuous all +1 but different rhs\n"); |
---|
580 | #endif |
---|
581 | possible=0; |
---|
582 | } |
---|
583 | // may be all integer |
---|
584 | if (possible!=7) { |
---|
585 | if (!possible) |
---|
586 | continuousMultiplier=0.0; |
---|
587 | else if (possible==1) |
---|
588 | continuousMultiplier=1.0; |
---|
589 | else |
---|
590 | continuousMultiplier=0.0; // 0.5 was incorrect; |
---|
591 | #ifdef COIN_DEVELOP |
---|
592 | if (continuousMultiplier) |
---|
593 | printf("XXXXXX multiplier of %g\n",continuousMultiplier); |
---|
594 | #endif |
---|
595 | if (continuousMultiplier==0.5) { |
---|
596 | coeffMultiplier=new double [numberColumns]; |
---|
597 | bool allOne=true; |
---|
598 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
---|
599 | coeffMultiplier[iColumn]=1.0; |
---|
600 | if (upper[iColumn] > lower[iColumn]+1.0e-8) { |
---|
601 | if (!isInteger(iColumn)) { |
---|
602 | CoinBigIndex start = columnStart[iColumn]; |
---|
603 | int iRow = row[start]; |
---|
604 | double value = rhs[iRow]; |
---|
605 | assert (value>=0.0); |
---|
606 | if (value!=0.0&&value!=1.0) |
---|
607 | allOne=false; |
---|
608 | coeffMultiplier[iColumn]=0.5*value; |
---|
609 | } |
---|
610 | } |
---|
611 | } |
---|
612 | if (allOne) { |
---|
613 | // back to old way |
---|
614 | delete [] coeffMultiplier; |
---|
615 | coeffMultiplier=NULL; |
---|
616 | } |
---|
617 | } |
---|
618 | } else { |
---|
619 | // all integer |
---|
620 | problemType_= problemType; |
---|
621 | #ifdef COIN_DEVELOP |
---|
622 | printf("Problem type is %d\n",problemType_); |
---|
623 | #endif |
---|
624 | } |
---|
625 | } |
---|
626 | // But try again |
---|
627 | if (continuousMultiplier<1.0) { |
---|
628 | memset(rhs,0,numberRows*sizeof(double)); |
---|
629 | int * count = new int [numberRows]; |
---|
630 | memset(count,0,numberRows*sizeof(int)); |
---|
631 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
---|
632 | CoinBigIndex start = columnStart[iColumn]; |
---|
633 | CoinBigIndex end = start + columnLength[iColumn]; |
---|
634 | if (upper[iColumn]==lower[iColumn]) { |
---|
635 | for (CoinBigIndex j=start;j<end;j++) { |
---|
636 | int iRow = row[j]; |
---|
637 | rhs[iRow] += lower[iColumn]*element[j]; |
---|
638 | } |
---|
639 | } else if (solver_->isInteger(iColumn)) { |
---|
640 | for (CoinBigIndex j=start;j<end;j++) { |
---|
641 | int iRow = row[j]; |
---|
642 | if (fabs(element[j]-floor(element[j]+0.5))>1.0e-10) |
---|
643 | rhs[iRow] = COIN_DBL_MAX; |
---|
644 | } |
---|
645 | } else { |
---|
646 | for (CoinBigIndex j=start;j<end;j++) { |
---|
647 | int iRow = row[j]; |
---|
648 | count[iRow]++; |
---|
649 | if (fabs(element[j])!=1.0) |
---|
650 | rhs[iRow] = COIN_DBL_MAX; |
---|
651 | } |
---|
652 | } |
---|
653 | } |
---|
654 | // now look at continuous |
---|
655 | bool allGood=true; |
---|
656 | double direction = solver_->getObjSense() ; |
---|
657 | int numberObj=0; |
---|
658 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
---|
659 | if (upper[iColumn]>lower[iColumn]) { |
---|
660 | double objValue = objective[iColumn]*direction; |
---|
661 | if (objValue&&!solver_->isInteger(iColumn)) { |
---|
662 | numberObj++; |
---|
663 | CoinBigIndex start = columnStart[iColumn]; |
---|
664 | CoinBigIndex end = start + columnLength[iColumn]; |
---|
665 | if (objValue>0.0) { |
---|
666 | // wants to be as low as possible |
---|
667 | if (lower[iColumn]<-1.0e10||fabs(lower[iColumn]-floor(lower[iColumn]+0.5))>1.0e-10) { |
---|
668 | allGood=false; |
---|
669 | break; |
---|
670 | } else if (upper[iColumn]<1.0e10&&fabs(upper[iColumn]-floor(upper[iColumn]+0.5))>1.0e-10) { |
---|
671 | allGood=false; |
---|
672 | break; |
---|
673 | } |
---|
674 | bool singletonRow=true; |
---|
675 | bool equality=false; |
---|
676 | for (CoinBigIndex j=start;j<end;j++) { |
---|
677 | int iRow = row[j]; |
---|
678 | if (count[iRow]>1) |
---|
679 | singletonRow=false; |
---|
680 | else if (rowLower[iRow]==rowUpper[iRow]) |
---|
681 | equality=true; |
---|
682 | if (fabs(rhs[iRow])>1.0e20||fabs(rhs[iRow]-floor(rhs[iRow]+0.5))>1.0e-10 |
---|
683 | ||fabs(element[j])!=1.0) { |
---|
684 | // no good |
---|
685 | allGood=false; |
---|
686 | break; |
---|
687 | } |
---|
688 | if (element[j]>0.0) { |
---|
689 | if (rowLower[iRow]>-1.0e20&&fabs(rowLower[iRow]-floor(rowLower[iRow]+0.5))>1.0e-10) { |
---|
690 | // no good |
---|
691 | allGood=false; |
---|
692 | break; |
---|
693 | } |
---|
694 | } else { |
---|
695 | if (rowUpper[iRow]<1.0e20&&fabs(rowUpper[iRow]-floor(rowUpper[iRow]+0.5))>1.0e-10) { |
---|
696 | // no good |
---|
697 | allGood=false; |
---|
698 | break; |
---|
699 | } |
---|
700 | } |
---|
701 | } |
---|
702 | if (!singletonRow&&end>start+1&&!equality) |
---|
703 | allGood=false; |
---|
704 | if (!allGood) |
---|
705 | break; |
---|
706 | } else { |
---|
707 | // wants to be as high as possible |
---|
708 | if (upper[iColumn]>1.0e10||fabs(upper[iColumn]-floor(upper[iColumn]+0.5))>1.0e-10) { |
---|
709 | allGood=false; |
---|
710 | break; |
---|
711 | } else if (lower[iColumn]>-1.0e10&&fabs(lower[iColumn]-floor(lower[iColumn]+0.5))>1.0e-10) { |
---|
712 | allGood=false; |
---|
713 | break; |
---|
714 | } |
---|
715 | bool singletonRow=true; |
---|
716 | bool equality=false; |
---|
717 | for (CoinBigIndex j=start;j<end;j++) { |
---|
718 | int iRow = row[j]; |
---|
719 | if (count[iRow]>1) |
---|
720 | singletonRow=false; |
---|
721 | else if (rowLower[iRow]==rowUpper[iRow]) |
---|
722 | equality=true; |
---|
723 | if (fabs(rhs[iRow])>1.0e20||fabs(rhs[iRow]-floor(rhs[iRow]+0.5))>1.0e-10 |
---|
724 | ||fabs(element[j])!=1.0) { |
---|
725 | // no good |
---|
726 | allGood=false; |
---|
727 | break; |
---|
728 | } |
---|
729 | if (element[j]<0.0) { |
---|
730 | if (rowLower[iRow]>-1.0e20&&fabs(rowLower[iRow]-floor(rowLower[iRow]+0.5))>1.0e-10) { |
---|
731 | // no good |
---|
732 | allGood=false; |
---|
733 | break; |
---|
734 | } |
---|
735 | } else { |
---|
736 | if (rowUpper[iRow]<1.0e20&&fabs(rowUpper[iRow]-floor(rowUpper[iRow]+0.5))>1.0e-10) { |
---|
737 | // no good |
---|
738 | allGood=false; |
---|
739 | break; |
---|
740 | } |
---|
741 | } |
---|
742 | } |
---|
743 | if (!singletonRow&&end>start+1&&!equality) |
---|
744 | allGood=false; |
---|
745 | if (!allGood) |
---|
746 | break; |
---|
747 | } |
---|
748 | } |
---|
749 | } |
---|
750 | } |
---|
751 | delete [] count; |
---|
752 | if (allGood) { |
---|
753 | #ifdef COIN_DEVELOP |
---|
754 | if (numberObj) |
---|
755 | printf("YYYY analysis says all continuous with costs will be integer\n"); |
---|
756 | #endif |
---|
757 | continuousMultiplier=1.0; |
---|
758 | } |
---|
759 | } |
---|
760 | delete [] rhs; |
---|
761 | } |
---|
762 | /* |
---|
763 | Take a first scan to see if there are unfixed continuous variables in the |
---|
764 | objective. If so, the minimum objective change could be arbitrarily small. |
---|
765 | Also pick off the maximum coefficient of an unfixed integer variable. |
---|
766 | |
---|
767 | If the objective is found to contain only integer variables, set the |
---|
768 | fathoming discipline to strict. |
---|
769 | */ |
---|
770 | double maximumCost = 0.0 ; |
---|
771 | trueIncrement=0.0; |
---|
772 | bool possibleMultiple = continuousMultiplier!=0.0 ; |
---|
773 | int iColumn ; |
---|
774 | int numberColumns = getNumCols() ; |
---|
775 | if (possibleMultiple) { |
---|
776 | for (iColumn = 0 ; iColumn < numberColumns ; iColumn++) |
---|
777 | { if (upper[iColumn] > lower[iColumn]+1.0e-8) |
---|
778 | { maximumCost = CoinMax(maximumCost,fabs(objective[iColumn])) ; } } |
---|
779 | } |
---|
780 | setIntParam(CbcModel::CbcFathomDiscipline,possibleMultiple) ; |
---|
781 | /* |
---|
782 | If a nontrivial increment is possible, try and figure it out. We're looking |
---|
783 | for gcd(c<j>) for all c<j> that are coefficients of unfixed integer |
---|
784 | variables. Since the c<j> might not be integers, try and inflate them |
---|
785 | sufficiently that they look like integers (and we'll deflate the gcd |
---|
786 | later). |
---|
787 | |
---|
788 | 2520.0 is used as it is a nice multiple of 2,3,5,7 |
---|
789 | */ |
---|
790 | if (possibleMultiple&&maximumCost) |
---|
791 | { int increment = 0 ; |
---|
792 | double multiplier = 2520.0 ; |
---|
793 | while (10.0*multiplier*maximumCost < 1.0e8) |
---|
794 | multiplier *= 10.0 ; |
---|
795 | int bigIntegers = 0; // Count of large costs which are integer |
---|
796 | for (iColumn = 0 ; iColumn < numberColumns ; iColumn++) { |
---|
797 | if (upper[iColumn] > lower[iColumn]+1.0e-8) { |
---|
798 | double objValue = fabs(objective[iColumn]); |
---|
799 | if (!isInteger(iColumn)) { |
---|
800 | if (!coeffMultiplier) |
---|
801 | objValue *= continuousMultiplier; |
---|
802 | else |
---|
803 | objValue *= coeffMultiplier[iColumn]; |
---|
804 | } |
---|
805 | if (objValue) { |
---|
806 | double value = objValue*multiplier ; |
---|
807 | if (value <2.1e9) { |
---|
808 | int nearest = (int) floor(value+0.5) ; |
---|
809 | if (fabs(value-floor(value+0.5)) > 1.0e-8) |
---|
810 | { increment = 0 ; |
---|
811 | break ; } |
---|
812 | else if (!increment) |
---|
813 | { increment = nearest ; } |
---|
814 | else |
---|
815 | { increment = gcd(increment,nearest) ; } |
---|
816 | } else { |
---|
817 | // large value - may still be multiple of 1.0 |
---|
818 | if (fabs(objValue-floor(objValue+0.5)) > 1.0e-8) { |
---|
819 | increment=0; |
---|
820 | break; |
---|
821 | } else { |
---|
822 | bigIntegers++; |
---|
823 | } |
---|
824 | } |
---|
825 | } |
---|
826 | } |
---|
827 | } |
---|
828 | delete [] coeffMultiplier; |
---|
829 | /* |
---|
830 | If the increment beats the current value for objective change, install it. |
---|
831 | */ |
---|
832 | if (increment) |
---|
833 | { double value = increment ; |
---|
834 | double cutoff = getDblParam(CbcModel::CbcCutoffIncrement) ; |
---|
835 | if (bigIntegers) { |
---|
836 | // allow for 1.0 |
---|
837 | increment = gcd(increment,(int) multiplier); |
---|
838 | value = increment; |
---|
839 | } |
---|
840 | value /= multiplier ; |
---|
841 | trueIncrement=CoinMax(cutoff,value);; |
---|
842 | if (value*0.999 > cutoff) |
---|
843 | { messageHandler()->message(CBC_INTEGERINCREMENT, |
---|
844 | messages()) |
---|
845 | << value << CoinMessageEol ; |
---|
846 | setDblParam(CbcModel::CbcCutoffIncrement,value*0.999) ; } } } |
---|
847 | |
---|
848 | return ; |
---|
849 | } |
---|
850 | |
---|
851 | |
---|
852 | /** |
---|
853 | \todo |
---|
854 | Normally, it looks like we enter here from command dispatch in the main |
---|
855 | routine, after calling the solver for an initial solution |
---|
856 | (CbcModel::initialSolve, which simply calls the solver's initialSolve |
---|
857 | routine.) The first thing we do is call resolve. Presumably there are |
---|
858 | circumstances where this is nontrivial? There's also a call from |
---|
859 | CbcModel::originalModel (tied up with integer presolve), which should be |
---|
860 | checked. |
---|
861 | |
---|
862 | */ |
---|
863 | |
---|
864 | /* |
---|
865 | The overall flow can be divided into three stages: |
---|
866 | * Prep: Check that the lp relaxation remains feasible at the root. If so, |
---|
867 | do all the setup for B&C. |
---|
868 | * Process the root node: Generate cuts, apply heuristics, and in general do |
---|
869 | the best we can to resolve the problem without B&C. |
---|
870 | * Do B&C search until we hit a limit or exhaust the search tree. |
---|
871 | |
---|
872 | Keep in mind that in general there is no node in the search tree that |
---|
873 | corresponds to the active subproblem. The active subproblem is represented |
---|
874 | by the current state of the model, of the solver, and of the constraint |
---|
875 | system held by the solver. |
---|
876 | */ |
---|
877 | void CbcModel::branchAndBound(int doStatistics) |
---|
878 | |
---|
879 | { |
---|
880 | /* |
---|
881 | Capture a time stamp before we start. |
---|
882 | */ |
---|
883 | dblParam_[CbcStartSeconds] = CoinCpuTime(); |
---|
884 | strongInfo_[0]=0; |
---|
885 | strongInfo_[1]=0; |
---|
886 | strongInfo_[2]=0; |
---|
887 | numberStrongIterations_ = 0; |
---|
888 | CoinThreadRandom randomGenerator(1234567); |
---|
889 | currentNode_=NULL; |
---|
890 | #ifdef COIN_HAS_CLP |
---|
891 | { |
---|
892 | OsiClpSolverInterface * clpSolver |
---|
893 | = dynamic_cast<OsiClpSolverInterface *> (solver_); |
---|
894 | if (clpSolver) { |
---|
895 | // Initialise solvers seed |
---|
896 | clpSolver->getModelPtr()->setRandomSeed(1234567); |
---|
897 | } |
---|
898 | } |
---|
899 | #endif |
---|
900 | #ifndef NDEBUG |
---|
901 | { |
---|
902 | #ifdef COIN_DEVELOP |
---|
903 | double big = 1.0e10; |
---|
904 | #else |
---|
905 | double big = 1.0e20; |
---|
906 | #endif |
---|
907 | int i; |
---|
908 | int n = solver_->getNumCols(); |
---|
909 | const double *lower = solver_->getColLower() ; |
---|
910 | const double *upper = solver_->getColUpper() ; |
---|
911 | for (i=0;i<n;i++) { |
---|
912 | assert (lower[i]<big); |
---|
913 | assert (upper[i]>-big); |
---|
914 | } |
---|
915 | n = solver_->getNumRows(); |
---|
916 | lower = solver_->getRowLower() ; |
---|
917 | upper = solver_->getRowUpper() ; |
---|
918 | for (i=0;i<n;i++) { |
---|
919 | assert (lower[i]<big); |
---|
920 | assert (upper[i]>-big); |
---|
921 | } |
---|
922 | } |
---|
923 | #endif |
---|
924 | // original solver (only set if pre-processing) |
---|
925 | OsiSolverInterface * originalSolver=NULL; |
---|
926 | int numberOriginalObjects=numberObjects_; |
---|
927 | OsiObject ** originalObject = NULL; |
---|
928 | // Set up strategies |
---|
929 | #if 0 |
---|
930 | std::string problemName ; |
---|
931 | solver_->getStrParam(OsiProbName,problemName) ; |
---|
932 | if (!strcmp(problemName.c_str(),"EGOUT")) solver_->activateRowCutDebugger(problemName.c_str()) ; |
---|
933 | #endif |
---|
934 | if (strategy_) { |
---|
935 | // May do preprocessing |
---|
936 | originalSolver = solver_; |
---|
937 | strategy_->setupOther(*this); |
---|
938 | if (strategy_->preProcessState()) { |
---|
939 | // pre-processing done |
---|
940 | if (strategy_->preProcessState()<0) { |
---|
941 | // infeasible |
---|
942 | handler_->message(CBC_INFEAS,messages_)<< CoinMessageEol ; |
---|
943 | status_ = 0 ; |
---|
944 | secondaryStatus_ = 1; |
---|
945 | originalContinuousObjective_ = COIN_DBL_MAX; |
---|
946 | return ; |
---|
947 | } else if (numberObjects_&&object_) { |
---|
948 | numberOriginalObjects=numberObjects_; |
---|
949 | // redo sequence |
---|
950 | numberIntegers_=0; |
---|
951 | int numberColumns = getNumCols(); |
---|
952 | int nOrig = originalSolver->getNumCols(); |
---|
953 | CglPreProcess * process = strategy_->process(); |
---|
954 | assert (process); |
---|
955 | const int * originalColumns = process->originalColumns(); |
---|
956 | // allow for cliques etc |
---|
957 | nOrig = CoinMax(nOrig,originalColumns[numberColumns-1]+1); |
---|
958 | // try and redo debugger |
---|
959 | OsiRowCutDebugger * debugger = const_cast<OsiRowCutDebugger *> (solver_->getRowCutDebuggerAlways()); |
---|
960 | if (debugger) |
---|
961 | debugger->redoSolution(numberColumns,originalColumns); |
---|
962 | originalObject = object_; |
---|
963 | // object number or -1 |
---|
964 | int * temp = new int[nOrig]; |
---|
965 | int iColumn; |
---|
966 | for (iColumn=0;iColumn<nOrig;iColumn++) |
---|
967 | temp[iColumn]=-1; |
---|
968 | int iObject; |
---|
969 | int nNonInt=0; |
---|
970 | for (iObject=0;iObject<numberOriginalObjects;iObject++) { |
---|
971 | iColumn = originalObject[iObject]->columnNumber(); |
---|
972 | if (iColumn<0) { |
---|
973 | nNonInt++; |
---|
974 | } else { |
---|
975 | temp[iColumn]=iObject; |
---|
976 | } |
---|
977 | } |
---|
978 | int numberNewIntegers=0; |
---|
979 | int numberOldIntegers=0; |
---|
980 | int numberOldOther=0; |
---|
981 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
---|
982 | int jColumn = originalColumns[iColumn]; |
---|
983 | if (temp[jColumn]>=0) { |
---|
984 | int iObject= temp[jColumn]; |
---|
985 | CbcSimpleInteger * obj = |
---|
986 | dynamic_cast <CbcSimpleInteger *>(originalObject[iObject]) ; |
---|
987 | if (obj) |
---|
988 | numberOldIntegers++; |
---|
989 | else |
---|
990 | numberOldOther++; |
---|
991 | } else if (isInteger(iColumn)) { |
---|
992 | numberNewIntegers++; |
---|
993 | } |
---|
994 | } |
---|
995 | /* |
---|
996 | Allocate an array to hold the indices of the integer variables. |
---|
997 | Make a large enough array for all objects |
---|
998 | */ |
---|
999 | numberObjects_= numberNewIntegers+numberOldIntegers+numberOldOther+nNonInt; |
---|
1000 | object_ = new OsiObject * [numberObjects_]; |
---|
1001 | delete [] integerVariable_; |
---|
1002 | integerVariable_ = new int [numberNewIntegers+numberOldIntegers]; |
---|
1003 | /* |
---|
1004 | Walk the variables again, filling in the indices and creating objects for |
---|
1005 | the integer variables. Initially, the objects hold the index and upper & |
---|
1006 | lower bounds. |
---|
1007 | */ |
---|
1008 | numberIntegers_=0; |
---|
1009 | int n=originalColumns[numberColumns-1]+1; |
---|
1010 | int * backward = new int[n]; |
---|
1011 | int i; |
---|
1012 | for ( i=0;i<n;i++) |
---|
1013 | backward[i]=-1; |
---|
1014 | for (i=0;i<numberColumns;i++) |
---|
1015 | backward[originalColumns[i]]=i; |
---|
1016 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
---|
1017 | int jColumn = originalColumns[iColumn]; |
---|
1018 | if (temp[jColumn]>=0) { |
---|
1019 | int iObject= temp[jColumn]; |
---|
1020 | CbcSimpleInteger * obj = |
---|
1021 | dynamic_cast <CbcSimpleInteger *>(originalObject[iObject]) ; |
---|
1022 | if (obj) { |
---|
1023 | object_[numberIntegers_] = originalObject[iObject]->clone(); |
---|
1024 | // redo ids etc |
---|
1025 | //object_[numberIntegers_]->resetSequenceEtc(numberColumns,originalColumns); |
---|
1026 | object_[numberIntegers_]->resetSequenceEtc(numberColumns,backward); |
---|
1027 | integerVariable_[numberIntegers_++]=iColumn; |
---|
1028 | } |
---|
1029 | } else if (isInteger(iColumn)) { |
---|
1030 | object_[numberIntegers_] = |
---|
1031 | new CbcSimpleInteger(this,iColumn); |
---|
1032 | integerVariable_[numberIntegers_++]=iColumn; |
---|
1033 | } |
---|
1034 | } |
---|
1035 | delete [] backward; |
---|
1036 | numberObjects_=numberIntegers_; |
---|
1037 | // Now append other column stuff |
---|
1038 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
---|
1039 | int jColumn = originalColumns[iColumn]; |
---|
1040 | if (temp[jColumn]>=0) { |
---|
1041 | int iObject= temp[jColumn]; |
---|
1042 | CbcSimpleInteger * obj = |
---|
1043 | dynamic_cast <CbcSimpleInteger *>(originalObject[iObject]) ; |
---|
1044 | if (!obj) { |
---|
1045 | object_[numberObjects_] = originalObject[iObject]->clone(); |
---|
1046 | // redo ids etc |
---|
1047 | CbcObject * obj = |
---|
1048 | dynamic_cast <CbcObject *>(object_[numberObjects_]) ; |
---|
1049 | assert (obj); |
---|
1050 | obj->redoSequenceEtc(this,numberColumns,originalColumns); |
---|
1051 | numberObjects_++; |
---|
1052 | } |
---|
1053 | } |
---|
1054 | } |
---|
1055 | // now append non column stuff |
---|
1056 | for (iObject=0;iObject<numberOriginalObjects;iObject++) { |
---|
1057 | iColumn = originalObject[iObject]->columnNumber(); |
---|
1058 | if (iColumn<0) { |
---|
1059 | object_[numberObjects_] = originalObject[iObject]->clone(); |
---|
1060 | // redo ids etc |
---|
1061 | CbcObject * obj = |
---|
1062 | dynamic_cast <CbcObject *>(object_[numberObjects_]) ; |
---|
1063 | assert (obj); |
---|
1064 | obj->redoSequenceEtc(this,numberColumns,originalColumns); |
---|
1065 | numberObjects_++; |
---|
1066 | } |
---|
1067 | } |
---|
1068 | delete [] temp; |
---|
1069 | if (!numberObjects_) |
---|
1070 | handler_->message(CBC_NOINT,messages_) << CoinMessageEol ; |
---|
1071 | } else { |
---|
1072 | int numberColumns = getNumCols(); |
---|
1073 | CglPreProcess * process = strategy_->process(); |
---|
1074 | assert (process); |
---|
1075 | const int * originalColumns = process->originalColumns(); |
---|
1076 | // try and redo debugger |
---|
1077 | OsiRowCutDebugger * debugger = const_cast<OsiRowCutDebugger *> (solver_->getRowCutDebuggerAlways()); |
---|
1078 | if (debugger) |
---|
1079 | debugger->redoSolution(numberColumns,originalColumns); |
---|
1080 | } |
---|
1081 | } else { |
---|
1082 | //no preprocessing |
---|
1083 | originalSolver=NULL; |
---|
1084 | } |
---|
1085 | strategy_->setupCutGenerators(*this); |
---|
1086 | strategy_->setupHeuristics(*this); |
---|
1087 | // Set strategy print level to models |
---|
1088 | strategy_->setupPrinting(*this,handler_->logLevel()); |
---|
1089 | } |
---|
1090 | eventHappened_=false; |
---|
1091 | CbcEventHandler *eventHandler = getEventHandler() ; |
---|
1092 | if (eventHandler) |
---|
1093 | eventHandler->setModel(this); |
---|
1094 | #ifdef CLIQUE_ANALYSIS |
---|
1095 | // set up for probing |
---|
1096 | probingInfo_ = new CglTreeProbingInfo(solver_); |
---|
1097 | #else |
---|
1098 | probingInfo_=NULL; |
---|
1099 | #endif |
---|
1100 | |
---|
1101 | // Try for dominated columns |
---|
1102 | if ((specialOptions_&64)!=0) { |
---|
1103 | CglDuplicateRow dupcuts(solver_); |
---|
1104 | dupcuts.setMode(2); |
---|
1105 | CglStored * storedCuts = dupcuts.outDuplicates(solver_); |
---|
1106 | addCutGenerator(storedCuts,1,"StoredCuts from dominated"); |
---|
1107 | } |
---|
1108 | if (!nodeCompare_) |
---|
1109 | nodeCompare_=new CbcCompareDefault();; |
---|
1110 | // See if hot start wanted |
---|
1111 | CbcCompareBase * saveCompare = NULL; |
---|
1112 | if (hotstartSolution_) { |
---|
1113 | if (strategy_&&strategy_->preProcessState()>0) { |
---|
1114 | CglPreProcess * process = strategy_->process(); |
---|
1115 | assert (process); |
---|
1116 | int n = solver_->getNumCols(); |
---|
1117 | const int * originalColumns = process->originalColumns(); |
---|
1118 | // columns should be in order ... but |
---|
1119 | double * tempS = new double[n]; |
---|
1120 | for (int i=0;i<n;i++) { |
---|
1121 | int iColumn = originalColumns[i]; |
---|
1122 | tempS[i]=hotstartSolution_[iColumn]; |
---|
1123 | } |
---|
1124 | delete [] hotstartSolution_; |
---|
1125 | hotstartSolution_=tempS; |
---|
1126 | if (hotstartPriorities_) { |
---|
1127 | int * tempP = new int [n]; |
---|
1128 | for (int i=0;i<n;i++) { |
---|
1129 | int iColumn = originalColumns[i]; |
---|
1130 | tempP[i]=hotstartPriorities_[iColumn]; |
---|
1131 | } |
---|
1132 | delete [] hotstartPriorities_; |
---|
1133 | hotstartPriorities_=tempP; |
---|
1134 | } |
---|
1135 | } |
---|
1136 | saveCompare = nodeCompare_; |
---|
1137 | // depth first |
---|
1138 | nodeCompare_ = new CbcCompareDepth(); |
---|
1139 | } |
---|
1140 | if (!problemFeasibility_) |
---|
1141 | problemFeasibility_=new CbcFeasibilityBase(); |
---|
1142 | # ifdef CBC_DEBUG |
---|
1143 | std::string problemName ; |
---|
1144 | solver_->getStrParam(OsiProbName,problemName) ; |
---|
1145 | printf("Problem name - %s\n",problemName.c_str()) ; |
---|
1146 | solver_->setHintParam(OsiDoReducePrint,false,OsiHintDo,0) ; |
---|
1147 | # endif |
---|
1148 | /* |
---|
1149 | Assume we're done, and see if we're proven wrong. |
---|
1150 | */ |
---|
1151 | status_ = 0 ; |
---|
1152 | secondaryStatus_ = 0; |
---|
1153 | phase_=0; |
---|
1154 | /* |
---|
1155 | Scan the variables, noting the integer variables. Create an |
---|
1156 | CbcSimpleInteger object for each integer variable. |
---|
1157 | */ |
---|
1158 | findIntegers(false) ; |
---|
1159 | // Say not dynamic pseudo costs |
---|
1160 | ownership_ &= ~0x40000000; |
---|
1161 | // If dynamic pseudo costs then do |
---|
1162 | if (numberBeforeTrust_) |
---|
1163 | convertToDynamic(); |
---|
1164 | // Set up char array to say if integer |
---|
1165 | delete [] integerInfo_; |
---|
1166 | { |
---|
1167 | int n = solver_->getNumCols(); |
---|
1168 | integerInfo_ = new char [n]; |
---|
1169 | for (int i=0;i<n;i++) { |
---|
1170 | if (solver_->isInteger(i)) |
---|
1171 | integerInfo_[i]=1; |
---|
1172 | else |
---|
1173 | integerInfo_[i]=0; |
---|
1174 | } |
---|
1175 | } |
---|
1176 | if (preferredWay_) { |
---|
1177 | // set all unset ones |
---|
1178 | for (int iObject = 0 ; iObject < numberObjects_ ; iObject++) { |
---|
1179 | CbcObject * obj = |
---|
1180 | dynamic_cast <CbcObject *>(object_[iObject]) ; |
---|
1181 | if (obj&&!obj->preferredWay()) |
---|
1182 | obj->setPreferredWay(preferredWay_); |
---|
1183 | } |
---|
1184 | } |
---|
1185 | /* |
---|
1186 | Ensure that objects on the lists of OsiObjects, heuristics, and cut |
---|
1187 | generators attached to this model all refer to this model. |
---|
1188 | */ |
---|
1189 | synchronizeModel() ; |
---|
1190 | if (!solverCharacteristics_) { |
---|
1191 | OsiBabSolver * solverCharacteristics = dynamic_cast<OsiBabSolver *> (solver_->getAuxiliaryInfo()); |
---|
1192 | if (solverCharacteristics) { |
---|
1193 | solverCharacteristics_ = solverCharacteristics; |
---|
1194 | } else { |
---|
1195 | // replace in solver |
---|
1196 | OsiBabSolver defaultC; |
---|
1197 | solver_->setAuxiliaryInfo(&defaultC); |
---|
1198 | solverCharacteristics_ = dynamic_cast<OsiBabSolver *> (solver_->getAuxiliaryInfo()); |
---|
1199 | } |
---|
1200 | } |
---|
1201 | |
---|
1202 | solverCharacteristics_->setSolver(solver_); |
---|
1203 | // Set so we can tell we are in initial phase in resolve |
---|
1204 | continuousObjective_ = -COIN_DBL_MAX ; |
---|
1205 | /* |
---|
1206 | Solve the relaxation. |
---|
1207 | |
---|
1208 | Apparently there are circumstances where this will be non-trivial --- i.e., |
---|
1209 | we've done something since initialSolve that's trashed the solution to the |
---|
1210 | continuous relaxation. |
---|
1211 | */ |
---|
1212 | bool feasible; |
---|
1213 | // If NLP then we assume already solved outside branchAndbound |
---|
1214 | if (!solverCharacteristics_->solverType()||solverCharacteristics_->solverType()==4) { |
---|
1215 | feasible=resolve(NULL,0) != 0 ; |
---|
1216 | } else { |
---|
1217 | // pick up given status |
---|
1218 | feasible = (solver_->isProvenOptimal() && |
---|
1219 | !solver_->isDualObjectiveLimitReached()) ; |
---|
1220 | } |
---|
1221 | if (problemFeasibility_->feasible(this,0)<0) { |
---|
1222 | feasible=false; // pretend infeasible |
---|
1223 | } |
---|
1224 | /* |
---|
1225 | If the linear relaxation of the root is infeasible, bail out now. Otherwise, |
---|
1226 | continue with processing the root node. |
---|
1227 | */ |
---|
1228 | if (!feasible) { |
---|
1229 | status_ = 0 ; |
---|
1230 | if (!solver_->isProvenDualInfeasible()) { |
---|
1231 | handler_->message(CBC_INFEAS,messages_)<< CoinMessageEol ; |
---|
1232 | secondaryStatus_ = 1; |
---|
1233 | } else { |
---|
1234 | handler_->message(CBC_UNBOUNDED,messages_)<< CoinMessageEol ; |
---|
1235 | secondaryStatus_ = 7; |
---|
1236 | } |
---|
1237 | originalContinuousObjective_ = COIN_DBL_MAX; |
---|
1238 | solverCharacteristics_ = NULL; |
---|
1239 | return ; |
---|
1240 | } else if (!numberObjects_) { |
---|
1241 | // nothing to do |
---|
1242 | solverCharacteristics_ = NULL; |
---|
1243 | bestObjective_ = solver_->getObjValue()*solver_->getObjSense(); |
---|
1244 | int numberColumns = solver_->getNumCols(); |
---|
1245 | delete [] bestSolution_; |
---|
1246 | bestSolution_ = new double[numberColumns]; |
---|
1247 | CoinCopyN(solver_->getColSolution(),numberColumns,bestSolution_); |
---|
1248 | return ; |
---|
1249 | } |
---|
1250 | // Convert to Osi if wanted |
---|
1251 | bool useOsiBranching=false; |
---|
1252 | //OsiBranchingInformation * persistentInfo = NULL; |
---|
1253 | if (branchingMethod_&&branchingMethod_->chooseMethod()) { |
---|
1254 | useOsiBranching=true; |
---|
1255 | //persistentInfo = new OsiBranchingInformation(solver_); |
---|
1256 | if (numberOriginalObjects) { |
---|
1257 | for (int iObject = 0 ; iObject < numberObjects_ ; iObject++) { |
---|
1258 | CbcObject * obj = |
---|
1259 | dynamic_cast <CbcObject *>(object_[iObject]) ; |
---|
1260 | if (obj) { |
---|
1261 | CbcSimpleInteger * obj2 = |
---|
1262 | dynamic_cast <CbcSimpleInteger *>(obj) ; |
---|
1263 | if (obj2) { |
---|
1264 | // back to Osi land |
---|
1265 | object_[iObject]=obj2->osiObject(); |
---|
1266 | delete obj; |
---|
1267 | } else { |
---|
1268 | OsiSimpleInteger * obj3 = |
---|
1269 | dynamic_cast <OsiSimpleInteger *>(obj) ; |
---|
1270 | if (!obj3) { |
---|
1271 | OsiSOS * obj4 = |
---|
1272 | dynamic_cast <OsiSOS *>(obj) ; |
---|
1273 | if (!obj4) { |
---|
1274 | CbcSOS * obj5 = |
---|
1275 | dynamic_cast <CbcSOS *>(obj) ; |
---|
1276 | if (obj5) { |
---|
1277 | // back to Osi land |
---|
1278 | object_[iObject]=obj5->osiObject(solver_); |
---|
1279 | } else { |
---|
1280 | printf("Code up CbcObject type in Osi land\n"); |
---|
1281 | abort(); |
---|
1282 | } |
---|
1283 | } |
---|
1284 | } |
---|
1285 | } |
---|
1286 | } |
---|
1287 | } |
---|
1288 | // and add to solver |
---|
1289 | //if (!solver_->numberObjects()) { |
---|
1290 | solver_->addObjects(numberObjects_,object_); |
---|
1291 | //} else { |
---|
1292 | //if (solver_->numberObjects()!=numberOriginalObjects) { |
---|
1293 | //printf("should have trapped that solver has objects before\n"); |
---|
1294 | //abort(); |
---|
1295 | //} |
---|
1296 | //} |
---|
1297 | } else { |
---|
1298 | // do from solver |
---|
1299 | deleteObjects(false); |
---|
1300 | solver_->findIntegersAndSOS(false); |
---|
1301 | numberObjects_=solver_->numberObjects(); |
---|
1302 | object_ = solver_->objects(); |
---|
1303 | ownObjects_ = false; |
---|
1304 | } |
---|
1305 | branchingMethod_->chooseMethod()->setSolver(solver_); |
---|
1306 | } |
---|
1307 | // take off heuristics if have to |
---|
1308 | if (numberHeuristics_) { |
---|
1309 | int numberOdd=0; |
---|
1310 | for (int i=0;i<numberObjects_;i++) { |
---|
1311 | if (!object_[i]->canDoHeuristics()) |
---|
1312 | numberOdd++; |
---|
1313 | } |
---|
1314 | if (numberOdd) { |
---|
1315 | int k=0; |
---|
1316 | for (int i=0;i<numberHeuristics_;i++) { |
---|
1317 | if (!heuristic_[i]->canDealWithOdd()) |
---|
1318 | delete heuristic_[i]; |
---|
1319 | else |
---|
1320 | heuristic_[k++]=heuristic_[i]; |
---|
1321 | } |
---|
1322 | if (!k) { |
---|
1323 | delete [] heuristic_; |
---|
1324 | heuristic_=NULL; |
---|
1325 | } |
---|
1326 | numberHeuristics_=k; |
---|
1327 | handler_->message(CBC_HEURISTICS_OFF,messages_)<< numberOdd<<CoinMessageEol ; |
---|
1328 | } |
---|
1329 | } |
---|
1330 | // Save objective (just so user can access it) |
---|
1331 | originalContinuousObjective_ = solver_->getObjValue(); |
---|
1332 | bestPossibleObjective_=originalContinuousObjective_; |
---|
1333 | sumChangeObjective1_=0.0; |
---|
1334 | sumChangeObjective2_=0.0; |
---|
1335 | /* |
---|
1336 | OsiRowCutDebugger knows an optimal answer for a subset of MIP problems. |
---|
1337 | Assuming it recognises the problem, when called upon it will check a cut to |
---|
1338 | see if it cuts off the optimal answer. |
---|
1339 | */ |
---|
1340 | // If debugger exists set specialOptions_ bit |
---|
1341 | if (solver_->getRowCutDebuggerAlways()) |
---|
1342 | specialOptions_ |= 1; |
---|
1343 | |
---|
1344 | # ifdef CBC_DEBUG |
---|
1345 | if ((specialOptions_&1)==0) |
---|
1346 | solver_->activateRowCutDebugger(problemName.c_str()) ; |
---|
1347 | if (solver_->getRowCutDebuggerAlways()) |
---|
1348 | specialOptions_ |= 1; |
---|
1349 | # endif |
---|
1350 | |
---|
1351 | /* |
---|
1352 | Begin setup to process a feasible root node. |
---|
1353 | */ |
---|
1354 | bestObjective_ = CoinMin(bestObjective_,1.0e50) ; |
---|
1355 | if (!bestSolution_) { |
---|
1356 | numberSolutions_ = 0 ; |
---|
1357 | numberHeuristicSolutions_ = 0 ; |
---|
1358 | } |
---|
1359 | stateOfSearch_ = 0; |
---|
1360 | // Everything is minimization |
---|
1361 | { |
---|
1362 | // needed to sync cutoffs |
---|
1363 | double value ; |
---|
1364 | solver_->getDblParam(OsiDualObjectiveLimit,value) ; |
---|
1365 | dblParam_[CbcCurrentCutoff]= value * solver_->getObjSense(); |
---|
1366 | } |
---|
1367 | double cutoff=getCutoff() ; |
---|
1368 | double direction = solver_->getObjSense() ; |
---|
1369 | dblParam_[CbcOptimizationDirection]=direction; |
---|
1370 | if (cutoff < 1.0e20&&direction<0.0) |
---|
1371 | messageHandler()->message(CBC_CUTOFF_WARNING1, |
---|
1372 | messages()) |
---|
1373 | << cutoff << -cutoff << CoinMessageEol ; |
---|
1374 | if (cutoff > bestObjective_) |
---|
1375 | cutoff = bestObjective_ ; |
---|
1376 | setCutoff(cutoff) ; |
---|
1377 | /* |
---|
1378 | We probably already have a current solution, but just in case ... |
---|
1379 | */ |
---|
1380 | int numberColumns = getNumCols() ; |
---|
1381 | if (!currentSolution_) |
---|
1382 | currentSolution_ = new double[numberColumns] ; |
---|
1383 | testSolution_ = currentSolution_; |
---|
1384 | /* Tell solver we are in Branch and Cut |
---|
1385 | Could use last parameter for subtle differences */ |
---|
1386 | solver_->setHintParam(OsiDoInBranchAndCut,true,OsiHintDo,NULL) ; |
---|
1387 | #ifdef COIN_HAS_CLP |
---|
1388 | { |
---|
1389 | OsiClpSolverInterface * clpSolver |
---|
1390 | = dynamic_cast<OsiClpSolverInterface *> (solver_); |
---|
1391 | if (clpSolver) { |
---|
1392 | //#define CLP_QUICK_OPTIONS |
---|
1393 | #ifdef CLP_QUICK_OPTIONS |
---|
1394 | // Try and re-use regions |
---|
1395 | ClpSimplex * simplex = clpSolver->getModelPtr(); |
---|
1396 | simplex->setPersistenceFlag(1); |
---|
1397 | #if 0 |
---|
1398 | clpSolver->deleteScaleFactors(); |
---|
1399 | int value=131072; |
---|
1400 | clpSolver->setSpecialOptions(clpSolver->specialOptions()|value); |
---|
1401 | if ((clpSolver->specialOptions()&value)!=0) |
---|
1402 | simplex->setSpecialOptions(simplex->specialOptions()|value); |
---|
1403 | #else |
---|
1404 | #undef CLP_QUICK_OPTIONS |
---|
1405 | //if (simplex->numberRows()<50) |
---|
1406 | //simplex->setAlphaAccuracy(1.0); |
---|
1407 | //clpSolver->setSpecialOptions((clpSolver->specialOptions()&~128)|65536); |
---|
1408 | //simplex->setMoreSpecialOptions(simplex->moreSpecialOptions()|4); |
---|
1409 | //simplex->setSpecialOptions(simplex->specialOptions()|65536); |
---|
1410 | //simplex->startPermanentArrays(); |
---|
1411 | #endif |
---|
1412 | #endif |
---|
1413 | if ((specialOptions_&32)==0) { |
---|
1414 | ClpSimplex * clpSimplex = clpSolver->getModelPtr(); |
---|
1415 | // take off names |
---|
1416 | clpSimplex->dropNames(); |
---|
1417 | } |
---|
1418 | // no crunch if mostly continuous |
---|
1419 | //int numberColumns = solver_->getNumCols()+1000000; // fake for testing |
---|
1420 | int numberColumns = solver_->getNumCols(); |
---|
1421 | if (numberColumns>1000&&numberIntegers_*4<numberColumns) |
---|
1422 | clpSolver->setSpecialOptions(clpSolver->specialOptions()&(~1)); |
---|
1423 | } |
---|
1424 | } |
---|
1425 | #endif |
---|
1426 | /* |
---|
1427 | Create a copy of the solver, thus capturing the original (root node) |
---|
1428 | constraint system (aka the continuous system). |
---|
1429 | */ |
---|
1430 | continuousSolver_ = solver_->clone() ; |
---|
1431 | |
---|
1432 | numberRowsAtContinuous_ = getNumRows() ; |
---|
1433 | solver_->saveBaseModel(); |
---|
1434 | /* |
---|
1435 | Check the objective to see if we can deduce a nontrivial increment. If |
---|
1436 | it's better than the current value for CbcCutoffIncrement, it'll be |
---|
1437 | installed. |
---|
1438 | */ |
---|
1439 | if(solverCharacteristics_->reducedCostsAccurate()) |
---|
1440 | analyzeObjective() ; |
---|
1441 | // may be able to change cutoff now |
---|
1442 | double increment = getDblParam(CbcModel::CbcCutoffIncrement) ; |
---|
1443 | if (cutoff > bestObjective_-increment) { |
---|
1444 | cutoff = bestObjective_-increment ; |
---|
1445 | setCutoff(cutoff) ; |
---|
1446 | } |
---|
1447 | /* |
---|
1448 | Set up for cut generation. addedCuts_ holds the cuts which are relevant for |
---|
1449 | the active subproblem. whichGenerator will be used to record the generator |
---|
1450 | that produced a given cut. |
---|
1451 | */ |
---|
1452 | maximumWhich_ = 1000 ; |
---|
1453 | delete [] whichGenerator_; |
---|
1454 | whichGenerator_ = new int[maximumWhich_] ; |
---|
1455 | memset(whichGenerator_,0,maximumWhich_*sizeof(int)); |
---|
1456 | maximumNumberCuts_ = 0 ; |
---|
1457 | currentNumberCuts_ = 0 ; |
---|
1458 | delete [] addedCuts_ ; |
---|
1459 | addedCuts_ = NULL ; |
---|
1460 | OsiObject ** saveObjects=NULL; |
---|
1461 | maximumRows_ = numberRowsAtContinuous_; |
---|
1462 | workingBasis_.resize(maximumRows_,numberColumns); |
---|
1463 | /* |
---|
1464 | Set up an empty heap and associated data structures to hold the live set |
---|
1465 | (problems which require further exploration). |
---|
1466 | */ |
---|
1467 | tree_->setComparison(*nodeCompare_) ; |
---|
1468 | /* |
---|
1469 | Used to record the path from a node to the root of the search tree, so that |
---|
1470 | we can then traverse from the root to the node when restoring a subproblem. |
---|
1471 | */ |
---|
1472 | maximumDepth_ = 10 ; |
---|
1473 | delete [] walkback_ ; |
---|
1474 | walkback_ = new CbcNodeInfo * [maximumDepth_] ; |
---|
1475 | /* |
---|
1476 | Used to generate bound edits for CbcPartialNodeInfo. |
---|
1477 | */ |
---|
1478 | double * lowerBefore = new double [numberColumns] ; |
---|
1479 | double * upperBefore = new double [numberColumns] ; |
---|
1480 | /* |
---|
1481 | |
---|
1482 | Generate cuts at the root node and reoptimise. solveWithCuts does the heavy |
---|
1483 | lifting. It will iterate a generate/reoptimise loop (including reduced cost |
---|
1484 | fixing) until no cuts are generated, the change in objective falls off, or |
---|
1485 | the limit on the number of rounds of cut generation is exceeded. |
---|
1486 | |
---|
1487 | At the end of all this, any cuts will be recorded in cuts and also |
---|
1488 | installed in the solver's constraint system. We'll have reoptimised, and |
---|
1489 | removed any slack cuts (numberOldActiveCuts_ and numberNewCuts_ have been |
---|
1490 | adjusted accordingly). |
---|
1491 | |
---|
1492 | Tell cut generators they can be a bit more aggressive at root node |
---|
1493 | |
---|
1494 | TODO: Why don't we make a copy of the solution after solveWithCuts? |
---|
1495 | TODO: If numberUnsatisfied == 0, don't we have a solution? |
---|
1496 | */ |
---|
1497 | phase_=1; |
---|
1498 | int iCutGenerator; |
---|
1499 | for (iCutGenerator = 0;iCutGenerator<numberCutGenerators_;iCutGenerator++) { |
---|
1500 | CglCutGenerator * generator = generator_[iCutGenerator]->generator(); |
---|
1501 | generator->setAggressiveness(generator->getAggressiveness()+100); |
---|
1502 | } |
---|
1503 | OsiCuts cuts ; |
---|
1504 | int anyAction = -1 ; |
---|
1505 | numberOldActiveCuts_ = 0 ; |
---|
1506 | numberNewCuts_ = 0 ; |
---|
1507 | // Array to mark solution |
---|
1508 | delete [] usedInSolution_; |
---|
1509 | usedInSolution_ = new int[numberColumns]; |
---|
1510 | CoinZeroN(usedInSolution_,numberColumns); |
---|
1511 | /* |
---|
1512 | For printing totals and for CbcNode (numberNodes_) |
---|
1513 | */ |
---|
1514 | numberIterations_ = 0 ; |
---|
1515 | numberNodes_ = 0 ; |
---|
1516 | numberNodes2_ = 0 ; |
---|
1517 | maximumStatistics_=0; |
---|
1518 | maximumDepthActual_=0; |
---|
1519 | numberDJFixed_=0.0; |
---|
1520 | // Do heuristics |
---|
1521 | doHeuristicsAtRoot(); |
---|
1522 | if ( intParam_[CbcMaxNumNode] < 0) |
---|
1523 | eventHappened_=true; // stop as fast as possible |
---|
1524 | statistics_ = NULL; |
---|
1525 | // Do on switch |
---|
1526 | if (doStatistics>0&&doStatistics<100) { |
---|
1527 | maximumStatistics_=10000; |
---|
1528 | statistics_ = new CbcStatistics * [maximumStatistics_]; |
---|
1529 | memset(statistics_,0,maximumStatistics_*sizeof(CbcStatistics *)); |
---|
1530 | } |
---|
1531 | |
---|
1532 | { int iObject ; |
---|
1533 | int preferredWay ; |
---|
1534 | int numberUnsatisfied = 0 ; |
---|
1535 | delete [] currentSolution_; |
---|
1536 | currentSolution_ = new double [numberColumns]; |
---|
1537 | testSolution_ = currentSolution_; |
---|
1538 | memcpy(currentSolution_,solver_->getColSolution(), |
---|
1539 | numberColumns*sizeof(double)) ; |
---|
1540 | // point to useful information |
---|
1541 | OsiBranchingInformation usefulInfo=usefulInformation(); |
---|
1542 | |
---|
1543 | for (iObject = 0 ; iObject < numberObjects_ ; iObject++) |
---|
1544 | { double infeasibility = |
---|
1545 | object_[iObject]->infeasibility(&usefulInfo,preferredWay) ; |
---|
1546 | if (infeasibility ) numberUnsatisfied++ ; } |
---|
1547 | // replace solverType |
---|
1548 | if(solverCharacteristics_->tryCuts()) { |
---|
1549 | |
---|
1550 | if (numberUnsatisfied) { |
---|
1551 | // User event |
---|
1552 | if (!eventHappened_) |
---|
1553 | feasible = solveWithCuts(cuts,maximumCutPassesAtRoot_, |
---|
1554 | NULL); |
---|
1555 | else |
---|
1556 | feasible=false; |
---|
1557 | } else if (solverCharacteristics_->solutionAddsCuts()|| |
---|
1558 | solverCharacteristics_->alwaysTryCutsAtRootNode()) { |
---|
1559 | // may generate cuts and turn the solution |
---|
1560 | //to an infeasible one |
---|
1561 | feasible = solveWithCuts(cuts, 1, |
---|
1562 | NULL); |
---|
1563 | } |
---|
1564 | } |
---|
1565 | // check extra info on feasibility |
---|
1566 | if (!solverCharacteristics_->mipFeasible()) |
---|
1567 | feasible = false; |
---|
1568 | } |
---|
1569 | // make cut generators less aggressive |
---|
1570 | for (iCutGenerator = 0;iCutGenerator<numberCutGenerators_;iCutGenerator++) { |
---|
1571 | CglCutGenerator * generator = generator_[iCutGenerator]->generator(); |
---|
1572 | generator->setAggressiveness(generator->getAggressiveness()-100); |
---|
1573 | } |
---|
1574 | currentNumberCuts_ = numberNewCuts_ ; |
---|
1575 | // See if can stop on gap |
---|
1576 | stoppedOnGap_ = false ; |
---|
1577 | bestPossibleObjective_ = solver_->getObjValue()*solver_->getObjSense(); |
---|
1578 | double testGap = CoinMax(dblParam_[CbcAllowableGap], |
---|
1579 | CoinMax(fabs(bestObjective_),fabs(bestPossibleObjective_)) |
---|
1580 | *dblParam_[CbcAllowableFractionGap]); |
---|
1581 | if (bestObjective_-bestPossibleObjective_ < testGap && getCutoffIncrement()>=0.0) { |
---|
1582 | if (bestPossibleObjective_<getCutoff()) |
---|
1583 | stoppedOnGap_ = true ; |
---|
1584 | feasible = false; |
---|
1585 | } |
---|
1586 | // User event |
---|
1587 | if (eventHappened_) |
---|
1588 | feasible=false; |
---|
1589 | /* |
---|
1590 | We've taken the continuous relaxation as far as we can. Time to branch. |
---|
1591 | The first order of business is to actually create a node. chooseBranch |
---|
1592 | currently uses strong branching to evaluate branch object candidates, |
---|
1593 | unless forced back to simple branching. If chooseBranch concludes that a |
---|
1594 | branching candidate is monotone (anyAction == -1) or infeasible (anyAction |
---|
1595 | == -2) when forced to integer values, it returns here immediately. |
---|
1596 | |
---|
1597 | Monotone variables trigger a call to resolve(). If the problem remains |
---|
1598 | feasible, try again to choose a branching variable. At the end of the loop, |
---|
1599 | resolved == true indicates that some variables were fixed. |
---|
1600 | |
---|
1601 | Loss of feasibility will result in the deletion of newNode. |
---|
1602 | */ |
---|
1603 | |
---|
1604 | bool resolved = false ; |
---|
1605 | CbcNode *newNode = NULL ; |
---|
1606 | numberFixedAtRoot_=0; |
---|
1607 | numberFixedNow_=0; |
---|
1608 | int numberIterationsAtContinuous = numberIterations_; |
---|
1609 | //solverCharacteristics_->setSolver(solver_); |
---|
1610 | if (feasible) { |
---|
1611 | if (probingInfo_) { |
---|
1612 | int number01 = probingInfo_->numberIntegers(); |
---|
1613 | //const fixEntry * entry = probingInfo_->fixEntries(); |
---|
1614 | const int * toZero = probingInfo_->toZero(); |
---|
1615 | //const int * toOne = probingInfo_->toOne(); |
---|
1616 | //const int * integerVariable = probingInfo_->integerVariable(); |
---|
1617 | if (toZero[number01]) { |
---|
1618 | for (int i = 0;i<numberCutGenerators_;i++) { |
---|
1619 | CglFakeClique * clique = dynamic_cast<CglFakeClique*>(generator_[i]->generator()); |
---|
1620 | if (clique) { |
---|
1621 | OsiSolverInterface * fakeSolver = probingInfo_->analyze(*solver_,1); |
---|
1622 | if (fakeSolver) { |
---|
1623 | printf("Probing fake solver has %d rows\n",fakeSolver->getNumRows()); |
---|
1624 | //if (fakeSolver) |
---|
1625 | //fakeSolver->writeMps("bad"); |
---|
1626 | if (generator_[i]->numberCutsInTotal()) |
---|
1627 | generator_[i]->setHowOften(1); |
---|
1628 | } |
---|
1629 | clique->assignSolver(fakeSolver); |
---|
1630 | //stored->setProbingInfo(probingInfo_); |
---|
1631 | break; |
---|
1632 | } |
---|
1633 | } |
---|
1634 | } |
---|
1635 | delete probingInfo_; |
---|
1636 | probingInfo_=NULL; |
---|
1637 | } |
---|
1638 | newNode = new CbcNode ; |
---|
1639 | // Set objective value (not so obvious if NLP etc) |
---|
1640 | setObjectiveValue(newNode,NULL); |
---|
1641 | anyAction = -1 ; |
---|
1642 | // To make depth available we may need a fake node |
---|
1643 | CbcNode fakeNode; |
---|
1644 | if (!currentNode_) { |
---|
1645 | // Not true if sub trees assert (!numberNodes_); |
---|
1646 | currentNode_=&fakeNode; |
---|
1647 | } |
---|
1648 | phase_=3; |
---|
1649 | // only allow 1000 passes |
---|
1650 | int numberPassesLeft=1000; |
---|
1651 | // This is first crude step |
---|
1652 | if (numberAnalyzeIterations_) { |
---|
1653 | delete [] analyzeResults_; |
---|
1654 | analyzeResults_ = new double [4*numberIntegers_]; |
---|
1655 | numberFixedAtRoot_=newNode->analyze(this,analyzeResults_); |
---|
1656 | if (numberFixedAtRoot_>0) { |
---|
1657 | printf("%d fixed by analysis\n",numberFixedAtRoot_); |
---|
1658 | setPointers(solver_); |
---|
1659 | numberFixedNow_ = numberFixedAtRoot_; |
---|
1660 | } else if (numberFixedAtRoot_<0) { |
---|
1661 | printf("analysis found to be infeasible\n"); |
---|
1662 | anyAction=-2; |
---|
1663 | delete newNode ; |
---|
1664 | newNode = NULL ; |
---|
1665 | feasible = false ; |
---|
1666 | } |
---|
1667 | } |
---|
1668 | OsiSolverBranch * branches = NULL; |
---|
1669 | anyAction = chooseBranch(newNode, numberPassesLeft, NULL, cuts,resolved, |
---|
1670 | NULL,NULL,NULL,branches); |
---|
1671 | if (anyAction == -2||newNode->objectiveValue() >= cutoff) { |
---|
1672 | if (anyAction != -2) { |
---|
1673 | // zap parent nodeInfo |
---|
1674 | #ifdef COIN_DEVELOP |
---|
1675 | printf("zapping CbcNodeInfo %x\n",newNode->nodeInfo()->parent()); |
---|
1676 | #endif |
---|
1677 | if (newNode->nodeInfo()) |
---|
1678 | newNode->nodeInfo()->nullParent(); |
---|
1679 | } |
---|
1680 | delete newNode ; |
---|
1681 | newNode = NULL ; |
---|
1682 | feasible = false ; |
---|
1683 | } |
---|
1684 | } |
---|
1685 | /* |
---|
1686 | At this point, the root subproblem is infeasible or fathomed by bound |
---|
1687 | (newNode == NULL), or we're live with an objective value that satisfies the |
---|
1688 | current objective cutoff. |
---|
1689 | */ |
---|
1690 | assert (!newNode || newNode->objectiveValue() <= cutoff) ; |
---|
1691 | // Save address of root node as we don't want to delete it |
---|
1692 | // initialize for print out |
---|
1693 | int lastDepth=0; |
---|
1694 | int lastUnsatisfied=0; |
---|
1695 | if (newNode) |
---|
1696 | lastUnsatisfied=newNode->numberUnsatisfied(); |
---|
1697 | /* |
---|
1698 | The common case is that the lp relaxation is feasible but doesn't satisfy |
---|
1699 | integrality (i.e., newNode->branchingObject(), indicating we've been able to |
---|
1700 | select a branching variable). Remove any cuts that have gone slack due to |
---|
1701 | forcing monotone variables. Then tack on an CbcFullNodeInfo object and full |
---|
1702 | basis (via createInfo()) and stash the new cuts in the nodeInfo (via |
---|
1703 | addCuts()). If, by some miracle, we have an integral solution at the root |
---|
1704 | (newNode->branchingObject() is NULL), takeOffCuts() will ensure that the solver holds |
---|
1705 | a valid solution for use by setBestSolution(). |
---|
1706 | */ |
---|
1707 | CoinWarmStartBasis *lastws = NULL ; |
---|
1708 | if (feasible && newNode->branchingObject()) |
---|
1709 | { if (resolved) |
---|
1710 | { takeOffCuts(cuts,false,NULL) ; |
---|
1711 | # ifdef CHECK_CUT_COUNTS |
---|
1712 | { printf("Number of rows after chooseBranch fix (root)" |
---|
1713 | "(active only) %d\n", |
---|
1714 | numberRowsAtContinuous_+numberNewCuts_+numberOldActiveCuts_) ; |
---|
1715 | const CoinWarmStartBasis* debugws = |
---|
1716 | dynamic_cast <const CoinWarmStartBasis*>(solver_->getWarmStart()) ; |
---|
1717 | debugws->print() ; |
---|
1718 | delete debugws ; } |
---|
1719 | # endif |
---|
1720 | } |
---|
1721 | //newNode->createInfo(this,NULL,NULL,NULL,NULL,0,0) ; |
---|
1722 | //newNode->nodeInfo()->addCuts(cuts, |
---|
1723 | // newNode->numberBranches(),whichGenerator_) ; |
---|
1724 | if (lastws) delete lastws ; |
---|
1725 | lastws = dynamic_cast<CoinWarmStartBasis*>(solver_->getWarmStart()) ; |
---|
1726 | } |
---|
1727 | /* |
---|
1728 | Continuous data to be used later |
---|
1729 | */ |
---|
1730 | continuousObjective_ = solver_->getObjValue()*solver_->getObjSense(); |
---|
1731 | continuousInfeasibilities_ = 0 ; |
---|
1732 | if (newNode) |
---|
1733 | { continuousObjective_ = newNode->objectiveValue() ; |
---|
1734 | delete [] continuousSolution_; |
---|
1735 | continuousSolution_ = CoinCopyOfArray(solver_->getColSolution(), |
---|
1736 | numberColumns); |
---|
1737 | continuousInfeasibilities_ = newNode->numberUnsatisfied() ; } |
---|
1738 | /* |
---|
1739 | Bound may have changed so reset in objects |
---|
1740 | */ |
---|
1741 | { int i ; |
---|
1742 | for (i = 0;i < numberObjects_;i++) |
---|
1743 | object_[i]->resetBounds(solver_) ; } |
---|
1744 | /* |
---|
1745 | Feasible? Then we should have either a live node prepped for future |
---|
1746 | expansion (indicated by variable() >= 0), or (miracle of miracles) an |
---|
1747 | integral solution at the root node. |
---|
1748 | |
---|
1749 | initializeInfo sets the reference counts in the nodeInfo object. Since |
---|
1750 | this node is still live, push it onto the heap that holds the live set. |
---|
1751 | */ |
---|
1752 | double bestValue = 0.0 ; |
---|
1753 | if (newNode) { |
---|
1754 | bestValue = newNode->objectiveValue(); |
---|
1755 | if (newNode->branchingObject()) { |
---|
1756 | newNode->initializeInfo() ; |
---|
1757 | tree_->push(newNode) ; |
---|
1758 | if (statistics_) { |
---|
1759 | if (numberNodes2_==maximumStatistics_) { |
---|
1760 | maximumStatistics_ = 2*maximumStatistics_; |
---|
1761 | CbcStatistics ** temp = new CbcStatistics * [maximumStatistics_]; |
---|
1762 | memset(temp,0,maximumStatistics_*sizeof(CbcStatistics *)); |
---|
1763 | memcpy(temp,statistics_,numberNodes2_*sizeof(CbcStatistics *)); |
---|
1764 | delete [] statistics_; |
---|
1765 | statistics_=temp; |
---|
1766 | } |
---|
1767 | assert (!statistics_[numberNodes2_]); |
---|
1768 | statistics_[numberNodes2_]=new CbcStatistics(newNode,this); |
---|
1769 | } |
---|
1770 | numberNodes2_++; |
---|
1771 | # ifdef CHECK_NODE |
---|
1772 | printf("Node %x on tree\n",newNode) ; |
---|
1773 | # endif |
---|
1774 | } else { |
---|
1775 | // continuous is integer |
---|
1776 | double objectiveValue = newNode->objectiveValue(); |
---|
1777 | setBestSolution(CBC_SOLUTION,objectiveValue, |
---|
1778 | solver_->getColSolution()) ; |
---|
1779 | delete newNode ; |
---|
1780 | newNode = NULL ; |
---|
1781 | } |
---|
1782 | } |
---|
1783 | |
---|
1784 | if (printFrequency_ <= 0) { |
---|
1785 | printFrequency_ = 1000 ; |
---|
1786 | if (getNumCols() > 2000) |
---|
1787 | printFrequency_ = 100 ; |
---|
1788 | } |
---|
1789 | /* |
---|
1790 | It is possible that strong branching fixes one variable and then the code goes round |
---|
1791 | again and again. This can take too long. So we need to warn user - just once. |
---|
1792 | */ |
---|
1793 | numberLongStrong_=0; |
---|
1794 | double totalTime = 0.0; |
---|
1795 | #ifdef CBC_THREAD |
---|
1796 | CbcNode * createdNode=NULL; |
---|
1797 | CbcModel ** threadModel = NULL; |
---|
1798 | Coin_pthread_t * threadId = NULL; |
---|
1799 | int * threadCount = NULL; |
---|
1800 | pthread_mutex_t mutex; |
---|
1801 | pthread_cond_t condition_main; |
---|
1802 | pthread_mutex_t condition_mutex; |
---|
1803 | pthread_mutex_t * mutex2 = NULL; |
---|
1804 | pthread_cond_t * condition2 = NULL; |
---|
1805 | threadStruct * threadInfo = NULL; |
---|
1806 | #ifdef CBC_NORMAL_THREAD |
---|
1807 | bool locked=false; |
---|
1808 | #endif |
---|
1809 | int threadStats[6]; |
---|
1810 | #ifdef CBC_DETERMINISTIC_THREAD |
---|
1811 | int defaultParallelIterations=500; |
---|
1812 | int defaultParallelNodes=10; |
---|
1813 | #endif |
---|
1814 | memset(threadStats,0,sizeof(threadStats)); |
---|
1815 | double timeWaiting=0.0; |
---|
1816 | // For now just one model |
---|
1817 | if (numberThreads_) { |
---|
1818 | nodeCompare_->sayThreaded(); // need to use addresses |
---|
1819 | threadId = new Coin_pthread_t [numberThreads_]; |
---|
1820 | threadCount = new int [numberThreads_]; |
---|
1821 | CoinZeroN(threadCount,numberThreads_); |
---|
1822 | pthread_mutex_init(&mutex,NULL); |
---|
1823 | pthread_cond_init(&condition_main,NULL); |
---|
1824 | pthread_mutex_init(&condition_mutex,NULL); |
---|
1825 | threadModel = new CbcModel * [numberThreads_+1]; |
---|
1826 | threadInfo = new threadStruct [numberThreads_+1]; |
---|
1827 | mutex2 = new pthread_mutex_t [numberThreads_]; |
---|
1828 | condition2 = new pthread_cond_t [numberThreads_]; |
---|
1829 | #ifdef CBC_DETERMINISTIC_THREAD |
---|
1830 | // May need for deterministic |
---|
1831 | saveObjects=new OsiObject * [numberObjects_]; |
---|
1832 | for (int i=0;i<numberObjects_;i++) { |
---|
1833 | saveObjects[i] = object_[i]->clone(); |
---|
1834 | } |
---|
1835 | #endif |
---|
1836 | // we don't want a strategy object |
---|
1837 | CbcStrategy * saveStrategy = strategy_; |
---|
1838 | strategy_ = NULL; |
---|
1839 | for (int i=0;i<numberThreads_;i++) { |
---|
1840 | pthread_mutex_init(mutex2+i,NULL); |
---|
1841 | pthread_cond_init(condition2+i,NULL); |
---|
1842 | threadId[i].status =0; |
---|
1843 | threadInfo[i].baseModel=this; |
---|
1844 | threadModel[i]=new CbcModel(*this); |
---|
1845 | #ifdef COIN_HAS_CLP |
---|
1846 | // Solver may need to know about model |
---|
1847 | CbcModel * thisModel = threadModel[i]; |
---|
1848 | CbcOsiSolver * solver = |
---|
1849 | dynamic_cast<CbcOsiSolver *>(thisModel->solver()) ; |
---|
1850 | if (solver) |
---|
1851 | solver->setCbcModel(thisModel); |
---|
1852 | #endif |
---|
1853 | mutex_ = (void *) (threadInfo+i); |
---|
1854 | threadModel[i]->moveToModel(this,-1); |
---|
1855 | threadInfo[i].thisModel=threadModel[i]; |
---|
1856 | threadInfo[i].node=NULL; |
---|
1857 | threadInfo[i].createdNode=NULL; |
---|
1858 | threadInfo[i].threadIdOfBase.thr =pthread_self(); |
---|
1859 | threadInfo[i].mutex=&mutex; |
---|
1860 | threadInfo[i].mutex2=mutex2+i; |
---|
1861 | threadInfo[i].condition2=condition2+i; |
---|
1862 | threadInfo[i].returnCode=-1; |
---|
1863 | threadInfo[i].timeLocked=0.0; |
---|
1864 | threadInfo[i].timeWaitingToLock=0.0; |
---|
1865 | threadInfo[i].timeWaitingToStart=0.0; |
---|
1866 | threadInfo[i].timeInThread=0.0; |
---|
1867 | threadInfo[i].numberTimesLocked=0; |
---|
1868 | threadInfo[i].numberTimesUnlocked=0; |
---|
1869 | threadInfo[i].numberTimesWaitingToStart=0; |
---|
1870 | threadInfo[i].locked=false; |
---|
1871 | #if CBC_THREAD_DEBUG |
---|
1872 | threadInfo[i].threadNumber=i+2; |
---|
1873 | #endif |
---|
1874 | #ifdef CBC_DETERMINISTIC_THREAD |
---|
1875 | threadInfo[i].delNode = NULL; |
---|
1876 | threadInfo[i].maxDeleteNode=0; |
---|
1877 | threadInfo[i].nDeleteNode=0; |
---|
1878 | threadInfo[i].nodesThisTime=0; |
---|
1879 | threadInfo[i].iterationsThisTime=0; |
---|
1880 | #endif |
---|
1881 | pthread_create(&(threadId[i].thr),NULL,doNodesThread,threadInfo+i); |
---|
1882 | threadId[i].status = 1; |
---|
1883 | } |
---|
1884 | strategy_ = saveStrategy; |
---|
1885 | // Do a partial one for base model |
---|
1886 | threadInfo[numberThreads_].baseModel=this; |
---|
1887 | threadModel[numberThreads_]=this; |
---|
1888 | mutex_ = (void *) (threadInfo+numberThreads_); |
---|
1889 | threadInfo[numberThreads_].node=NULL; |
---|
1890 | threadInfo[numberThreads_].mutex=&mutex; |
---|
1891 | threadInfo[numberThreads_].condition2=&condition_main; |
---|
1892 | threadInfo[numberThreads_].mutex2=&condition_mutex; |
---|
1893 | threadInfo[numberThreads_].timeLocked=0.0; |
---|
1894 | threadInfo[numberThreads_].timeWaitingToLock=0.0; |
---|
1895 | threadInfo[numberThreads_].numberTimesLocked=0; |
---|
1896 | threadInfo[numberThreads_].numberTimesUnlocked=0; |
---|
1897 | threadInfo[numberThreads_].locked=false; |
---|
1898 | #if CBC_THREAD_DEBUG |
---|
1899 | threadInfo[numberThreads_].threadNumber=1; |
---|
1900 | #endif |
---|
1901 | } |
---|
1902 | #endif |
---|
1903 | /* |
---|
1904 | At last, the actual branch-and-cut search loop, which will iterate until |
---|
1905 | the live set is empty or we hit some limit (integrality gap, time, node |
---|
1906 | count, etc.). The overall flow is to rebuild a subproblem, reoptimise using |
---|
1907 | solveWithCuts(), choose a branching pattern with chooseBranch(), and finally |
---|
1908 | add the node to the live set. |
---|
1909 | |
---|
1910 | The first action is to winnow the live set to remove nodes which are worse |
---|
1911 | than the current objective cutoff. |
---|
1912 | */ |
---|
1913 | if (solver_->getRowCutDebuggerAlways()) { |
---|
1914 | OsiRowCutDebugger * debuggerX = const_cast<OsiRowCutDebugger *> (solver_->getRowCutDebuggerAlways()); |
---|
1915 | const OsiRowCutDebugger *debugger = solver_->getRowCutDebugger() ; |
---|
1916 | if (!debugger) { |
---|
1917 | // infeasible!! |
---|
1918 | printf("before search\n"); |
---|
1919 | const double * lower = solver_->getColLower(); |
---|
1920 | const double * upper = solver_->getColUpper(); |
---|
1921 | const double * solution = debuggerX->optimalSolution(); |
---|
1922 | int numberColumns = solver_->getNumCols(); |
---|
1923 | for (int i=0;i<numberColumns;i++) { |
---|
1924 | if (solver_->isInteger(i)) { |
---|
1925 | if (solution[i]<lower[i]-1.0e-6||solution[i]>upper[i]+1.0e-6) |
---|
1926 | printf("**** "); |
---|
1927 | printf("%d %g <= %g <= %g\n", |
---|
1928 | i,lower[i],solution[i],upper[i]); |
---|
1929 | } |
---|
1930 | } |
---|
1931 | //abort(); |
---|
1932 | } |
---|
1933 | } |
---|
1934 | #ifdef CBC_DETERMINISTIC_THREAD |
---|
1935 | #define MAX_DEL_NODE 1 |
---|
1936 | CbcNode * delNode[MAX_DEL_NODE+1]; |
---|
1937 | int nDeleteNode=0; |
---|
1938 | bool goneParallel=false; |
---|
1939 | #endif |
---|
1940 | // For Printing etc when parallel |
---|
1941 | int lastEvery1000=0; |
---|
1942 | int lastPrintEvery=0; |
---|
1943 | while (true) { |
---|
1944 | #ifdef CBC_NORMAL_THREAD |
---|
1945 | if (!locked) { |
---|
1946 | lockThread(); |
---|
1947 | locked=true; |
---|
1948 | } |
---|
1949 | #endif |
---|
1950 | if (tree_->empty()) { |
---|
1951 | #ifdef CBC_NORMAL_THREAD |
---|
1952 | if (numberThreads_) { |
---|
1953 | #ifdef COIN_DEVELOP |
---|
1954 | printf("empty\n"); |
---|
1955 | #endif |
---|
1956 | // may still be outstanding nodes |
---|
1957 | int iThread; |
---|
1958 | for (iThread=0;iThread<numberThreads_;iThread++) { |
---|
1959 | if (threadId[iThread].status) { |
---|
1960 | if (threadInfo[iThread].returnCode==0) |
---|
1961 | break; |
---|
1962 | } |
---|
1963 | } |
---|
1964 | if (iThread<numberThreads_) { |
---|
1965 | #ifdef COIN_DEVELOP |
---|
1966 | printf("waiting for thread %d code 0\n",iThread); |
---|
1967 | #endif |
---|
1968 | #ifndef CBC_DETERMINISTIC_THREAD |
---|
1969 | unlockThread(); |
---|
1970 | #endif |
---|
1971 | locked = false; |
---|
1972 | pthread_cond_signal(threadInfo[iThread].condition2); // unlock in case |
---|
1973 | while (true) { |
---|
1974 | pthread_mutex_lock(&condition_mutex); |
---|
1975 | struct timespec absTime; |
---|
1976 | clock_gettime(CLOCK_REALTIME,&absTime); |
---|
1977 | double time = absTime.tv_sec+1.0e-9*absTime.tv_nsec; |
---|
1978 | absTime.tv_nsec += 1000000; // millisecond |
---|
1979 | if (absTime.tv_nsec>=1000000000) { |
---|
1980 | absTime.tv_nsec -= 1000000000; |
---|
1981 | absTime.tv_sec++; |
---|
1982 | } |
---|
1983 | pthread_cond_timedwait(&condition_main,&condition_mutex,&absTime); |
---|
1984 | clock_gettime(CLOCK_REALTIME,&absTime); |
---|
1985 | double time2 = absTime.tv_sec+1.0e-9*absTime.tv_nsec; |
---|
1986 | timeWaiting += time2-time; |
---|
1987 | pthread_mutex_unlock(&condition_mutex); |
---|
1988 | if (threadInfo[iThread].returnCode!=0) |
---|
1989 | break; |
---|
1990 | pthread_cond_signal(threadInfo[iThread].condition2); // unlock |
---|
1991 | } |
---|
1992 | threadModel[iThread]->moveToModel(this,1); |
---|
1993 | assert (threadInfo[iThread].returnCode==1); |
---|
1994 | // say available |
---|
1995 | threadInfo[iThread].returnCode=-1; |
---|
1996 | threadStats[4]++; |
---|
1997 | #ifdef COIN_DEVELOP |
---|
1998 | printf("thread %d code now -1\n",iThread); |
---|
1999 | #endif |
---|
2000 | continue; |
---|
2001 | } else { |
---|
2002 | #ifdef COIN_DEVELOP |
---|
2003 | printf("no threads at code 0 \n"); |
---|
2004 | #endif |
---|
2005 | // now check if any have just finished |
---|
2006 | for (iThread=0;iThread<numberThreads_;iThread++) { |
---|
2007 | if (threadId[iThread].status) { |
---|
2008 | if (threadInfo[iThread].returnCode==1) |
---|
2009 | break; |
---|
2010 | } |
---|
2011 | } |
---|
2012 | if (iThread<numberThreads_) { |
---|
2013 | #ifndef CBC_DETERMINISTIC_THREAD |
---|
2014 | unlockThread(); |
---|
2015 | #endif |
---|
2016 | locked = false; |
---|
2017 | threadModel[iThread]->moveToModel(this,1); |
---|
2018 | assert (threadInfo[iThread].returnCode==1); |
---|
2019 | // say available |
---|
2020 | threadInfo[iThread].returnCode=-1; |
---|
2021 | threadStats[4]++; |
---|
2022 | #ifdef COIN_DEVELOP |
---|
2023 | printf("thread %d code now -1\n",iThread); |
---|
2024 | #endif |
---|
2025 | continue; |
---|
2026 | } |
---|
2027 | } |
---|
2028 | if (!tree_->empty()) { |
---|
2029 | #ifdef COIN_DEVELOP |
---|
2030 | printf("tree not empty!!!!!!\n"); |
---|
2031 | #endif |
---|
2032 | continue; |
---|
2033 | } |
---|
2034 | for (iThread=0;iThread<numberThreads_;iThread++) { |
---|
2035 | if (threadId[iThread].status) { |
---|
2036 | if (threadInfo[iThread].returnCode!=-1) { |
---|
2037 | printf("bad end of tree\n"); |
---|
2038 | abort(); |
---|
2039 | } |
---|
2040 | } |
---|
2041 | } |
---|
2042 | #ifdef COIN_DEVELOP |
---|
2043 | printf("finished ************\n"); |
---|
2044 | #endif |
---|
2045 | } |
---|
2046 | #ifndef CBC_DETERMINISTIC_THREAD |
---|
2047 | unlockThread(); |
---|
2048 | #endif |
---|
2049 | locked=false; // not needed as break |
---|
2050 | #endif |
---|
2051 | break; |
---|
2052 | } |
---|
2053 | #ifdef CBC_NORMAL_THREAD |
---|
2054 | unlockThread(); |
---|
2055 | locked = false; |
---|
2056 | #endif |
---|
2057 | /* |
---|
2058 | Check for abort on limits: node count, solution count, time, integrality gap. |
---|
2059 | */ |
---|
2060 | totalTime = getCurrentSeconds() ; |
---|
2061 | double maxSeconds = getMaximumSeconds(); |
---|
2062 | if (parentModel_) |
---|
2063 | maxSeconds=CoinMin(maxSeconds,parentModel_->getMaximumSeconds()); |
---|
2064 | if (!(numberNodes_ < intParam_[CbcMaxNumNode] && |
---|
2065 | numberSolutions_ < intParam_[CbcMaxNumSol] && |
---|
2066 | totalTime < maxSeconds && |
---|
2067 | !stoppedOnGap_&&!eventHappened_)) { |
---|
2068 | // out of loop |
---|
2069 | break; |
---|
2070 | } |
---|
2071 | #ifdef BONMIN |
---|
2072 | assert(!solverCharacteristics_->solutionAddsCuts() || solverCharacteristics_->mipFeasible()); |
---|
2073 | #endif |
---|
2074 | if (cutoff > getCutoff()) { |
---|
2075 | double newCutoff = getCutoff(); |
---|
2076 | if (analyzeResults_) { |
---|
2077 | // see if we could fix any (more) |
---|
2078 | int n=0; |
---|
2079 | double * newLower = analyzeResults_; |
---|
2080 | double * objLower = newLower+numberIntegers_; |
---|
2081 | double * newUpper = objLower+numberIntegers_; |
---|
2082 | double * objUpper = newUpper+numberIntegers_; |
---|
2083 | for (int i=0;i<numberIntegers_;i++) { |
---|
2084 | if (objLower[i]>newCutoff) { |
---|
2085 | n++; |
---|
2086 | if (objUpper[i]>newCutoff) { |
---|
2087 | newCutoff = -COIN_DBL_MAX; |
---|
2088 | break; |
---|
2089 | } |
---|
2090 | } else if (objUpper[i]>newCutoff) { |
---|
2091 | n++; |
---|
2092 | } |
---|
2093 | } |
---|
2094 | if (newCutoff==-COIN_DBL_MAX) { |
---|
2095 | printf("Root analysis says finished\n"); |
---|
2096 | } else if (n>numberFixedNow_) { |
---|
2097 | printf("%d more fixed by analysis - now %d\n",n-numberFixedNow_,n); |
---|
2098 | numberFixedNow_=n; |
---|
2099 | } |
---|
2100 | } |
---|
2101 | if (eventHandler) { |
---|
2102 | if (!eventHandler->event(CbcEventHandler::solution)) { |
---|
2103 | eventHappened_=true; // exit |
---|
2104 | } |
---|
2105 | } |
---|
2106 | #ifndef CBC_DETERMINISTIC_THREAD |
---|
2107 | lockThread(); |
---|
2108 | #endif |
---|
2109 | // Do from deepest |
---|
2110 | tree_->cleanTree(this, newCutoff,bestPossibleObjective_) ; |
---|
2111 | nodeCompare_->newSolution(this) ; |
---|
2112 | nodeCompare_->newSolution(this,continuousObjective_, |
---|
2113 | continuousInfeasibilities_) ; |
---|
2114 | tree_->setComparison(*nodeCompare_) ; |
---|
2115 | if (tree_->empty()) { |
---|
2116 | #ifndef CBC_DETERMINISTIC_THREAD |
---|
2117 | unlockThread(); |
---|
2118 | #endif |
---|
2119 | // For threads we need to check further |
---|
2120 | //break; // finished |
---|
2121 | continue; |
---|
2122 | } |
---|
2123 | #ifndef CBC_DETERMINISTIC_THREAD |
---|
2124 | unlockThread(); |
---|
2125 | #endif |
---|
2126 | } |
---|
2127 | cutoff = getCutoff() ; |
---|
2128 | /* |
---|
2129 | Periodic activities: Opportunities to |
---|
2130 | + tweak the nodeCompare criteria, |
---|
2131 | + check if we've closed the integrality gap enough to quit, |
---|
2132 | + print a summary line to let the user know we're working |
---|
2133 | */ |
---|
2134 | if (numberNodes_>=lastEvery1000) { |
---|
2135 | #ifndef CBC_DETERMINISTIC_THREAD |
---|
2136 | lockThread(); |
---|
2137 | #endif |
---|
2138 | lastEvery1000 = numberNodes_ + 1000; |
---|
2139 | bool redoTree=nodeCompare_->every1000Nodes(this, numberNodes_) ; |
---|
2140 | #ifdef CHECK_CUT_SIZE |
---|
2141 | verifyCutSize (tree_, *this); |
---|
2142 | #endif |
---|
2143 | // redo tree if wanted |
---|
2144 | if (redoTree) |
---|
2145 | tree_->setComparison(*nodeCompare_) ; |
---|
2146 | #ifndef CBC_DETERMINISTIC_THREAD |
---|
2147 | unlockThread(); |
---|
2148 | #endif |
---|
2149 | } |
---|
2150 | if (saveCompare&&!hotstartSolution_) { |
---|
2151 | // hotstart switched off |
---|
2152 | delete nodeCompare_; // off depth first |
---|
2153 | nodeCompare_=saveCompare; |
---|
2154 | saveCompare=NULL; |
---|
2155 | // redo tree |
---|
2156 | #ifndef CBC_DETERMINISTIC_THREAD |
---|
2157 | lockThread(); |
---|
2158 | #endif |
---|
2159 | tree_->setComparison(*nodeCompare_) ; |
---|
2160 | #ifndef CBC_DETERMINISTIC_THREAD |
---|
2161 | unlockThread(); |
---|
2162 | #endif |
---|
2163 | } |
---|
2164 | if (numberNodes_>=lastPrintEvery) { |
---|
2165 | lastPrintEvery = numberNodes_ + printFrequency_; |
---|
2166 | #ifdef CBC_INSTRUMENT |
---|
2167 | if (0) { |
---|
2168 | printf("==Start instrument\n"); |
---|
2169 | for (int iObject=0;iObject<numberObjects_;iObject++) { |
---|
2170 | CbcSimpleIntegerDynamicPseudoCost * obj = |
---|
2171 | dynamic_cast <CbcSimpleIntegerDynamicPseudoCost *>(object_[iObject]) ; |
---|
2172 | if (obj) |
---|
2173 | obj->print(); |
---|
2174 | } |
---|
2175 | printf("==End instrument\n"); |
---|
2176 | } |
---|
2177 | #endif |
---|
2178 | #ifndef CBC_DETERMINISTIC_THREAD |
---|
2179 | lockThread(); |
---|
2180 | #endif |
---|
2181 | int nNodes = tree_->size() ; |
---|
2182 | |
---|
2183 | //MODIF PIERRE |
---|
2184 | bestPossibleObjective_ = tree_->getBestPossibleObjective(); |
---|
2185 | #ifndef CBC_DETERMINISTIC_THREAD |
---|
2186 | unlockThread(); |
---|
2187 | #endif |
---|
2188 | if (!intParam_[CbcPrinting]) { |
---|
2189 | messageHandler()->message(CBC_STATUS,messages()) |
---|
2190 | << numberNodes_<< nNodes<< bestObjective_<< bestPossibleObjective_ |
---|
2191 | <<getCurrentSeconds() |
---|
2192 | << CoinMessageEol ; |
---|
2193 | } else { |
---|
2194 | messageHandler()->message(CBC_STATUS2,messages()) |
---|
2195 | << numberNodes_<< nNodes<< bestObjective_<< bestPossibleObjective_ |
---|
2196 | <<lastDepth<<lastUnsatisfied<<numberIterations_ |
---|
2197 | <<getCurrentSeconds() |
---|
2198 | << CoinMessageEol ; |
---|
2199 | } |
---|
2200 | if (!eventHandler->event(CbcEventHandler::treeStatus)) { |
---|
2201 | eventHappened_=true; // exit |
---|
2202 | } |
---|
2203 | } |
---|
2204 | // See if can stop on gap |
---|
2205 | double testGap = CoinMax(dblParam_[CbcAllowableGap], |
---|
2206 | CoinMax(fabs(bestObjective_),fabs(bestPossibleObjective_)) |
---|
2207 | *dblParam_[CbcAllowableFractionGap]); |
---|
2208 | if (bestObjective_-bestPossibleObjective_ < testGap && getCutoffIncrement()>=0.0) { |
---|
2209 | stoppedOnGap_ = true ; |
---|
2210 | } |
---|
2211 | |
---|
2212 | # ifdef CHECK_NODE_FULL |
---|
2213 | verifyTreeNodes(tree_,*this) ; |
---|
2214 | # endif |
---|
2215 | # ifdef CHECK_CUT_COUNTS |
---|
2216 | verifyCutCounts(tree_,*this) ; |
---|
2217 | # endif |
---|
2218 | /* |
---|
2219 | Now we come to the meat of the loop. To create the active subproblem, we'll |
---|
2220 | pop the most promising node in the live set, rebuild the subproblem it |
---|
2221 | represents, and then execute the current arm of the branch to create the |
---|
2222 | active subproblem. |
---|
2223 | */ |
---|
2224 | #ifndef CBC_THREAD |
---|
2225 | CbcNode *node = tree_->bestNode(cutoff) ; |
---|
2226 | // Possible one on tree worse than cutoff |
---|
2227 | if (!node||node->objectiveValue()>cutoff) |
---|
2228 | continue; |
---|
2229 | int currentNumberCuts = 0 ; |
---|
2230 | currentNode_=node; // so can be accessed elsewhere |
---|
2231 | #ifdef CBC_DEBUG |
---|
2232 | printf("%d unsat, way %d, obj %g est %g\n", |
---|
2233 | node->numberUnsatisfied(),node->way(),node->objectiveValue(), |
---|
2234 | node->guessedObjectiveValue()); |
---|
2235 | #endif |
---|
2236 | #if NEW_UPDATE_OBJECT==0 |
---|
2237 | // Save clone in branching decision |
---|
2238 | if(branchingMethod_) |
---|
2239 | branchingMethod_->saveBranchingObject(node->modifiableBranchingObject()); |
---|
2240 | #endif |
---|
2241 | // Say not on optimal path |
---|
2242 | bool onOptimalPath=false; |
---|
2243 | # ifdef CHECK_NODE |
---|
2244 | printf("Node %x popped from tree - %d left, %d count\n",node, |
---|
2245 | node->nodeInfo()->numberBranchesLeft(), |
---|
2246 | node->nodeInfo()->numberPointingToThis()) ; |
---|
2247 | printf("\tdepth = %d, z = %g, unsat = %d, var = %d.\n", |
---|
2248 | node->depth(),node->objectiveValue(), |
---|
2249 | node->numberUnsatisfied(), |
---|
2250 | node->columnNumber()) ; |
---|
2251 | # endif |
---|
2252 | lastDepth=node->depth(); |
---|
2253 | lastUnsatisfied=node->numberUnsatisfied(); |
---|
2254 | |
---|
2255 | /* |
---|
2256 | Rebuild the subproblem for this node: Call addCuts() to adjust the model |
---|
2257 | to recreate the subproblem for this node (set proper variable bounds, add |
---|
2258 | cuts, create a basis). This may result in the problem being fathomed by |
---|
2259 | bound or infeasibility. Returns 1 if node is fathomed. |
---|
2260 | Execute the current arm of the branch: If the problem survives, save the |
---|
2261 | resulting variable bounds and call branch() to modify variable bounds |
---|
2262 | according to the current arm of the branching object. If we're processing |
---|
2263 | the final arm of the branching object, flag the node for removal from the |
---|
2264 | live set. |
---|
2265 | */ |
---|
2266 | CbcNodeInfo * nodeInfo = node->nodeInfo() ; |
---|
2267 | newNode = NULL ; |
---|
2268 | int branchesLeft=0; |
---|
2269 | if (!addCuts(node,lastws,numberFixedNow_>numberFixedAtRoot_)) |
---|
2270 | { int i ; |
---|
2271 | const double * lower = getColLower() ; |
---|
2272 | const double * upper = getColUpper() ; |
---|
2273 | for (i = 0 ; i < numberColumns ; i++) |
---|
2274 | { lowerBefore[i]= lower[i] ; |
---|
2275 | upperBefore[i]= upper[i] ; } |
---|
2276 | if ((solverCharacteristics_->extraCharacteristics()&2)!=0) { |
---|
2277 | solverCharacteristics_->setBeforeLower(lowerBefore); |
---|
2278 | solverCharacteristics_->setBeforeUpper(upperBefore); |
---|
2279 | } |
---|
2280 | if (messageHandler()->logLevel()>2) |
---|
2281 | node->modifiableBranchingObject()->print(); |
---|
2282 | if (!useOsiBranching) |
---|
2283 | branchesLeft = node->branch(NULL); // old way |
---|
2284 | else |
---|
2285 | branchesLeft = node->branch(solver_); // new way |
---|
2286 | if (branchesLeft) { |
---|
2287 | // set nodenumber correctly |
---|
2288 | node->nodeInfo()->setNodeNumber(numberNodes2_); |
---|
2289 | tree_->push(node) ; |
---|
2290 | if (statistics_) { |
---|
2291 | if (numberNodes2_==maximumStatistics_) { |
---|
2292 | maximumStatistics_ = 2*maximumStatistics_; |
---|
2293 | CbcStatistics ** temp = new CbcStatistics * [maximumStatistics_]; |
---|
2294 | memset(temp,0,maximumStatistics_*sizeof(CbcStatistics *)); |
---|
2295 | memcpy(temp,statistics_,numberNodes2_*sizeof(CbcStatistics *)); |
---|
2296 | delete [] statistics_; |
---|
2297 | statistics_=temp; |
---|
2298 | } |
---|
2299 | assert (!statistics_[numberNodes2_]); |
---|
2300 | statistics_[numberNodes2_]=new CbcStatistics(node,this); |
---|
2301 | } |
---|
2302 | numberNodes2_++; |
---|
2303 | //nodeOnTree=true; // back on tree |
---|
2304 | //deleteNode = false ; |
---|
2305 | # ifdef CHECK_NODE |
---|
2306 | printf("Node %x pushed back on tree - %d left, %d count\n",node, |
---|
2307 | nodeInfo->numberBranchesLeft(), |
---|
2308 | nodeInfo->numberPointingToThis()) ; |
---|
2309 | # endif |
---|
2310 | } else { |
---|
2311 | //deleteNode = true ; |
---|
2312 | if (!nodeInfo->numberBranchesLeft()) |
---|
2313 | nodeInfo->allBranchesGone(); // can clean up |
---|
2314 | } |
---|
2315 | if ((specialOptions_&1)!=0) { |
---|
2316 | /* |
---|
2317 | This doesn't work as intended --- getRowCutDebugger will return null |
---|
2318 | unless the current feasible solution region includes the optimal solution |
---|
2319 | that RowCutDebugger knows. There's no way to tell inactive from off the |
---|
2320 | optimal path. |
---|
2321 | */ |
---|
2322 | const OsiRowCutDebugger *debugger = solver_->getRowCutDebugger() ; |
---|
2323 | if (debugger) { |
---|
2324 | onOptimalPath=true; |
---|
2325 | printf("On optimal path\n") ; |
---|
2326 | } |
---|
2327 | } |
---|
2328 | |
---|
2329 | /* |
---|
2330 | Reoptimize, possibly generating cuts and/or using heuristics to find |
---|
2331 | solutions. Cut reference counts are unaffected unless we lose feasibility, |
---|
2332 | in which case solveWithCuts() will make the adjustment. |
---|
2333 | */ |
---|
2334 | phase_=2; |
---|
2335 | cuts = OsiCuts() ; |
---|
2336 | currentNumberCuts = solver_->getNumRows()-numberRowsAtContinuous_ ; |
---|
2337 | int saveNumber = numberIterations_; |
---|
2338 | if(solverCharacteristics_->solutionAddsCuts()) { |
---|
2339 | int returnCode=resolve(node ? node->nodeInfo() : NULL,1); |
---|
2340 | feasible = returnCode != 0; |
---|
2341 | if (feasible) { |
---|
2342 | int iObject ; |
---|
2343 | int preferredWay ; |
---|
2344 | int numberUnsatisfied = 0 ; |
---|
2345 | memcpy(currentSolution_,solver_->getColSolution(), |
---|
2346 | numberColumns*sizeof(double)) ; |
---|
2347 | // point to useful information |
---|
2348 | OsiBranchingInformation usefulInfo=usefulInformation(); |
---|
2349 | |
---|
2350 | for (iObject = 0 ; iObject < numberObjects_ ; iObject++) { |
---|
2351 | double infeasibility = |
---|
2352 | object_[iObject]->infeasibility(&usefulInfo,preferredWay) ; |
---|
2353 | if (infeasibility ) numberUnsatisfied++ ; |
---|
2354 | } |
---|
2355 | if (returnCode>0) { |
---|
2356 | if (numberUnsatisfied) { |
---|
2357 | feasible = solveWithCuts(cuts,maximumCutPasses_,node); |
---|
2358 | } else { |
---|
2359 | // may generate cuts and turn the solution |
---|
2360 | //to an infeasible one |
---|
2361 | feasible = solveWithCuts(cuts, 1, |
---|
2362 | node); |
---|
2363 | #if 0 |
---|
2364 | currentNumberCuts_ = cuts.sizeRowCuts(); |
---|
2365 | if (currentNumberCuts_ >= maximumNumberCuts_) { |
---|
2366 | maximumNumberCuts_ = currentNumberCuts; |
---|
2367 | delete [] addedCuts_; |
---|
2368 | addedCuts_ = new CbcCountRowCut * [maximumNumberCuts_]; |
---|
2369 | } |
---|
2370 | #endif |
---|
2371 | } |
---|
2372 | } |
---|
2373 | // check extra info on feasibility |
---|
2374 | if (!solverCharacteristics_->mipFeasible()) { |
---|
2375 | feasible = false; |
---|
2376 | solverCharacteristics_->setMipBound(-COIN_DBL_MAX); |
---|
2377 | } |
---|
2378 | } |
---|
2379 | } else { |
---|
2380 | // normal |
---|
2381 | //int zzzzzz=0; |
---|
2382 | //if (zzzzzz) |
---|
2383 | //solver_->writeMps("before"); |
---|
2384 | feasible = solveWithCuts(cuts,maximumCutPasses_,node); |
---|
2385 | } |
---|
2386 | if ((specialOptions_&1)!=0&&onOptimalPath) { |
---|
2387 | if (!solver_->getRowCutDebugger()) { |
---|
2388 | // dj fix did something??? |
---|
2389 | solver_->writeMps("infeas2"); |
---|
2390 | assert (solver_->getRowCutDebugger()) ; |
---|
2391 | } |
---|
2392 | } |
---|
2393 | if (statistics_) { |
---|
2394 | assert (numberNodes2_); |
---|
2395 | assert (statistics_[numberNodes2_-1]); |
---|
2396 | assert (statistics_[numberNodes2_-1]->node()==numberNodes2_-1); |
---|
2397 | statistics_[numberNodes2_-1]->endOfBranch(numberIterations_-saveNumber, |
---|
2398 | feasible ? solver_->getObjValue() |
---|
2399 | : COIN_DBL_MAX); |
---|
2400 | } |
---|
2401 | /* |
---|
2402 | Are we still feasible? If so, create a node and do the work to attach a |
---|
2403 | branching object, reoptimising as needed if chooseBranch() identifies |
---|
2404 | monotone objects. |
---|
2405 | |
---|
2406 | Finally, attach a partial nodeInfo object and store away any cuts that we |
---|
2407 | created back in solveWithCuts. addCuts() will initialise the reference |
---|
2408 | counts for these new cuts. |
---|
2409 | |
---|
2410 | This next test can be problematic if we've discovered an |
---|
2411 | alternate equivalent answer and subsequently fathom the solution |
---|
2412 | known to the row cut debugger due to bounds. |
---|
2413 | */ |
---|
2414 | if (onOptimalPath) { |
---|
2415 | bool objLim = solver_->isDualObjectiveLimitReached() ; |
---|
2416 | if (!feasible && !objLim) { |
---|
2417 | printf("infeas2\n"); |
---|
2418 | solver_->writeMps("infeas"); |
---|
2419 | CoinWarmStartBasis *slack = |
---|
2420 | dynamic_cast<CoinWarmStartBasis *>(solver_->getEmptyWarmStart()) ; |
---|
2421 | solver_->setWarmStart(slack); |
---|
2422 | delete slack ; |
---|
2423 | solver_->setHintParam(OsiDoReducePrint,false,OsiHintDo,0) ; |
---|
2424 | solver_->initialSolve(); |
---|
2425 | assert (!solver_->isProvenOptimal()); |
---|
2426 | } |
---|
2427 | assert (feasible || objLim); |
---|
2428 | } |
---|
2429 | bool checkingNode=false; |
---|
2430 | if (feasible) { |
---|
2431 | newNode = new CbcNode ;//Regular node of the tree |
---|
2432 | // Set objective value (not so obvious if NLP etc) |
---|
2433 | setObjectiveValue(newNode,node); |
---|
2434 | anyAction =-1 ; |
---|
2435 | resolved = false ; |
---|
2436 | if (newNode->objectiveValue() >= getCutoff()) |
---|
2437 | anyAction=-2; |
---|
2438 | // only allow at most a few passes |
---|
2439 | int numberPassesLeft=5; |
---|
2440 | checkingNode=true; |
---|
2441 | OsiSolverBranch * branches=NULL; |
---|
2442 | // point to useful information |
---|
2443 | anyAction = chooseBranch(newNode, numberPassesLeft,node, cuts,resolved, |
---|
2444 | lastws, lowerBefore, upperBefore, branches); |
---|
2445 | /* |
---|
2446 | If we end up infeasible, we can delete the new node immediately. Since this |
---|
2447 | node won't be needing the cuts we collected, decrement the reference counts. |
---|
2448 | If we are feasible, then we'll be placing this node into the live set, so |
---|
2449 | increment the reference count in the current (parent) nodeInfo. |
---|
2450 | */ |
---|
2451 | if (anyAction == -2) |
---|
2452 | { delete newNode ; |
---|
2453 | newNode = NULL ; |
---|
2454 | // say strong doing well |
---|
2455 | if (checkingNode) |
---|
2456 | setSpecialOptions(specialOptions_|8); |
---|
2457 | for (i = 0 ; i < currentNumberCuts_ ; i++) |
---|
2458 | { if (addedCuts_[i]) |
---|
2459 | { if (!addedCuts_[i]->decrement(1)) |
---|
2460 | delete addedCuts_[i] ; } } } |
---|
2461 | else |
---|
2462 | { nodeInfo->increment() ; |
---|
2463 | if ((numberNodes_%20)==0) { |
---|
2464 | // say strong not doing as well |
---|
2465 | setSpecialOptions(specialOptions_&~8); |
---|
2466 | } |
---|
2467 | } |
---|
2468 | } |
---|
2469 | /* |
---|
2470 | At this point, there are three possibilities: |
---|
2471 | * newNode is live and will require further branching to resolve |
---|
2472 | (variable() >= 0). Increment the cut reference counts by |
---|
2473 | numberBranches() to allow for use by children of this node, and |
---|
2474 | decrement by 1 because we've executed one arm of the branch of our |
---|
2475 | parent (consuming one reference). Before we push newNode onto the |
---|
2476 | search tree, try for a heuristic solution. |
---|
2477 | * We have a solution, in which case newNode is non-null but we have no |
---|
2478 | branching variable. Decrement the cut counts and save the solution. |
---|
2479 | * The node was found to be infeasible, in which case it's already been |
---|
2480 | deleted, and newNode is null. |
---|
2481 | */ |
---|
2482 | if (!eventHandler->event(CbcEventHandler::node)) { |
---|
2483 | eventHappened_=true; // exit |
---|
2484 | } |
---|
2485 | assert (!newNode || newNode->objectiveValue() <= getCutoff()) ; |
---|
2486 | if (statistics_) { |
---|
2487 | assert (numberNodes2_); |
---|
2488 | assert (statistics_[numberNodes2_-1]); |
---|
2489 | assert (statistics_[numberNodes2_-1]->node()==numberNodes2_-1); |
---|
2490 | if (newNode) |
---|
2491 | statistics_[numberNodes2_-1]->updateInfeasibility(newNode->numberUnsatisfied()); |
---|
2492 | else |
---|
2493 | statistics_[numberNodes2_-1]->sayInfeasible(); |
---|
2494 | } |
---|
2495 | if (newNode) { |
---|
2496 | if (newNode->branchingObject() == NULL&&solverCharacteristics_->solverType()==4) { |
---|
2497 | // need to check if any cuts would do anything |
---|
2498 | OsiCuts theseCuts; |
---|
2499 | // reset probing info |
---|
2500 | //if (probingInfo_) |
---|
2501 | //probingInfo_->initializeFixing(); |
---|
2502 | for (int i = 0;i<numberCutGenerators_;i++) { |
---|
2503 | bool generate = generator_[i]->normal(); |
---|
2504 | // skip if not optimal and should be (maybe a cut generator has fixed variables) |
---|
2505 | if (generator_[i]->needsOptimalBasis()&&!solver_->basisIsAvailable()) |
---|
2506 | generate=false; |
---|
2507 | if (!generator_[i]->mustCallAgain()) |
---|
2508 | generate=false; // only special cuts |
---|
2509 | if (generate) { |
---|
2510 | generator_[i]->generateCuts(theseCuts,true,solver_,NULL) ; |
---|
2511 | int numberRowCutsAfter = theseCuts.sizeRowCuts() ; |
---|
2512 | if (numberRowCutsAfter) { |
---|
2513 | // need dummy branch |
---|
2514 | newNode->setBranchingObject(new CbcDummyBranchingObject(this)); |
---|
2515 | newNode->nodeInfo()->initializeInfo(1); |
---|
2516 | break; |
---|
2517 | } |
---|
2518 | } |
---|
2519 | } |
---|
2520 | } |
---|
2521 | if (newNode->branchingObject()) |
---|
2522 | { handler_->message(CBC_BRANCH,messages_) |
---|
2523 | << numberNodes_<< newNode->objectiveValue() |
---|
2524 | << newNode->numberUnsatisfied()<< newNode->depth() |
---|
2525 | << CoinMessageEol ; |
---|
2526 | // Increment cut counts (taking off current) |
---|
2527 | int numberLeft = newNode->numberBranches() ; |
---|
2528 | for (i = 0;i < currentNumberCuts_;i++) |
---|
2529 | { if (addedCuts_[i]) |
---|
2530 | { |
---|
2531 | # ifdef CHECK_CUT_COUNTS |
---|
2532 | printf("Count on cut %x increased by %d\n",addedCuts_[i], |
---|
2533 | numberLeft-1) ; |
---|
2534 | # endif |
---|
2535 | addedCuts_[i]->increment(numberLeft-1) ; } } |
---|
2536 | |
---|
2537 | double estValue = newNode->guessedObjectiveValue() ; |
---|
2538 | int found = -1 ; |
---|
2539 | // no - overhead on small problems solver_->resolve() ; // double check current optimal |
---|
2540 | // assert (!solver_->getIterationCount()); |
---|
2541 | double * newSolution = new double [numberColumns] ; |
---|
2542 | double heurValue = getCutoff() ; |
---|
2543 | int iHeur ; |
---|
2544 | for (iHeur = 0 ; iHeur < numberHeuristics_ ; iHeur++) { |
---|
2545 | double saveValue = heurValue ; |
---|
2546 | int ifSol = heuristic_[iHeur]->solution(heurValue,newSolution) ; |
---|
2547 | if (ifSol > 0) { |
---|
2548 | // new solution found |
---|
2549 | found = iHeur ; |
---|
2550 | incrementUsed(newSolution); |
---|
2551 | lastHeuristic_ = heuristic_[found]; |
---|
2552 | setBestSolution(CBC_ROUNDING,heurValue,newSolution) ; |
---|
2553 | } else if (ifSol < 0) { |
---|
2554 | // just returning an estimate |
---|
2555 | estValue = CoinMin(heurValue,estValue) ; |
---|
2556 | heurValue = saveValue ; |
---|
2557 | } |
---|
2558 | } |
---|
2559 | delete [] newSolution ; |
---|
2560 | newNode->setGuessedObjectiveValue(estValue) ; |
---|
2561 | tree_->push(newNode) ; |
---|
2562 | if (statistics_) { |
---|
2563 | if (numberNodes2_==maximumStatistics_) { |
---|
2564 | maximumStatistics_ = 2*maximumStatistics_; |
---|
2565 | CbcStatistics ** temp = new CbcStatistics * [maximumStatistics_]; |
---|
2566 | memset(temp,0,maximumStatistics_*sizeof(CbcStatistics *)); |
---|
2567 | memcpy(temp,statistics_,numberNodes2_*sizeof(CbcStatistics *)); |
---|
2568 | delete [] statistics_; |
---|
2569 | statistics_=temp; |
---|
2570 | } |
---|
2571 | assert (!statistics_[numberNodes2_]); |
---|
2572 | statistics_[numberNodes2_]=new CbcStatistics(newNode,this); |
---|
2573 | } |
---|
2574 | numberNodes2_++; |
---|
2575 | # ifdef CHECK_NODE |
---|
2576 | printf("Node %x pushed on tree c\n",newNode) ; |
---|
2577 | # endif |
---|
2578 | } |
---|
2579 | else |
---|
2580 | { |
---|
2581 | if(solverCharacteristics_ && //we may be in a non standard bab |
---|
2582 | solverCharacteristics_->solutionAddsCuts()// we are in some kind of OA based bab. |
---|
2583 | ) |
---|
2584 | { |
---|
2585 | std::cerr<<"You should never get here"<<std::endl; |
---|
2586 | throw CoinError("Nodes should not be fathomed on integer infeasibility in this setting", |
---|
2587 | "branchAndBound","CbcModel") ; |
---|
2588 | } |
---|
2589 | for (i = 0 ; i < currentNumberCuts_ ; i++) |
---|
2590 | { if (addedCuts_[i]) |
---|
2591 | { if (!addedCuts_[i]->decrement(1)) |
---|
2592 | delete addedCuts_[i] ; } } |
---|
2593 | double objectiveValue = newNode->objectiveValue(); |
---|
2594 | setBestSolution(CBC_SOLUTION,objectiveValue, |
---|
2595 | solver_->getColSolution()) ; |
---|
2596 | lastHeuristic_ = NULL; |
---|
2597 | incrementUsed(solver_->getColSolution()); |
---|
2598 | //assert(nodeInfo->numberPointingToThis() <= 2) ; |
---|
2599 | // avoid accidental pruning, if newNode was final branch arm |
---|
2600 | nodeInfo->increment(); |
---|
2601 | delete newNode ; |
---|
2602 | nodeInfo->decrement() ; } } |
---|
2603 | /* |
---|
2604 | This node has been completely expanded and can be removed from the live |
---|
2605 | set. |
---|
2606 | */ |
---|
2607 | if (branchesLeft) |
---|
2608 | { |
---|
2609 | } |
---|
2610 | else |
---|
2611 | { |
---|
2612 | if (!nodeInfo->numberBranchesLeft()) |
---|
2613 | nodeInfo->allBranchesGone(); // can clean up |
---|
2614 | delete node ; } |
---|
2615 | } else { |
---|
2616 | // add cuts found to be infeasible (on bound)! |
---|
2617 | abort(); |
---|
2618 | delete node; |
---|
2619 | } |
---|
2620 | /* |
---|
2621 | Delete cuts to get back to the original system. |
---|
2622 | |
---|
2623 | I'm thinking this is redundant --- the call to addCuts that conditions entry |
---|
2624 | to this code block also performs this action. |
---|
2625 | */ |
---|
2626 | int numberToDelete = getNumRows()-numberRowsAtContinuous_ ; |
---|
2627 | if (numberToDelete) |
---|
2628 | { int * delRows = new int[numberToDelete] ; |
---|
2629 | int i ; |
---|
2630 | for (i = 0 ; i < numberToDelete ; i++) |
---|
2631 | { delRows[i] = i+numberRowsAtContinuous_ ; } |
---|
2632 | solver_->deleteRows(numberToDelete,delRows) ; |
---|
2633 | delete [] delRows ; } |
---|
2634 | #else // end of not CBC_THREAD |
---|
2635 | #ifndef CBC_DETERMINISTIC_THREAD |
---|
2636 | CbcNode *node = tree_->bestNode(cutoff) ; |
---|
2637 | // Possible one on tree worse than cutoff |
---|
2638 | if (!node||node->objectiveValue()>cutoff) |
---|
2639 | continue; |
---|
2640 | if (!numberThreads_) { |
---|
2641 | #else |
---|
2642 | if (!numberThreads_||(tree_->size()<5*numberThreads_&&!goneParallel)) { |
---|
2643 | CbcNode *node = tree_->bestNode(cutoff) ; |
---|
2644 | // Possible one on tree worse than cutoff |
---|
2645 | if (!node||node->objectiveValue()>cutoff) |
---|
2646 | continue; |
---|
2647 | #endif |
---|
2648 | doOneNode(this,node,createdNode); |
---|
2649 | #ifdef CBC_DETERMINISTIC_THREAD |
---|
2650 | assert (createdNode); |
---|
2651 | if (!createdNode->active()) { |
---|
2652 | //if (createdNode->nodeInfo()) { |
---|
2653 | //createdNode->nodeInfo()->throwAway(); |
---|
2654 | //} |
---|
2655 | delete createdNode; |
---|
2656 | createdNode=NULL; |
---|
2657 | } else { |
---|
2658 | // Say one more pointing to this |
---|
2659 | node->nodeInfo()->increment() ; |
---|
2660 | tree_->push(createdNode) ; |
---|
2661 | } |
---|
2662 | //if (node) { |
---|
2663 | //assert (node->active()); |
---|
2664 | if (node->active()) { |
---|
2665 | assert (node->nodeInfo()); |
---|
2666 | if (node->nodeInfo()->numberBranchesLeft()) { |
---|
2667 | tree_->push(node) ; |
---|
2668 | } else { |
---|
2669 | node->setActive(false); |
---|
2670 | } |
---|
2671 | } else { |
---|
2672 | if (node->nodeInfo()) { |
---|
2673 | if (!node->nodeInfo()->numberBranchesLeft()) |
---|
2674 | node->nodeInfo()->allBranchesGone(); // can clean up |
---|
2675 | // So will delete underlying stuff |
---|
2676 | node->setActive(true); |
---|
2677 | } |
---|
2678 | delNode[nDeleteNode++]=node; |
---|
2679 | node=NULL; |
---|
2680 | } |
---|
2681 | if (nDeleteNode>=MAX_DEL_NODE) { |
---|
2682 | for (int i=0;i<nDeleteNode;i++) { |
---|
2683 | //printf("trying to del %d %x\n",i,delNode[i]); |
---|
2684 | delete delNode[i]; |
---|
2685 | //printf("done to del %d %x\n",i,delNode[i]); |
---|
2686 | } |
---|
2687 | nDeleteNode=0; |
---|
2688 | } |
---|
2689 | #endif |
---|
2690 | } else { |
---|
2691 | #ifdef CBC_NORMAL_THREAD |
---|
2692 | threadStats[0]++; |
---|
2693 | //need to think |
---|
2694 | int iThread; |
---|
2695 | // Start one off if any available |
---|
2696 | for (iThread=0;iThread<numberThreads_;iThread++) { |
---|
2697 | if (threadInfo[iThread].returnCode==-1) |
---|
2698 | break; |
---|
2699 | } |
---|
2700 | if (iThread<numberThreads_) { |
---|
2701 | threadInfo[iThread].node=node; |
---|
2702 | assert (threadInfo[iThread].returnCode==-1); |
---|
2703 | // say in use |
---|
2704 | threadInfo[iThread].returnCode=0; |
---|
2705 | threadModel[iThread]->moveToModel(this,0); |
---|
2706 | pthread_cond_signal(threadInfo[iThread].condition2); // unlock |
---|
2707 | threadCount[iThread]++; |
---|
2708 | } |
---|
2709 | #ifndef CBC_DETERMINISTIC_THREAD |
---|
2710 | lockThread(); |
---|
2711 | #endif |
---|
2712 | locked=true; |
---|
2713 | // see if any finished |
---|
2714 | for (iThread=0;iThread<numberThreads_;iThread++) { |
---|
2715 | if (threadInfo[iThread].returnCode>0) |
---|
2716 | break; |
---|
2717 | } |
---|
2718 | #ifndef CBC_DETERMINISTIC_THREAD |
---|
2719 | unlockThread(); |
---|
2720 | #endif |
---|
2721 | locked=false; |
---|
2722 | if (iThread<numberThreads_) { |
---|
2723 | threadModel[iThread]->moveToModel(this,1); |
---|
2724 | assert (threadInfo[iThread].returnCode==1); |
---|
2725 | // say available |
---|
2726 | threadInfo[iThread].returnCode=-1; |
---|
2727 | // carry on |
---|
2728 | threadStats[3]++; |
---|
2729 | } else { |
---|
2730 | // Start one off if any available |
---|
2731 | for (iThread=0;iThread<numberThreads_;iThread++) { |
---|
2732 | if (threadInfo[iThread].returnCode==-1) |
---|
2733 | break; |
---|
2734 | } |
---|
2735 | if (iThread<numberThreads_) { |
---|
2736 | #ifndef CBC_DETERMINISTIC_THREAD |
---|
2737 | lockThread(); |
---|
2738 | #endif |
---|
2739 | locked=true; |
---|
2740 | // If any on tree get |
---|
2741 | if (!tree_->empty()) { |
---|
2742 | //node = tree_->bestNode(cutoff) ; |
---|
2743 | //assert (node); |
---|
2744 | threadStats[1]++; |
---|
2745 | continue; // ** get another node |
---|
2746 | } |
---|
2747 | #ifndef CBC_DETERMINISTIC_THREAD |
---|
2748 | unlockThread(); |
---|
2749 | #endif |
---|
2750 | locked=false; |
---|
2751 | } |
---|
2752 | // wait (for debug could sleep and use test) |
---|
2753 | bool finished=false; |
---|
2754 | while (!finished) { |
---|
2755 | pthread_mutex_lock(&condition_mutex); |
---|
2756 | struct timespec absTime; |
---|
2757 | clock_gettime(CLOCK_REALTIME,&absTime); |
---|
2758 | double time = absTime.tv_sec+1.0e-9*absTime.tv_nsec; |
---|
2759 | absTime.tv_nsec += 1000000; // millisecond |
---|
2760 | if (absTime.tv_nsec>=1000000000) { |
---|
2761 | absTime.tv_nsec -= 1000000000; |
---|
2762 | absTime.tv_sec++; |
---|
2763 | } |
---|
2764 | pthread_cond_timedwait(&condition_main,&condition_mutex,&absTime); |
---|
2765 | clock_gettime(CLOCK_REALTIME,&absTime); |
---|
2766 | double time2 = absTime.tv_sec+1.0e-9*absTime.tv_nsec; |
---|
2767 | timeWaiting += time2-time; |
---|
2768 | pthread_mutex_unlock(&condition_mutex); |
---|
2769 | for (iThread=0;iThread<numberThreads_;iThread++) { |
---|
2770 | if (threadInfo[iThread].returnCode>0) { |
---|
2771 | finished=true; |
---|
2772 | break; |
---|
2773 | } else if (threadInfo[iThread].returnCode==0) { |
---|
2774 | pthread_cond_signal(threadInfo[iThread].condition2); // unlock |
---|
2775 | } |
---|
2776 | } |
---|
2777 | } |
---|
2778 | assert (iThread<numberThreads_); |
---|
2779 | threadModel[iThread]->moveToModel(this,1); |
---|
2780 | node = threadInfo[iThread].node; |
---|
2781 | threadInfo[iThread].node=NULL; |
---|
2782 | assert (threadInfo[iThread].returnCode==1); |
---|
2783 | // say available |
---|
2784 | threadInfo[iThread].returnCode=-1; |
---|
2785 | // carry on |
---|
2786 | threadStats[2]++; |
---|
2787 | } |
---|
2788 | #else |
---|
2789 | // Deterministic parallel |
---|
2790 | #ifndef CBC_DETERMINISTIC_THREAD |
---|
2791 | abort(); |
---|
2792 | #endif |
---|
2793 | int saveTreeSize = tree_->size(); |
---|
2794 | goneParallel=true; |
---|
2795 | int nAffected=splitModel(numberThreads_,threadModel,defaultParallelNodes); |
---|
2796 | int saveTreeSize2 = tree_->size(); |
---|
2797 | int iThread; |
---|
2798 | // do all until finished |
---|
2799 | for (iThread=0;iThread<numberThreads_;iThread++) { |
---|
2800 | // obviously tune |
---|
2801 | threadInfo[iThread].nDeleteNode=defaultParallelIterations; |
---|
2802 | } |
---|
2803 | // Save current state |
---|
2804 | int iObject; |
---|
2805 | for (iObject=0;iObject<numberObjects_;iObject++) { |
---|
2806 | saveObjects[iObject]->updateBefore(object_[iObject]); |
---|
2807 | } |
---|
2808 | for (iThread=0;iThread<numberThreads_;iThread++) { |
---|
2809 | threadInfo[iThread].returnCode=0; |
---|
2810 | pthread_cond_signal(threadInfo[iThread].condition2); // unlock |
---|
2811 | #if 0 |
---|
2812 | //wait!! |
---|
2813 | bool finished=false; |
---|
2814 | while (!finished) { |
---|
2815 | pthread_mutex_lock(&condition_mutex); |
---|
2816 | struct timespec absTime; |
---|
2817 | clock_gettime(CLOCK_REALTIME,&absTime); |
---|
2818 | double time = absTime.tv_sec+1.0e-9*absTime.tv_nsec; |
---|
2819 | absTime.tv_nsec += 1000000; // millisecond |
---|
2820 | if (absTime.tv_nsec>=1000000000) { |
---|
2821 | absTime.tv_nsec -= 1000000000; |
---|
2822 | absTime.tv_sec++; |
---|
2823 | } |
---|
2824 | pthread_cond_timedwait(&condition_main,&condition_mutex,&absTime); |
---|
2825 | clock_gettime(CLOCK_REALTIME,&absTime); |
---|
2826 | double time2 = absTime.tv_sec+1.0e-9*absTime.tv_nsec; |
---|
2827 | timeWaiting += time2-time; |
---|
2828 | pthread_mutex_unlock(&condition_mutex); |
---|
2829 | finished=true; |
---|
2830 | if (threadInfo[iThread].returnCode<=0) { |
---|
2831 | finished=false; |
---|
2832 | } |
---|
2833 | } |
---|
2834 | #endif |
---|
2835 | } |
---|
2836 | // wait |
---|
2837 | bool finished=false; |
---|
2838 | while (!finished) { |
---|
2839 | pthread_mutex_lock(&condition_mutex); |
---|
2840 | struct timespec absTime; |
---|
2841 | clock_gettime(CLOCK_REALTIME,&absTime); |
---|
2842 | double time = absTime.tv_sec+1.0e-9*absTime.tv_nsec; |
---|
2843 | absTime.tv_nsec += 1000000; // millisecond |
---|
2844 | if (absTime.tv_nsec>=1000000000) { |
---|
2845 | absTime.tv_nsec -= 1000000000; |
---|
2846 | absTime.tv_sec++; |
---|
2847 | } |
---|
2848 | pthread_cond_timedwait(&condition_main,&condition_mutex,&absTime); |
---|
2849 | clock_gettime(CLOCK_REALTIME,&absTime); |
---|
2850 | double time2 = absTime.tv_sec+1.0e-9*absTime.tv_nsec; |
---|
2851 | timeWaiting += time2-time; |
---|
2852 | pthread_mutex_unlock(&condition_mutex); |
---|
2853 | finished=true; |
---|
2854 | for (iThread=0;iThread<numberThreads_;iThread++) { |
---|
2855 | if (threadInfo[iThread].returnCode<=0) { |
---|
2856 | finished=false; |
---|
2857 | } |
---|
2858 | } |
---|
2859 | } |
---|
2860 | // Unmark marked |
---|
2861 | for (int i=0;i<nAffected;i++) { |
---|
2862 | walkback_[i]->unmark(); |
---|
2863 | } |
---|
2864 | assert (saveTreeSize2 == tree_->size()); |
---|
2865 | if (0) { |
---|
2866 | // put back cut counts |
---|
2867 | for (int i=0;i<nAffected;i++) { |
---|
2868 | walkback_[i]->decrementCuts(1000000); |
---|
2869 | } |
---|
2870 | } |
---|
2871 | #ifndef NDEBUG |
---|
2872 | for (iObject=0;iObject<numberObjects_;iObject++) { |
---|
2873 | CbcSimpleIntegerDynamicPseudoCost * obj = |
---|
2874 | dynamic_cast <CbcSimpleIntegerDynamicPseudoCost *>(object_[iObject]) ; |
---|
2875 | CbcSimpleIntegerDynamicPseudoCost * obj2 = |
---|
2876 | dynamic_cast <CbcSimpleIntegerDynamicPseudoCost *>(saveObjects[iObject]) ; |
---|
2877 | assert (obj->same(obj2)); |
---|
2878 | } |
---|
2879 | #endif |
---|
2880 | int iModel; |
---|
2881 | double scaleFactor=1.0; |
---|
2882 | for (iModel=0;iModel<numberThreads_;iModel++) { |
---|
2883 | //printf("model %d tree size %d\n",iModel,threadModel[iModel]->tree_->size()); |
---|
2884 | if (saveTreeSize>4*numberThreads_*defaultParallelNodes) { |
---|
2885 | if (!threadModel[iModel]->tree_->size()) { |
---|
2886 | scaleFactor *= 1.05; |
---|
2887 | } |
---|
2888 | } |
---|
2889 | threadModel[iModel]->moveToModel(this,11); |
---|
2890 | // Update base model |
---|
2891 | OsiObject ** threadObject = threadModel[iModel]->object_; |
---|
2892 | for (iObject=0;iObject<numberObjects_;iObject++) { |
---|
2893 | object_[iObject]->updateAfter(threadObject[iObject],saveObjects[iObject]); |
---|
2894 | } |
---|
2895 | } |
---|
2896 | if (scaleFactor!=1.0) { |
---|
2897 | int newNumber = (int) (defaultParallelNodes * scaleFactor+0.5001); |
---|
2898 | if (newNumber*2<defaultParallelIterations) { |
---|
2899 | printf("Changing tree size from %d to %d\n", |
---|
2900 | defaultParallelNodes,newNumber); |
---|
2901 | defaultParallelNodes = newNumber; |
---|
2902 | } |
---|
2903 | } |
---|
2904 | printf("Tree sizes %d %d %d - affected %d\n",saveTreeSize,saveTreeSize2,tree_->size(),nAffected); |
---|
2905 | // later remember random may not be thread neutral |
---|
2906 | #endif |
---|
2907 | } |
---|
2908 | //lastDepth=node->depth(); |
---|
2909 | //lastUnsatisfied=node->numberUnsatisfied(); |
---|
2910 | #endif // end of CBC_THREAD |
---|
2911 | } |
---|
2912 | #ifdef CBC_DETERMINISTIC_THREAD |
---|
2913 | if (nDeleteNode) { |
---|
2914 | for (int i=0;i<nDeleteNode;i++) { |
---|
2915 | delete delNode[i]; |
---|
2916 | } |
---|
2917 | nDeleteNode=0; |
---|
2918 | } |
---|
2919 | #endif |
---|
2920 | #ifdef CBC_THREAD |
---|
2921 | if (numberThreads_) { |
---|
2922 | //printf("stats "); |
---|
2923 | //for (unsigned int j=0;j<sizeof(threadStats)/sizeof(int);j++) |
---|
2924 | //printf("%d ",threadStats[j]); |
---|
2925 | //printf("\n"); |
---|
2926 | int i; |
---|
2927 | // Seems to be bug in CoinCpu on Linux - does threads as well despite documentation |
---|
2928 | double time=0.0; |
---|
2929 | for (i=0;i<numberThreads_;i++) |
---|
2930 | time += threadInfo[i].timeInThread; |
---|
2931 | bool goodTimer = time<(getCurrentSeconds()); |
---|
2932 | //bool stopped = (!(numberNodes_ < intParam_[CbcMaxNumNode] && |
---|
2933 | // numberSolutions_ < intParam_[CbcMaxNumSol] && |
---|
2934 | // totalTime < dblParam_[CbcMaximumSeconds] && |
---|
2935 | // !stoppedOnGap_&&!eventHappened_)); |
---|
2936 | for (i=0;i<numberThreads_;i++) { |
---|
2937 | while (threadInfo[i].returnCode==0) { |
---|
2938 | pthread_cond_signal(threadInfo[i].condition2); // unlock |
---|
2939 | pthread_mutex_lock(&condition_mutex); |
---|
2940 | struct timespec absTime; |
---|
2941 | clock_gettime(CLOCK_REALTIME,&absTime); |
---|
2942 | absTime.tv_nsec += 1000000; // millisecond |
---|
2943 | if (absTime.tv_nsec>=1000000000) { |
---|
2944 | absTime.tv_nsec -= 1000000000; |
---|
2945 | absTime.tv_sec++; |
---|
2946 | } |
---|
2947 | pthread_cond_timedwait(&condition_main,&condition_mutex,&absTime); |
---|
2948 | clock_gettime(CLOCK_REALTIME,&absTime); |
---|
2949 | pthread_mutex_unlock(&condition_mutex); |
---|
2950 | } |
---|
2951 | pthread_cond_signal(threadInfo[i].condition2); // unlock |
---|
2952 | pthread_mutex_lock(&condition_mutex); // not sure necessary but have had one hang on interrupt |
---|
2953 | threadModel[i]->numberThreads_=0; // say exit |
---|
2954 | #ifdef CBC_DETERMINISTIC_THREAD |
---|
2955 | delete [] threadInfo[i].delNode; |
---|
2956 | #endif |
---|
2957 | threadInfo[i].returnCode=0; |
---|
2958 | pthread_mutex_unlock(&condition_mutex); |
---|
2959 | pthread_cond_signal(threadInfo[i].condition2); // unlock |
---|
2960 | //if (!stopped) |
---|
2961 | //pthread_join(threadId[i],NULL); |
---|
2962 | int returnCode; |
---|
2963 | returnCode=pthread_join(threadId[i].thr,NULL); |
---|
2964 | assert (!returnCode); |
---|
2965 | threadId[i].status = 0; |
---|
2966 | //else |
---|
2967 | //pthread_kill(threadId[i]); // kill rather than try and synchronize |
---|
2968 | threadModel[i]->moveToModel(this,2); |
---|
2969 | pthread_mutex_destroy (threadInfo[i].mutex2); |
---|
2970 | pthread_cond_destroy (threadInfo[i].condition2); |
---|
2971 | assert (threadInfo[i].numberTimesLocked==threadInfo[i].numberTimesUnlocked); |
---|
2972 | handler_->message(CBC_THREAD_STATS,messages_) |
---|
2973 | <<"Thread"; |
---|
2974 | handler_->printing(true) |
---|
2975 | <<i<<threadCount[i]<<threadInfo[i].timeWaitingToStart; |
---|
2976 | handler_->printing(goodTimer)<<threadInfo[i].timeInThread; |
---|
2977 | handler_->printing(false)<<0.0; |
---|
2978 | handler_->printing(true)<<threadInfo[i].numberTimesLocked |
---|
2979 | <<threadInfo[i].timeLocked<<threadInfo[i].timeWaitingToLock |
---|
2980 | <<CoinMessageEol; |
---|
2981 | } |
---|
2982 | assert (threadInfo[numberThreads_].numberTimesLocked==threadInfo[numberThreads_].numberTimesUnlocked); |
---|
2983 | handler_->message(CBC_THREAD_STATS,messages_) |
---|
2984 | <<"Main thread"; |
---|
2985 | handler_->printing(false)<<0<<0<<0.0; |
---|
2986 | handler_->printing(false)<<0.0; |
---|
2987 | handler_->printing(true)<<timeWaiting; |
---|
2988 | handler_->printing(true)<<threadInfo[numberThreads_].numberTimesLocked |
---|
2989 | <<threadInfo[numberThreads_].timeLocked<<threadInfo[numberThreads_].timeWaitingToLock |
---|
2990 | <<CoinMessageEol; |
---|
2991 | pthread_mutex_destroy (&mutex); |
---|
2992 | pthread_cond_destroy (&condition_main); |
---|
2993 | pthread_mutex_destroy (&condition_mutex); |
---|
2994 | // delete models (here in case some point to others) |
---|
2995 | for (i=0;i<numberThreads_;i++) { |
---|
2996 | delete threadModel[i]; |
---|
2997 | } |
---|
2998 | delete [] mutex2; |
---|
2999 | delete [] condition2; |
---|
3000 | delete [] threadId; |
---|
3001 | delete [] threadInfo; |
---|
3002 | delete [] threadModel; |
---|
3003 | delete [] threadCount; |
---|
3004 | mutex_=NULL; |
---|
3005 | // adjust time to allow for children on some systems |
---|
3006 | dblParam_[CbcStartSeconds] -= CoinCpuTimeJustChildren(); |
---|
3007 | } |
---|
3008 | #endif |
---|
3009 | /* |
---|
3010 | End of the non-abort actions. The next block of code is executed if we've |
---|
3011 | aborted because we hit one of the limits. Clean up by deleting the live set |
---|
3012 | and break out of the node processing loop. Note that on an abort, node may |
---|
3013 | have been pushed back onto the tree for further processing, in which case |
---|
3014 | it'll be deleted in cleanTree. We need to check. |
---|
3015 | */ |
---|
3016 | if (!(numberNodes_ < intParam_[CbcMaxNumNode] && |
---|
3017 | numberSolutions_ < intParam_[CbcMaxNumSol] && |
---|
3018 | totalTime < dblParam_[CbcMaximumSeconds] && |
---|
3019 | !stoppedOnGap_&&!eventHappened_)) { |
---|
3020 | if (tree_->size()) |
---|
3021 | tree_->cleanTree(this,-COIN_DBL_MAX,bestPossibleObjective_) ; |
---|
3022 | delete nextRowCut_; |
---|
3023 | if (stoppedOnGap_) |
---|
3024 | { messageHandler()->message(CBC_GAP,messages()) |
---|
3025 | << bestObjective_-bestPossibleObjective_ |
---|
3026 | << dblParam_[CbcAllowableGap] |
---|
3027 | << dblParam_[CbcAllowableFractionGap]*100.0 |
---|
3028 | << CoinMessageEol ; |
---|
3029 | secondaryStatus_ = 2; |
---|
3030 | status_ = 0 ; } |
---|
3031 | else |
---|
3032 | if (isNodeLimitReached()) |
---|
3033 | { handler_->message(CBC_MAXNODES,messages_) << CoinMessageEol ; |
---|
3034 | secondaryStatus_ = 3; |
---|
3035 | status_ = 1 ; } |
---|
3036 | else |
---|
3037 | if (totalTime >= dblParam_[CbcMaximumSeconds]) |
---|
3038 | { handler_->message(CBC_MAXTIME,messages_) << CoinMessageEol ; |
---|
3039 | secondaryStatus_ = 4; |
---|
3040 | status_ = 1 ; } |
---|
3041 | else |
---|
3042 | if (eventHappened_) |
---|
3043 | { handler_->message(CBC_EVENT,messages_) << CoinMessageEol ; |
---|
3044 | secondaryStatus_ = 5; |
---|
3045 | status_ = 5 ; } |
---|
3046 | else |
---|
3047 | { handler_->message(CBC_MAXSOLS,messages_) << CoinMessageEol ; |
---|
3048 | secondaryStatus_ = 6; |
---|
3049 | status_ = 1 ; } |
---|
3050 | } |
---|
3051 | /* |
---|
3052 | That's it, we've exhausted the search tree, or broken out of the loop because |
---|
3053 | we hit some limit on evaluation. |
---|
3054 | |
---|
3055 | We may have got an intelligent tree so give it one more chance |
---|
3056 | */ |
---|
3057 | // Tell solver we are not in Branch and Cut |
---|
3058 | solver_->setHintParam(OsiDoInBranchAndCut,false,OsiHintDo,NULL) ; |
---|
3059 | tree_->endSearch(); |
---|
3060 | // If we did any sub trees - did we give up on any? |
---|
3061 | if ( numberStoppedSubTrees_) |
---|
3062 | status_=1; |
---|
3063 | if (!status_) { |
---|
3064 | // Set best possible unless stopped on gap |
---|
3065 | if(secondaryStatus_ != 2) |
---|
3066 | bestPossibleObjective_=bestObjective_; |
---|
3067 | handler_->message(CBC_END_GOOD,messages_) |
---|
3068 | << bestObjective_ << numberIterations_ << numberNodes_<<getCurrentSeconds() |
---|
3069 | << CoinMessageEol ; |
---|
3070 | } else { |
---|
3071 | handler_->message(CBC_END,messages_) |
---|
3072 | << bestObjective_ <<bestPossibleObjective_ |
---|
3073 | << numberIterations_ << numberNodes_<<getCurrentSeconds() |
---|
3074 | << CoinMessageEol ; |
---|
3075 | } |
---|
3076 | if (numberStrongIterations_) |
---|
3077 | handler_->message(CBC_STRONG_STATS,messages_) |
---|
3078 | << strongInfo_[0] << numberStrongIterations_ << strongInfo_[2] |
---|
3079 | << strongInfo_[1] << CoinMessageEol ; |
---|
3080 | handler_->message(CBC_OTHER_STATS,messages_) |
---|
3081 | << maximumDepthActual_ |
---|
3082 | << numberDJFixed_ << CoinMessageEol ; |
---|
3083 | if (doStatistics==100) { |
---|
3084 | for (int i=0;i<numberObjects_;i++) { |
---|
3085 | CbcSimpleIntegerDynamicPseudoCost * obj = |
---|
3086 | dynamic_cast <CbcSimpleIntegerDynamicPseudoCost *>(object_[i]) ; |
---|
3087 | if (obj) |
---|
3088 | obj->print(); |
---|
3089 | } |
---|
3090 | } |
---|
3091 | if (statistics_) { |
---|
3092 | // report in some way |
---|
3093 | int * lookup = new int[numberObjects_]; |
---|
3094 | int i; |
---|
3095 | for (i=0;i<numberObjects_;i++) |
---|
3096 | lookup[i]=-1; |
---|
3097 | bool goodIds=true; |
---|
3098 | for (i=0;i<numberObjects_;i++) { |
---|
3099 | int iColumn = object_[i]->columnNumber(); |
---|
3100 | if(iColumn>=0&&iColumn<numberColumns) { |
---|
3101 | if (lookup[i]==-1) { |
---|
3102 | lookup[i]=iColumn; |
---|
3103 | } else { |
---|
3104 | goodIds=false; |
---|
3105 | break; |
---|
3106 | } |
---|
3107 | } else { |
---|
3108 | goodIds=false; |
---|
3109 | break; |
---|
3110 | } |
---|
3111 | } |
---|
3112 | if (!goodIds) { |
---|
3113 | delete [] lookup; |
---|
3114 | lookup=NULL; |
---|
3115 | } |
---|
3116 | if (doStatistics==3) { |
---|
3117 | printf(" node parent depth column value obj inf\n"); |
---|
3118 | for ( i=0;i<numberNodes2_;i++) { |
---|
3119 | statistics_[i]->print(lookup); |
---|
3120 | } |
---|
3121 | } |
---|
3122 | if (doStatistics>1) { |
---|
3123 | // Find last solution |
---|
3124 | int k; |
---|
3125 | for (k=numberNodes2_-1;k>=0;k--) { |
---|
3126 | if (statistics_[k]->endingObjective()!=COIN_DBL_MAX&& |
---|
3127 | !statistics_[k]->endingInfeasibility()) |
---|
3128 | break; |
---|
3129 | } |
---|
3130 | if (k>=0) { |
---|
3131 | int depth=statistics_[k]->depth(); |
---|
3132 | int * which = new int[depth+1]; |
---|
3133 | for (i=depth;i>=0;i--) { |
---|
3134 | which[i]=k; |
---|
3135 | k=statistics_[k]->parentNode(); |
---|
3136 | } |
---|
3137 | printf(" node parent depth column value obj inf\n"); |
---|
3138 | for (i=0;i<=depth;i++) { |
---|
3139 | statistics_[which[i]]->print(lookup); |
---|
3140 | } |
---|
3141 | delete [] which; |
---|
3142 | } |
---|
3143 | } |
---|
3144 | // now summary |
---|
3145 | int maxDepth=0; |
---|
3146 | double averageSolutionDepth=0.0; |
---|
3147 | int numberSolutions=0; |
---|
3148 | double averageCutoffDepth=0.0; |
---|
3149 | double averageSolvedDepth=0.0; |
---|
3150 | int numberCutoff=0; |
---|
3151 | int numberDown=0; |
---|
3152 | int numberFirstDown=0; |
---|
3153 | double averageInfDown=0.0; |
---|
3154 | double averageObjDown=0.0; |
---|
3155 | int numberCutoffDown=0; |
---|
3156 | int numberUp=0; |
---|
3157 | int numberFirstUp=0; |
---|
3158 | double averageInfUp=0.0; |
---|
3159 | double averageObjUp=0.0; |
---|
3160 | int numberCutoffUp=0; |
---|
3161 | double averageNumberIterations1=0.0; |
---|
3162 | double averageValue=0.0; |
---|
3163 | for ( i=0;i<numberNodes2_;i++) { |
---|
3164 | int depth = statistics_[i]->depth(); |
---|
3165 | int way = statistics_[i]->way(); |
---|
3166 | double value = statistics_[i]->value(); |
---|
3167 | double startingObjective = statistics_[i]->startingObjective(); |
---|
3168 | int startingInfeasibility = statistics_[i]->startingInfeasibility(); |
---|
3169 | double endingObjective = statistics_[i]->endingObjective(); |
---|
3170 | int endingInfeasibility = statistics_[i]->endingInfeasibility(); |
---|
3171 | maxDepth = CoinMax(depth,maxDepth); |
---|
3172 | // Only for completed |
---|
3173 | averageNumberIterations1 += statistics_[i]->numberIterations(); |
---|
3174 | averageValue += value; |
---|
3175 | if (endingObjective!=COIN_DBL_MAX&&!endingInfeasibility) { |
---|
3176 | numberSolutions++; |
---|
3177 | averageSolutionDepth += depth; |
---|
3178 | } |
---|
3179 | if (endingObjective==COIN_DBL_MAX) { |
---|
3180 | numberCutoff++; |
---|
3181 | averageCutoffDepth += depth; |
---|
3182 | if (way<0) { |
---|
3183 | numberDown++; |
---|
3184 | numberCutoffDown++; |
---|
3185 | if (way==-1) |
---|
3186 | numberFirstDown++; |
---|
3187 | } else { |
---|
3188 | numberUp++; |
---|
3189 | numberCutoffUp++; |
---|
3190 | if (way==1) |
---|
3191 | numberFirstUp++; |
---|
3192 | } |
---|
3193 | } else { |
---|
3194 | averageSolvedDepth += depth; |
---|
3195 | if (way<0) { |
---|
3196 | numberDown++; |
---|
3197 | averageInfDown += startingInfeasibility-endingInfeasibility; |
---|
3198 | averageObjDown += endingObjective-startingObjective; |
---|
3199 | if (way==-1) |
---|
3200 | numberFirstDown++; |
---|
3201 | } else { |
---|
3202 | numberUp++; |
---|
3203 | averageInfUp += startingInfeasibility-endingInfeasibility; |
---|
3204 | averageObjUp += endingObjective-startingObjective; |
---|
3205 | if (way==1) |
---|
3206 | numberFirstUp++; |
---|
3207 | } |
---|
3208 | } |
---|
3209 | } |
---|
3210 | // Now print |
---|
3211 | if (numberSolutions) |
---|
3212 | averageSolutionDepth /= (double) numberSolutions; |
---|
3213 | int numberSolved = numberNodes2_-numberCutoff; |
---|
3214 | double averageNumberIterations2=numberIterations_-averageNumberIterations1 |
---|
3215 | -numberIterationsAtContinuous; |
---|
3216 | if(numberCutoff) { |
---|
3217 | averageCutoffDepth /= (double) numberCutoff; |
---|
3218 | averageNumberIterations2 /= (double) numberCutoff; |
---|
3219 | } |
---|
3220 | if (numberNodes2_) |
---|
3221 | averageValue /= (double) numberNodes2_; |
---|
3222 | if (numberSolved) { |
---|
3223 | averageNumberIterations1 /= (double) numberSolved; |
---|
3224 | averageSolvedDepth /= (double) numberSolved; |
---|
3225 | } |
---|
3226 | printf("%d solution(s) were found (by branching) at an average depth of %g\n", |
---|
3227 | numberSolutions,averageSolutionDepth); |
---|
3228 | printf("average value of variable being branched on was %g\n", |
---|
3229 | averageValue); |
---|
3230 | printf("%d nodes were cutoff at an average depth of %g with iteration count of %g\n", |
---|
3231 | numberCutoff,averageCutoffDepth,averageNumberIterations2); |
---|
3232 | printf("%d nodes were solved at an average depth of %g with iteration count of %g\n", |
---|
3233 | numberSolved,averageSolvedDepth,averageNumberIterations1); |
---|
3234 | if (numberDown) { |
---|
3235 | averageInfDown /= (double) numberDown; |
---|
3236 | averageObjDown /= (double) numberDown; |
---|
3237 | } |
---|
3238 | printf("Down %d nodes (%d first, %d second) - %d cutoff, rest decrease numinf %g increase obj %g\n", |
---|
3239 | numberDown,numberFirstDown,numberDown-numberFirstDown,numberCutoffDown, |
---|
3240 | averageInfDown,averageObjDown); |
---|
3241 | if (numberUp) { |
---|
3242 | averageInfUp /= (double) numberUp; |
---|
3243 | averageObjUp /= (double) numberUp; |
---|
3244 | } |
---|
3245 | printf("Up %d nodes (%d first, %d second) - %d cutoff, rest decrease numinf %g increase obj %g\n", |
---|
3246 | numberUp,numberFirstUp,numberUp-numberFirstUp,numberCutoffUp, |
---|
3247 | averageInfUp,averageObjUp); |
---|
3248 | for ( i=0;i<numberNodes2_;i++) |
---|
3249 | delete statistics_[i]; |
---|
3250 | delete [] statistics_; |
---|
3251 | statistics_=NULL; |
---|
3252 | maximumStatistics_=0; |
---|
3253 | delete [] lookup; |
---|
3254 | } |
---|
3255 | /* |
---|
3256 | If we think we have a solution, restore and confirm it with a call to |
---|
3257 | setBestSolution(). We need to reset the cutoff value so as not to fathom |
---|
3258 | the solution on bounds. Note that calling setBestSolution( ..., true) |
---|
3259 | leaves the continuousSolver_ bounds vectors fixed at the solution value. |
---|
3260 | |
---|
3261 | Running resolve() here is a failsafe --- setBestSolution has already |
---|
3262 | reoptimised using the continuousSolver_. If for some reason we fail to |
---|
3263 | prove optimality, run the problem again after instructing the solver to |
---|
3264 | tell us more. |
---|
3265 | |
---|
3266 | If all looks good, replace solver_ with continuousSolver_, so that the |
---|
3267 | outside world will be able to obtain information about the solution using |
---|
3268 | public methods. |
---|
3269 | */ |
---|
3270 | if (bestSolution_&&(solverCharacteristics_->solverType()<2||solverCharacteristics_->solverType()==4)) |
---|
3271 | { setCutoff(1.0e50) ; // As best solution should be worse than cutoff |
---|
3272 | phase_=5; |
---|
3273 | double increment = getDblParam(CbcModel::CbcCutoffIncrement) ; |
---|
3274 | if ((specialOptions_&4)==0) |
---|
3275 | bestObjective_ += 100.0*increment+1.0e-3; // only set if we are going to solve |
---|
3276 | setBestSolution(CBC_END_SOLUTION,bestObjective_,bestSolution_,true) ; |
---|
3277 | continuousSolver_->resolve() ; |
---|
3278 | if (!continuousSolver_->isProvenOptimal()) |
---|
3279 | { continuousSolver_->messageHandler()->setLogLevel(2) ; |
---|
3280 | continuousSolver_->initialSolve() ; } |
---|
3281 | delete solver_ ; |
---|
3282 | // above deletes solverCharacteristics_ |
---|
3283 | solverCharacteristics_ = NULL; |
---|
3284 | solver_ = continuousSolver_ ; |
---|
3285 | setPointers(solver_); |
---|
3286 | continuousSolver_ = NULL ; } |
---|
3287 | /* |
---|
3288 | Clean up dangling objects. continuousSolver_ may already be toast. |
---|
3289 | */ |
---|
3290 | delete lastws ; |
---|
3291 | if (saveObjects) { |
---|
3292 | for (int i=0;i<numberObjects_;i++) |
---|
3293 | delete saveObjects[i]; |
---|
3294 | delete [] saveObjects; |
---|
3295 | } |
---|
3296 | delete [] whichGenerator_ ; |
---|
3297 | whichGenerator_=NULL; |
---|
3298 | delete [] lowerBefore ; |
---|
3299 | delete [] upperBefore ; |
---|
3300 | delete [] walkback_ ; |
---|
3301 | walkback_ = NULL ; |
---|
3302 | delete [] addedCuts_ ; |
---|
3303 | addedCuts_ = NULL ; |
---|
3304 | //delete persistentInfo; |
---|
3305 | // Get rid of characteristics |
---|
3306 | solverCharacteristics_=NULL; |
---|
3307 | if (continuousSolver_) |
---|
3308 | { delete continuousSolver_ ; |
---|
3309 | continuousSolver_ = NULL ; } |
---|
3310 | /* |
---|
3311 | Destroy global cuts by replacing with an empty OsiCuts object. |
---|
3312 | */ |
---|
3313 | globalCuts_= OsiCuts() ; |
---|
3314 | if (!bestSolution_) { |
---|
3315 | // make sure lp solver is infeasible |
---|
3316 | int numberColumns = solver_->getNumCols(); |
---|
3317 | const double * columnLower = solver_->getColLower(); |
---|
3318 | int iColumn; |
---|
3319 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
---|
3320 | if (solver_->isInteger(iColumn)) |
---|
3321 | solver_->setColUpper(iColumn,columnLower[iColumn]); |
---|
3322 | } |
---|
3323 | solver_->initialSolve(); |
---|
3324 | } |
---|
3325 | if (strategy_&&strategy_->preProcessState()>0) { |
---|
3326 | // undo preprocessing |
---|
3327 | CglPreProcess * process = strategy_->process(); |
---|
3328 | assert (process); |
---|
3329 | int n = originalSolver->getNumCols(); |
---|
3330 | if (bestSolution_) { |
---|
3331 | delete [] bestSolution_; |
---|
3332 | bestSolution_ = new double [n]; |
---|
3333 | process->postProcess(*solver_); |
---|
3334 | } |
---|
3335 | strategy_->deletePreProcess(); |
---|
3336 | // Solution now back in originalSolver |
---|
3337 | delete solver_; |
---|
3338 | solver_=originalSolver; |
---|
3339 | if (bestSolution_) |
---|
3340 | memcpy(bestSolution_,solver_->getColSolution(),n*sizeof(double)); |
---|
3341 | // put back original objects if there were any |
---|
3342 | if (originalObject) { |
---|
3343 | int iColumn; |
---|
3344 | assert (ownObjects_); |
---|
3345 | for (iColumn=0;iColumn<numberObjects_;iColumn++) |
---|
3346 | delete object_[iColumn]; |
---|
3347 | delete [] object_; |
---|
3348 | numberObjects_ = numberOriginalObjects; |
---|
3349 | object_=originalObject; |
---|
3350 | delete [] integerVariable_; |
---|
3351 | numberIntegers_=0; |
---|
3352 | for (iColumn=0;iColumn<n;iColumn++) { |
---|
3353 | if (solver_->isInteger(iColumn)) |
---|
3354 | numberIntegers_++; |
---|
3355 | } |
---|
3356 | integerVariable_ = new int[numberIntegers_]; |
---|
3357 | numberIntegers_=0; |
---|
3358 | for (iColumn=0;iColumn<n;iColumn++) { |
---|
3359 | if (solver_->isInteger(iColumn)) |
---|
3360 | integerVariable_[numberIntegers_++]=iColumn; |
---|
3361 | } |
---|
3362 | } |
---|
3363 | } |
---|
3364 | #ifdef CLP_QUICK_OPTIONS |
---|
3365 | { |
---|
3366 | OsiClpSolverInterface * clpSolver |
---|
3367 | = dynamic_cast<OsiClpSolverInterface *> (solver_); |
---|
3368 | if (clpSolver) { |
---|
3369 | // Try and re-use regions |
---|
3370 | ClpSimplex * simplex = clpSolver->getModelPtr(); |
---|
3371 | simplex->setPersistenceFlag(0); |
---|
3372 | clpSolver->deleteScaleFactors(); |
---|
3373 | clpSolver->setSpecialOptions(clpSolver->specialOptions()&(~131072)); |
---|
3374 | simplex->setSpecialOptions(simplex->specialOptions()&(~131072)); |
---|
3375 | simplex->setAlphaAccuracy(-1.0); |
---|
3376 | //clpSolver->setSpecialOptions((clpSolver->specialOptions()&~128)|65536); |
---|
3377 | } |
---|
3378 | } |
---|
3379 | #endif |
---|
3380 | return ; |
---|
3381 | } |
---|
3382 | |
---|
3383 | |
---|
3384 | // Solve the initial LP relaxation |
---|
3385 | void |
---|
3386 | CbcModel::initialSolve() |
---|
3387 | { |
---|
3388 | assert (solver_); |
---|
3389 | assert (!solverCharacteristics_); |
---|
3390 | OsiBabSolver * solverCharacteristics = dynamic_cast<OsiBabSolver *> (solver_->getAuxiliaryInfo()); |
---|
3391 | if (solverCharacteristics) { |
---|
3392 | solverCharacteristics_ = solverCharacteristics; |
---|
3393 | } else { |
---|
3394 | // replace in solver |
---|
3395 | OsiBabSolver defaultC; |
---|
3396 | solver_->setAuxiliaryInfo(&defaultC); |
---|
3397 | solverCharacteristics_ = dynamic_cast<OsiBabSolver *> (solver_->getAuxiliaryInfo()); |
---|
3398 | } |
---|
3399 | solverCharacteristics_->setSolver(solver_); |
---|
3400 | solver_->setHintParam(OsiDoInBranchAndCut,true,OsiHintDo,NULL) ; |
---|
3401 | solver_->initialSolve(); |
---|
3402 | solver_->setHintParam(OsiDoInBranchAndCut,false,OsiHintDo,NULL) ; |
---|
3403 | // But set up so Jon Lee will be happy |
---|
3404 | status_=-1; |
---|
3405 | secondaryStatus_ = -1; |
---|
3406 | originalContinuousObjective_ = solver_->getObjValue()*solver_->getObjSense(); |
---|
3407 | delete [] continuousSolution_; |
---|
3408 | continuousSolution_ = CoinCopyOfArray(solver_->getColSolution(), |
---|
3409 | solver_->getNumCols()); |
---|
3410 | setPointers(solver_); |
---|
3411 | solverCharacteristics_ = NULL; |
---|
3412 | } |
---|
3413 | |
---|
3414 | /*! \brief Get an empty basis object |
---|
3415 | |
---|
3416 | Return an empty CoinWarmStartBasis object with the requested capacity, |
---|
3417 | appropriate for the current solver. The object is cloned from the object |
---|
3418 | cached as emptyWarmStart_. If there is no cached object, the routine |
---|
3419 | queries the solver for a warm start object, empties it, and caches the |
---|
3420 | result. |
---|
3421 | */ |
---|
3422 | |
---|
3423 | CoinWarmStartBasis *CbcModel::getEmptyBasis (int ns, int na) const |
---|
3424 | |
---|
3425 | { CoinWarmStartBasis *emptyBasis ; |
---|
3426 | /* |
---|
3427 | Acquire an empty basis object, if we don't yet have one. |
---|
3428 | */ |
---|
3429 | if (emptyWarmStart_ == 0) |
---|
3430 | { if (solver_ == 0) |
---|
3431 | { throw CoinError("Cannot construct basis without solver!", |
---|
3432 | "getEmptyBasis","CbcModel") ; } |
---|
3433 | emptyBasis = |
---|
3434 | dynamic_cast<CoinWarmStartBasis *>(solver_->getEmptyWarmStart()) ; |
---|
3435 | if (emptyBasis == 0) |
---|
3436 | { throw CoinError( |
---|
3437 | "Solver does not appear to use a basis-oriented warm start.", |
---|
3438 | "getEmptyBasis","CbcModel") ; } |
---|
3439 | emptyBasis->setSize(0,0) ; |
---|
3440 | emptyWarmStart_ = dynamic_cast<CoinWarmStart *>(emptyBasis) ; } |
---|
3441 | /* |
---|
3442 | Clone the empty basis object, resize it as requested, and return. |
---|
3443 | */ |
---|
3444 | emptyBasis = dynamic_cast<CoinWarmStartBasis *>(emptyWarmStart_->clone()) ; |
---|
3445 | assert(emptyBasis) ; |
---|
3446 | if (ns != 0 || na != 0) emptyBasis->setSize(ns,na) ; |
---|
3447 | |
---|
3448 | return (emptyBasis) ; } |
---|
3449 | |
---|
3450 | |
---|
3451 | /** Default Constructor |
---|
3452 | |
---|
3453 | Creates an empty model without an associated solver. |
---|
3454 | */ |
---|
3455 | CbcModel::CbcModel() |
---|
3456 | |
---|
3457 | : |
---|
3458 | solver_(NULL), |
---|
3459 | ownership_(0x80000000), |
---|
3460 | continuousSolver_(NULL), |
---|
3461 | referenceSolver_(NULL), |
---|
3462 | defaultHandler_(true), |
---|
3463 | emptyWarmStart_(NULL), |
---|
3464 | bestObjective_(COIN_DBL_MAX), |
---|
3465 | bestPossibleObjective_(COIN_DBL_MAX), |
---|
3466 | sumChangeObjective1_(0.0), |
---|
3467 | sumChangeObjective2_(0.0), |
---|
3468 | bestSolution_(NULL), |
---|
3469 | currentSolution_(NULL), |
---|
3470 | testSolution_(NULL), |
---|
3471 | minimumDrop_(1.0e-4), |
---|
3472 | numberSolutions_(0), |
---|
3473 | stateOfSearch_(0), |
---|
3474 | hotstartSolution_(NULL), |
---|
3475 | hotstartPriorities_(NULL), |
---|
3476 | numberHeuristicSolutions_(0), |
---|
3477 | numberNodes_(0), |
---|
3478 | numberNodes2_(0), |
---|
3479 | numberIterations_(0), |
---|
3480 | status_(-1), |
---|
3481 | secondaryStatus_(-1), |
---|
3482 | numberIntegers_(0), |
---|
3483 | numberRowsAtContinuous_(0), |
---|
3484 | maximumNumberCuts_(0), |
---|
3485 | phase_(0), |
---|
3486 | currentNumberCuts_(0), |
---|
3487 | maximumDepth_(0), |
---|
3488 | walkback_(NULL), |
---|
3489 | addedCuts_(NULL), |
---|
3490 | nextRowCut_(NULL), |
---|
3491 | currentNode_(NULL), |
---|
3492 | integerVariable_(NULL), |
---|
3493 | integerInfo_(NULL), |
---|
3494 | continuousSolution_(NULL), |
---|
3495 | usedInSolution_(NULL), |
---|
3496 | specialOptions_(0), |
---|
3497 | subTreeModel_(NULL), |
---|
3498 | numberStoppedSubTrees_(0), |
---|
3499 | mutex_(NULL), |
---|
3500 | presolve_(0), |
---|
3501 | numberStrong_(5), |
---|
3502 | numberBeforeTrust_(10), |
---|
3503 | numberPenalties_(20), |
---|
3504 | stopNumberIterations_(-1), |
---|
3505 | penaltyScaleFactor_(3.0), |
---|
3506 | numberAnalyzeIterations_(0), |
---|
3507 | analyzeResults_(NULL), |
---|
3508 | numberInfeasibleNodes_(0), |
---|
3509 | problemType_(0), |
---|
3510 | printFrequency_(0), |
---|
3511 | numberCutGenerators_(0), |
---|
3512 | generator_(NULL), |
---|
3513 | virginGenerator_(NULL), |
---|
3514 | numberHeuristics_(0), |
---|
3515 | heuristic_(NULL), |
---|
3516 | lastHeuristic_(NULL), |
---|
3517 | eventHandler_(0), |
---|
3518 | numberObjects_(0), |
---|
3519 | object_(NULL), |
---|
3520 | ownObjects_(true), |
---|
3521 | originalColumns_(NULL), |
---|
3522 | howOftenGlobalScan_(1), |
---|
3523 | numberGlobalViolations_(0), |
---|
3524 | continuousObjective_(COIN_DBL_MAX), |
---|
3525 | originalContinuousObjective_(COIN_DBL_MAX), |
---|
3526 | continuousInfeasibilities_(COIN_INT_MAX), |
---|
3527 | maximumCutPassesAtRoot_(20), |
---|
3528 | maximumCutPasses_(10), |
---|
3529 | preferredWay_(0), |
---|
3530 | currentPassNumber_(0), |
---|
3531 | maximumWhich_(1000), |
---|
3532 | maximumRows_(0), |
---|
3533 | whichGenerator_(NULL), |
---|
3534 | maximumStatistics_(0), |
---|
3535 | statistics_(NULL), |
---|
3536 | maximumDepthActual_(0), |
---|
3537 | numberDJFixed_(0.0), |
---|
3538 | probingInfo_(NULL), |
---|
3539 | numberFixedAtRoot_(0), |
---|
3540 | numberFixedNow_(0), |
---|
3541 | stoppedOnGap_(false), |
---|
3542 | eventHappened_(false), |
---|
3543 | numberLongStrong_(0), |
---|
3544 | numberOldActiveCuts_(0), |
---|
3545 | numberNewCuts_(0), |
---|
3546 | sizeMiniTree_(0), |
---|
3547 | searchStrategy_(-1), |
---|
3548 | numberStrongIterations_(0), |
---|
3549 | resolveAfterTakeOffCuts_(true), |
---|
3550 | #if NEW_UPDATE_OBJECT>1 |
---|
3551 | numberUpdateItems_(0), |
---|
3552 | maximumNumberUpdateItems_(0), |
---|
3553 | updateItems_(NULL), |
---|
3554 | #endif |
---|
3555 | numberThreads_(0), |
---|
3556 | threadMode_(0) |
---|
3557 | { |
---|
3558 | memset(intParam_,0,sizeof(intParam_)); |
---|
3559 | intParam_[CbcMaxNumNode] = 2147483647; |
---|
3560 | intParam_[CbcMaxNumSol] = 9999999; |
---|
3561 | intParam_[CbcFathomDiscipline] = 0; |
---|
3562 | |
---|
3563 | dblParam_[CbcIntegerTolerance] = 1e-6; |
---|
3564 | dblParam_[CbcInfeasibilityWeight] = 0.0; |
---|
3565 | dblParam_[CbcCutoffIncrement] = 1e-5; |
---|
3566 | dblParam_[CbcAllowableGap] = 1.0e-10; |
---|
3567 | dblParam_[CbcAllowableFractionGap] = 0.0; |
---|
3568 | dblParam_[CbcMaximumSeconds] = 1.0e100; |
---|
3569 | dblParam_[CbcCurrentCutoff] = 1.0e100; |
---|
3570 | dblParam_[CbcOptimizationDirection] = 1.0; |
---|
3571 | dblParam_[CbcCurrentObjectiveValue] = 1.0e100; |
---|
3572 | dblParam_[CbcCurrentMinimizationObjectiveValue] = 1.0e100; |
---|
3573 | dblParam_[CbcStartSeconds] = 0.0; |
---|
3574 | strongInfo_[0]=0; |
---|
3575 | strongInfo_[1]=0; |
---|
3576 | strongInfo_[2]=0; |
---|
3577 | solverCharacteristics_ = NULL; |
---|
3578 | nodeCompare_=new CbcCompareDefault();; |
---|
3579 | problemFeasibility_=new CbcFeasibilityBase(); |
---|
3580 | tree_= new CbcTree(); |
---|
3581 | branchingMethod_=NULL; |
---|
3582 | cutModifier_=NULL; |
---|
3583 | strategy_=NULL; |
---|
3584 | parentModel_=NULL; |
---|
3585 | cbcColLower_ = NULL; |
---|
3586 | cbcColUpper_ = NULL; |
---|
3587 | cbcRowLower_ = NULL; |
---|
3588 | cbcRowUpper_ = NULL; |
---|
3589 | cbcColSolution_ = NULL; |
---|
3590 | cbcRowPrice_ = NULL; |
---|
3591 | cbcReducedCost_ = NULL; |
---|
3592 | cbcRowActivity_ = NULL; |
---|
3593 | appData_=NULL; |
---|
3594 | handler_ = new CoinMessageHandler(); |
---|
3595 | handler_->setLogLevel(2); |
---|
3596 | messages_ = CbcMessage(); |
---|
3597 | eventHandler_ = new CbcEventHandler() ; |
---|
3598 | } |
---|
3599 | |
---|
3600 | /** Constructor from solver. |
---|
3601 | |
---|
3602 | Creates a model complete with a clone of the solver passed as a parameter. |
---|
3603 | */ |
---|
3604 | |
---|
3605 | CbcModel::CbcModel(const OsiSolverInterface &rhs) |
---|
3606 | : |
---|
3607 | continuousSolver_(NULL), |
---|
3608 | referenceSolver_(NULL), |
---|
3609 | defaultHandler_(true), |
---|
3610 | emptyWarmStart_(NULL), |
---|
3611 | bestObjective_(COIN_DBL_MAX), |
---|
3612 | bestPossibleObjective_(COIN_DBL_MAX), |
---|
3613 | sumChangeObjective1_(0.0), |
---|
3614 | sumChangeObjective2_(0.0), |
---|
3615 | minimumDrop_(1.0e-4), |
---|
3616 | numberSolutions_(0), |
---|
3617 | stateOfSearch_(0), |
---|
3618 | hotstartSolution_(NULL), |
---|
3619 | hotstartPriorities_(NULL), |
---|
3620 | numberHeuristicSolutions_(0), |
---|
3621 | numberNodes_(0), |
---|
3622 | numberNodes2_(0), |
---|
3623 | numberIterations_(0), |
---|
3624 | status_(-1), |
---|
3625 | secondaryStatus_(-1), |
---|
3626 | numberRowsAtContinuous_(0), |
---|
3627 | maximumNumberCuts_(0), |
---|
3628 | phase_(0), |
---|
3629 | currentNumberCuts_(0), |
---|
3630 | maximumDepth_(0), |
---|
3631 | walkback_(NULL), |
---|
3632 | addedCuts_(NULL), |
---|
3633 | nextRowCut_(NULL), |
---|
3634 | currentNode_(NULL), |
---|
3635 | integerInfo_(NULL), |
---|
3636 | specialOptions_(0), |
---|
3637 | subTreeModel_(NULL), |
---|
3638 | numberStoppedSubTrees_(0), |
---|
3639 | mutex_(NULL), |
---|
3640 | presolve_(0), |
---|
3641 | numberStrong_(5), |
---|
3642 | numberBeforeTrust_(10), |
---|
3643 | numberPenalties_(20), |
---|
3644 | stopNumberIterations_(-1), |
---|
3645 | penaltyScaleFactor_(3.0), |
---|
3646 | numberAnalyzeIterations_(0), |
---|
3647 | analyzeResults_(NULL), |
---|
3648 | numberInfeasibleNodes_(0), |
---|
3649 | problemType_(0), |
---|
3650 | printFrequency_(0), |
---|
3651 | numberCutGenerators_(0), |
---|
3652 | generator_(NULL), |
---|
3653 | virginGenerator_(NULL), |
---|
3654 | numberHeuristics_(0), |
---|
3655 | heuristic_(NULL), |
---|
3656 | lastHeuristic_(NULL), |
---|
3657 | eventHandler_(0), |
---|
3658 | numberObjects_(0), |
---|
3659 | object_(NULL), |
---|
3660 | ownObjects_(true), |
---|
3661 | originalColumns_(NULL), |
---|
3662 | howOftenGlobalScan_(1), |
---|
3663 | numberGlobalViolations_(0), |
---|
3664 | continuousObjective_(COIN_DBL_MAX), |
---|
3665 | originalContinuousObjective_(COIN_DBL_MAX), |
---|
3666 | continuousInfeasibilities_(COIN_INT_MAX), |
---|
3667 | maximumCutPassesAtRoot_(20), |
---|
3668 | maximumCutPasses_(10), |
---|
3669 | preferredWay_(0), |
---|
3670 | currentPassNumber_(0), |
---|
3671 | maximumWhich_(1000), |
---|
3672 | maximumRows_(0), |
---|
3673 | whichGenerator_(NULL), |
---|
3674 | maximumStatistics_(0), |
---|
3675 | statistics_(NULL), |
---|
3676 | maximumDepthActual_(0), |
---|
3677 | numberDJFixed_(0.0), |
---|
3678 | probingInfo_(NULL), |
---|
3679 | numberFixedAtRoot_(0), |
---|
3680 | numberFixedNow_(0), |
---|
3681 | stoppedOnGap_(false), |
---|
3682 | eventHappened_(false), |
---|
3683 | numberLongStrong_(0), |
---|
3684 | numberOldActiveCuts_(0), |
---|
3685 | numberNewCuts_(0), |
---|
3686 | sizeMiniTree_(0), |
---|
3687 | searchStrategy_(-1), |
---|
3688 | numberStrongIterations_(0), |
---|
3689 | resolveAfterTakeOffCuts_(true), |
---|
3690 | #if NEW_UPDATE_OBJECT>1 |
---|
3691 | numberUpdateItems_(0), |
---|
3692 | maximumNumberUpdateItems_(0), |
---|
3693 | updateItems_(NULL), |
---|
3694 | #endif |
---|
3695 | numberThreads_(0), |
---|
3696 | threadMode_(0) |
---|
3697 | { |
---|
3698 | memset(intParam_,0,sizeof(intParam_)); |
---|
3699 | intParam_[CbcMaxNumNode] = 2147483647; |
---|
3700 | intParam_[CbcMaxNumSol] = 9999999; |
---|
3701 | intParam_[CbcFathomDiscipline] = 0; |
---|
3702 | |
---|
3703 | dblParam_[CbcIntegerTolerance] = 1e-6; |
---|
3704 | dblParam_[CbcInfeasibilityWeight] = 0.0; |
---|
3705 | dblParam_[CbcCutoffIncrement] = 1e-5; |
---|
3706 | dblParam_[CbcAllowableGap] = 1.0e-10; |
---|
3707 | dblParam_[CbcAllowableFractionGap] = 0.0; |
---|
3708 | dblParam_[CbcMaximumSeconds] = 1.0e100; |
---|
3709 | dblParam_[CbcCurrentCutoff] = 1.0e100; |
---|
3710 | dblParam_[CbcOptimizationDirection] = 1.0; |
---|
3711 | dblParam_[CbcCurrentObjectiveValue] = 1.0e100; |
---|
3712 | dblParam_[CbcCurrentMinimizationObjectiveValue] = 1.0e100; |
---|
3713 | dblParam_[CbcStartSeconds] = 0.0; |
---|
3714 | strongInfo_[0]=0; |
---|
3715 | strongInfo_[1]=0; |
---|
3716 | strongInfo_[2]=0; |
---|
3717 | solverCharacteristics_ = NULL; |
---|
3718 | |
---|
3719 | nodeCompare_=new CbcCompareDefault();; |
---|
3720 | problemFeasibility_=new CbcFeasibilityBase(); |
---|
3721 | tree_= new CbcTree(); |
---|
3722 | branchingMethod_=NULL; |
---|
3723 | cutModifier_=NULL; |
---|
3724 | strategy_=NULL; |
---|
3725 | parentModel_=NULL; |
---|
3726 | appData_=NULL; |
---|
3727 | handler_ = new CoinMessageHandler(); |
---|
3728 | handler_->setLogLevel(2); |
---|
3729 | messages_ = CbcMessage(); |
---|
3730 | eventHandler_ = new CbcEventHandler() ; |
---|
3731 | solver_ = rhs.clone(); |
---|
3732 | referenceSolver_ = solver_->clone(); |
---|
3733 | ownership_ = 0x80000000; |
---|
3734 | cbcColLower_ = NULL; |
---|
3735 | cbcColUpper_ = NULL; |
---|
3736 | cbcRowLower_ = NULL; |
---|
3737 | cbcRowUpper_ = NULL; |
---|
3738 | cbcColSolution_ = NULL; |
---|
3739 | cbcRowPrice_ = NULL; |
---|
3740 | cbcReducedCost_ = NULL; |
---|
3741 | cbcRowActivity_ = NULL; |
---|
3742 | |
---|
3743 | // Initialize solution and integer variable vectors |
---|
3744 | bestSolution_ = NULL; // to say no solution found |
---|
3745 | numberIntegers_=0; |
---|
3746 | int numberColumns = solver_->getNumCols(); |
---|
3747 | int iColumn; |
---|
3748 | if (numberColumns) { |
---|
3749 | // Space for current solution |
---|
3750 | currentSolution_ = new double[numberColumns]; |
---|
3751 | continuousSolution_ = new double[numberColumns]; |
---|
3752 | usedInSolution_ = new int[numberColumns]; |
---|
3753 | CoinZeroN(usedInSolution_,numberColumns); |
---|
3754 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
---|
3755 | if( solver_->isInteger(iColumn)) |
---|
3756 | numberIntegers_++; |
---|
3757 | } |
---|
3758 | } else { |
---|
3759 | // empty model |
---|
3760 | currentSolution_=NULL; |
---|
3761 | continuousSolution_=NULL; |
---|
3762 | usedInSolution_=NULL; |
---|
3763 | } |
---|
3764 | testSolution_=currentSolution_; |
---|
3765 | if (numberIntegers_) { |
---|
3766 | integerVariable_ = new int [numberIntegers_]; |
---|
3767 | numberIntegers_=0; |
---|
3768 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
---|
3769 | if( solver_->isInteger(iColumn)) |
---|
3770 | integerVariable_[numberIntegers_++]=iColumn; |
---|
3771 | } |
---|
3772 | } else { |
---|
3773 | integerVariable_ = NULL; |
---|
3774 | } |
---|
3775 | } |
---|
3776 | |
---|
3777 | /* |
---|
3778 | Assign a solver to the model (model assumes ownership) |
---|
3779 | |
---|
3780 | The integer variable vector is initialized if it's not already present. |
---|
3781 | If deleteSolver then current solver deleted (if model owned) |
---|
3782 | |
---|
3783 | Assuming ownership matches usage in OsiSolverInterface |
---|
3784 | (cf. assignProblem, loadProblem). |
---|
3785 | |
---|
3786 | TODO: What to do about solver parameters? A simple copy likely won't do it, |
---|
3787 | because the SI must push the settings into the underlying solver. In |
---|
3788 | the context of switching solvers in cbc, this means that command line |
---|
3789 | settings will get lost. Stash the command line somewhere and reread it |
---|
3790 | here, maybe? |
---|
3791 | |
---|
3792 | TODO: More generally, how much state should be transferred from the old |
---|
3793 | solver to the new solver? Best perhaps to see how usage develops. |
---|
3794 | What's done here mimics the CbcModel(OsiSolverInterface) constructor. |
---|
3795 | */ |
---|
3796 | void |
---|
3797 | CbcModel::assignSolver(OsiSolverInterface *&solver, bool deleteSolver) |
---|
3798 | |
---|
3799 | { |
---|
3800 | // resize best solution if exists |
---|
3801 | if (bestSolution_&&solver&&solver_) { |
---|
3802 | int nOld = solver_->getNumCols(); |
---|
3803 | int nNew = solver->getNumCols(); |
---|
3804 | if (nNew>nOld) { |
---|
3805 | double * temp = new double[nNew]; |
---|
3806 | memcpy(temp,bestSolution_,nOld*sizeof(double)); |
---|
3807 | memset(temp+nOld,0,(nNew-nOld)*sizeof(double)); |
---|
3808 | delete [] bestSolution_; |
---|
3809 | bestSolution_=temp; |
---|
3810 | } |
---|
3811 | } |
---|
3812 | // Keep the current message level for solver (if solver exists) |
---|
3813 | if (solver_) |
---|
3814 | solver->messageHandler()->setLogLevel(solver_->messageHandler()->logLevel()) ; |
---|
3815 | |
---|
3816 | if (modelOwnsSolver()&&deleteSolver) delete solver_ ; |
---|
3817 | solver_ = solver; |
---|
3818 | solver = NULL ; |
---|
3819 | setModelOwnsSolver(true) ; |
---|
3820 | /* |
---|
3821 | Basis information is solver-specific. |
---|
3822 | */ |
---|
3823 | if (emptyWarmStart_) |
---|
3824 | { delete emptyWarmStart_ ; |
---|
3825 | emptyWarmStart_ = 0 ; } |
---|
3826 | bestSolutionBasis_ = CoinWarmStartBasis(); |
---|
3827 | /* |
---|
3828 | Initialize integer variable vector. |
---|
3829 | */ |
---|
3830 | numberIntegers_=0; |
---|
3831 | int numberColumns = solver_->getNumCols(); |
---|
3832 | int iColumn; |
---|
3833 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
---|
3834 | if( solver_->isInteger(iColumn)) |
---|
3835 | numberIntegers_++; |
---|
3836 | } |
---|
3837 | delete [] integerVariable_; |
---|
3838 | if (numberIntegers_) { |
---|
3839 | integerVariable_ = new int [numberIntegers_]; |
---|
3840 | numberIntegers_=0; |
---|
3841 | for (iColumn=0;iColumn<numberColumns;iColumn++) { |
---|
3842 | if( solver_->isInteger(iColumn)) |
---|
3843 | integerVariable_[numberIntegers_++]=iColumn; |
---|
3844 | } |
---|
3845 | } else { |
---|
3846 | integerVariable_ = NULL; |
---|
3847 | } |
---|
3848 | |
---|
3849 | return ; |
---|
3850 | } |
---|
3851 | |
---|
3852 | // Copy constructor. |
---|
3853 | |
---|
3854 | CbcModel::CbcModel(const CbcModel & rhs, bool noTree) |
---|
3855 | : |
---|
3856 | continuousSolver_(NULL), |
---|
3857 | referenceSolver_(NULL), |
---|
3858 | defaultHandler_(rhs.defaultHandler_), |
---|
3859 | emptyWarmStart_(NULL), |
---|
3860 | bestObjective_(rhs.bestObjective_), |
---|
3861 | bestPossibleObjective_(rhs.bestPossibleObjective_), |
---|
3862 | sumChangeObjective1_(rhs.sumChangeObjective1_), |
---|
3863 | sumChangeObjective2_(rhs.sumChangeObjective2_), |
---|
3864 | minimumDrop_(rhs.minimumDrop_), |
---|
3865 | numberSolutions_(rhs.numberSolutions_), |
---|
3866 | stateOfSearch_(rhs.stateOfSearch_), |
---|
3867 | numberHeuristicSolutions_(rhs.numberHeuristicSolutions_), |
---|
3868 | numberNodes_(rhs.numberNodes_), |
---|
3869 | numberNodes2_(rhs.numberNodes2_), |
---|
3870 | numberIterations_(rhs.numberIterations_), |
---|
3871 | status_(rhs.status_), |
---|
3872 | secondaryStatus_(rhs.secondaryStatus_), |
---|
3873 | specialOptions_(rhs.specialOptions_), |
---|
3874 | subTreeModel_(rhs.subTreeModel_), |
---|
3875 | numberStoppedSubTrees_(rhs.numberStoppedSubTrees_), |
---|
3876 | mutex_(NULL), |
---|
3877 | presolve_(rhs.presolve_), |
---|
3878 | numberStrong_(rhs.numberStrong_), |
---|
3879 | numberBeforeTrust_(rhs.numberBeforeTrust_), |
---|
3880 | numberPenalties_(rhs.numberPenalties_), |
---|
3881 | stopNumberIterations_(rhs.stopNumberIterations_), |
---|
3882 | penaltyScaleFactor_(rhs.penaltyScaleFactor_), |
---|
3883 | numberAnalyzeIterations_(rhs.numberAnalyzeIterations_), |
---|
3884 | analyzeResults_(NULL), |
---|
3885 | numberInfeasibleNodes_(rhs.numberInfeasibleNodes_), |
---|
3886 | problemType_(rhs.problemType_), |
---|
3887 | printFrequency_(rhs.printFrequency_), |
---|
3888 | howOftenGlobalScan_(rhs.howOftenGlobalScan_), |
---|
3889 | numberGlobalViolations_(rhs.numberGlobalViolations_), |
---|
3890 | continuousObjective_(rhs.continuousObjective_), |
---|
3891 | originalContinuousObjective_(rhs.originalContinuousObjective_), |
---|
3892 | continuousInfeasibilities_(rhs.continuousInfeasibilities_), |
---|
3893 | maximumCutPassesAtRoot_(rhs.maximumCutPassesAtRoot_), |
---|
3894 | maximumCutPasses_( rhs.maximumCutPasses_), |
---|
3895 | preferredWay_(rhs.preferredWay_), |
---|
3896 | currentPassNumber_(rhs.currentPassNumber_), |
---|
3897 | maximumWhich_(rhs.maximumWhich_), |
---|
3898 | maximumRows_(0), |
---|
3899 | whichGenerator_(NULL), |
---|
3900 | maximumStatistics_(0), |
---|
3901 | statistics_(NULL), |
---|
3902 | maximumDepthActual_(0), |
---|
3903 | numberDJFixed_(0.0), |
---|
3904 | probingInfo_(NULL), |
---|
3905 | numberFixedAtRoot_(rhs.numberFixedAtRoot_), |
---|
3906 | numberFixedNow_(rhs.numberFixedNow_), |
---|
3907 | stoppedOnGap_(rhs.stoppedOnGap_), |
---|
3908 | eventHappened_(rhs.eventHappened_), |
---|
3909 | numberLongStrong_(rhs.numberLongStrong_), |
---|
3910 | numberOldActiveCuts_(rhs.numberOldActiveCuts_), |
---|
3911 | numberNewCuts_(rhs.numberNewCuts_), |
---|
3912 | sizeMiniTree_(rhs.sizeMiniTree_), |
---|
3913 | searchStrategy_(rhs.searchStrategy_), |
---|
3914 | numberStrongIterations_(rhs.numberStrongIterations_), |
---|
3915 | resolveAfterTakeOffCuts_(rhs.resolveAfterTakeOffCuts_), |
---|
3916 | #if NEW_UPDATE_OBJECT>1 |
---|
3917 | numberUpdateItems_(rhs.numberUpdateItems_), |
---|
3918 | maximumNumberUpdateItems_(rhs.maximumNumberUpdateItems_), |
---|
3919 | updateItems_(NULL), |
---|
3920 | #endif |
---|
3921 | numberThreads_(rhs.numberThreads_), |
---|
3922 | threadMode_(rhs.threadMode_) |
---|
3923 | { |
---|
3924 | memcpy(intParam_,rhs.intParam_,sizeof(intParam_)); |
---|
3925 | memcpy(dblParam_,rhs.dblParam_,sizeof(dblParam_)); |
---|
3926 | strongInfo_[0]=rhs.strongInfo_[0]; |
---|
3927 | strongInfo_[1]=rhs.strongInfo_[1]; |
---|
3928 | strongInfo_[2]=rhs.strongInfo_[2]; |
---|
3929 | solverCharacteristics_ = NULL; |
---|
3930 | if (rhs.emptyWarmStart_) emptyWarmStart_ = rhs.emptyWarmStart_->clone() ; |
---|
3931 | if (defaultHandler_) { |
---|
3932 | handler_ = new CoinMessageHandler(); |
---|
3933 | handler_->setLogLevel(2); |
---|
3934 | } else { |
---|
3935 | handler_ = rhs.handler_; |
---|
3936 | } |
---|
3937 | messageHandler()->setLogLevel(rhs.messageHandler()->logLevel()); |
---|
3938 | numberCutGenerators_ = rhs.numberCutGenerators_; |
---|
3939 | if (numberCutGenerators_) { |
---|
3940 | generator_ = new CbcCutGenerator * [numberCutGenerators_]; |
---|
3941 | virginGenerator_ = new CbcCutGenerator * [numberCutGenerators_]; |
---|
3942 | int i; |
---|
3943 | for (i=0;i<numberCutGenerators_;i++) { |
---|
3944 | generator_[i]=new CbcCutGenerator(*rhs.generator_[i]); |
---|
3945 | virginGenerator_[i]=new CbcCutGenerator(*rhs.virginGenerator_[i]); |
---|
3946 | } |
---|
3947 | } else { |
---|
3948 | generator_=NULL; |
---|
3949 | virginGenerator_=NULL; |
---|
3950 | } |
---|
3951 | if (!noTree) |
---|
3952 | globalCuts_ = rhs.globalCuts_; |
---|
3953 | numberHeuristics_ = rhs.numberHeuristics_; |
---|
3954 | if (numberHeuristics_) { |
---|
3955 | heuristic_ = new CbcHeuristic * [numberHeuristics_]; |
---|
3956 | int i; |
---|
3957 | for (i=0;i<numberHeuristics_;i++) { |
---|
3958 | heuristic_[i]=rhs.heuristic_[i]->clone(); |
---|
3959 | } |
---|
3960 | } else { |
---|
3961 | heuristic_=NULL; |
---|
3962 | } |
---|
3963 | lastHeuristic_ = NULL; |
---|
3964 | if (rhs.eventHandler_) |
---|
3965 | { eventHandler_ = rhs.eventHandler_->clone() ; } |
---|
3966 | else |
---|
3967 | { eventHandler_ = NULL ; } |
---|
3968 | ownObjects_ = rhs.ownObjects_; |
---|
3969 | if (ownObjects_) { |
---|
3970 | numberObjects_=rhs.numberObjects_; |
---|
3971 | if (numberObjects_) { |
---|
3972 | object_ = new OsiObject * [numberObjects_]; |
---|
3973 | int i; |
---|
3974 | for (i=0;i<numberObjects_;i++) { |
---|
3975 | object_[i]=(rhs.object_[i])->clone(); |
---|
3976 | CbcObject * obj = dynamic_cast <CbcObject *>(object_[i]) ; |
---|
3977 | // Could be OsiObjects |
---|
3978 | if (obj) |
---|
3979 | obj->setModel(this); |
---|
3980 | } |
---|
3981 | } else { |
---|
3982 | object_=NULL; |
---|
3983 | } |
---|
3984 | } else { |
---|
3985 | // assume will be redone |
---|
3986 | numberObjects_=0; |
---|
3987 | object_=NULL; |
---|
3988 | } |
---|
3989 | if (rhs.referenceSolver_) |
---|
3990 | referenceSolver_ = rhs.referenceSolver_->clone(); |
---|
3991 | else |
---|
3992 | referenceSolver_=NULL; |
---|
3993 | if (!noTree||!rhs.continuousSolver_) |
---|
3994 | solver_ = rhs.solver_->clone(); |
---|
3995 | else |
---|
3996 | solver_ = rhs.continuousSolver_->clone(); |
---|
3997 | if (rhs.originalColumns_) { |
---|
3998 | int numberColumns = solver_->getNumCols(); |
---|
3999 | originalColumns_= new int [numberColumns]; |
---|
4000 | memcpy(originalColumns_,rhs.originalColumns_,numberColumns*sizeof(int)); |
---|
4001 | } else { |
---|
4002 | originalColumns_=NULL; |
---|
4003 | } |
---|
4004 | #if NEW_UPDATE_OBJECT>1 |
---|
4005 | if (maximumNumberUpdateItems_) { |
---|
4006 | updateItems_ = new CbcObjectUpdateData [maximumNumberUpdateItems_]; |
---|
4007 | for (int i=0;i<maximumNumberUpdateItems_;i++) |
---|
4008 | updateItems_[i] = rhs.updateItems_[i]; |
---|
4009 | } |
---|
4010 | #endif |
---|
4011 | if (maximumWhich_&&rhs.whichGenerator_) |
---|
4012 | whichGenerator_ = CoinCopyOfArray(rhs.whichGenerator_,maximumWhich_); |
---|
4013 | nodeCompare_=rhs.nodeCompare_->clone(); |
---|
4014 | problemFeasibility_=rhs.problemFeasibility_->clone(); |
---|
4015 | tree_= rhs.tree_->clone(); |
---|
4016 | if (rhs.branchingMethod_) |
---|
4017 | branchingMethod_=rhs.branchingMethod_->clone(); |
---|
4018 | else |
---|
4019 | branchingMethod_=NULL; |
---|
4020 | if (rhs.cutModifier_) |
---|
4021 | cutModifier_=rhs.cutModifier_->clone(); |
---|
4022 | else |
---|
4023 | cutModifier_=NULL; |
---|
4024 | cbcColLower_ = NULL; |
---|
4025 | cbcColUpper_ = NULL; |
---|
4026 | cbcRowLower_ = NULL; |
---|
4027 | cbcRowUpper_ = NULL; |
---|
4028 | cbcColSolution_ = NULL; |
---|
4029 | cbcRowPrice_ = NULL; |
---|
4030 | cbcReducedCost_ = NULL; |
---|
4031 | cbcRowActivity_ = NULL; |
---|
4032 | if (rhs.strategy_) |
---|
4033 | strategy_=rhs.strategy_->clone(); |
---|
4034 | else |
---|
4035 | strategy_=NULL; |
---|
4036 | parentModel_=rhs.parentModel_; |
---|
4037 | appData_=rhs.appData_; |
---|
4038 | messages_ = rhs.messages_; |
---|
4039 | ownership_ = 0x80000000; |
---|
4040 | messageHandler()->setLogLevel(rhs.messageHandler()->logLevel()); |
---|
4041 | numberIntegers_=rhs.numberIntegers_; |
---|
4042 | if (numberIntegers_) { |
---|
4043 | integerVariable_ = new int [numberIntegers_]; |
---|
4044 | memcpy(integerVariable_,rhs.integerVariable_,numberIntegers_*sizeof(int)); |
---|
4045 | integerInfo_ = CoinCopyOfArray(rhs.integerInfo_,solver_->getNumCols()); |
---|
4046 | } else { |
---|
4047 | integerVariable_ = NULL; |
---|
4048 | integerInfo_=NULL; |
---|
4049 | } |
---|
4050 | if (rhs.hotstartSolution_) { |
---|
4051 | int numberColumns = solver_->getNumCols(); |
---|
4052 | hotstartSolution_ = CoinCopyOfArray(rhs.hotstartSolution_,numberColumns); |
---|
4053 | hotstartPriorities_ = CoinCopyOfArray(rhs.hotstartPriorities_,numberColumns); |
---|
4054 | } else { |
---|
4055 | hotstartSolution_ = NULL; |
---|
4056 | hotstartPriorities_ =NULL; |
---|
4057 | } |
---|
4058 | if (rhs.bestSolution_&&!noTree) { |
---|
4059 | int numberColumns = solver_->getNumCols(); |
---|
4060 | bestSolution_ = new double[numberColumns]; |
---|
4061 | memcpy(bestSolution_,rhs.bestSolution_,numberColumns*sizeof(double)); |
---|
4062 | } else { |
---|
4063 | bestSolution_=NULL; |
---|
4064 | } |
---|
4065 | if (!noTree) { |
---|
4066 | int numberColumns = solver_->getNumCols(); |
---|
4067 | // Space for current solution |
---|
4068 | currentSolution_ = new double[numberColumns]; |
---|
4069 | continuousSolution_ = new double[numberColumns]; |
---|
4070 | usedInSolution_ = new int[numberColumns]; |
---|
4071 | CoinZeroN(usedInSolution_,numberColumns); |
---|
4072 | } else { |
---|
4073 | currentSolution_=NULL; |
---|
4074 | continuousSolution_=NULL; |
---|
4075 | usedInSolution_=NULL; |
---|
4076 | } |
---|
4077 | testSolution_=currentSolution_; |
---|
4078 | numberRowsAtContinuous_ = rhs.numberRowsAtContinuous_; |
---|
4079 | maximumNumberCuts_=rhs.maximumNumberCuts_; |
---|
4080 | phase_ = rhs.phase_; |
---|
4081 | currentNumberCuts_=rhs.currentNumberCuts_; |
---|
4082 | maximumDepth_= rhs.maximumDepth_; |
---|
4083 | if (noTree) { |
---|
4084 | bestObjective_ = COIN_DBL_MAX; |
---|
4085 | numberSolutions_ =0; |
---|
4086 | stateOfSearch_= 0; |
---|
4087 | numberHeuristicSolutions_=0; |
---|
4088 | numberNodes_=0; |
---|
4089 | numberNodes2_=0; |
---|
4090 | numberIterations_=0; |
---|
4091 | status_=0; |
---|
4092 | subTreeModel_=NULL; |
---|
4093 | numberStoppedSubTrees_=0; |
---|
4094 | continuousObjective_=COIN_DBL_MAX; |
---|
4095 | originalContinuousObjective_=COIN_DBL_MAX; |
---|
4096 | continuousInfeasibilities_=COIN_INT_MAX; |
---|
4097 | maximumNumberCuts_=0; |
---|
4098 | tree_->cleanTree(this,-COIN_DBL_MAX,bestPossibleObjective_); |
---|
4099 | bestPossibleObjective_ = COIN_DBL_MAX; |
---|
4100 | } |
---|
4101 | // These are only used as temporary arrays so need not be filled |
---|
4102 | if (maximumNumberCuts_) { |
---|
4103 | addedCuts_ = new CbcCountRowCut * [maximumNumberCuts_]; |
---|
4104 | } else { |
---|
4105 | addedCuts_ = NULL; |
---|
4106 | } |
---|
4107 | bestSolutionBasis_ = rhs.bestSolutionBasis_; |
---|
4108 | nextRowCut_ = NULL; |
---|
4109 | currentNode_ = NULL; |
---|
4110 | if (maximumDepth_) |
---|
4111 | walkback_ = new CbcNodeInfo * [maximumDepth_]; |
---|
4112 | else |
---|
4113 | walkback_ = NULL; |
---|
4114 | synchronizeModel(); |
---|
4115 | } |
---|
4116 | |
---|
4117 | // Assignment operator |
---|
4118 | CbcModel & |
---|
4119 | CbcModel::operator=(const CbcModel& rhs) |
---|
4120 | { |
---|
4121 | if (this!=&rhs) { |
---|
4122 | if (modelOwnsSolver()) { |
---|
4123 | delete solver_; |
---|
4124 | solver_=NULL; |
---|
4125 | } |
---|
4126 | gutsOfDestructor(); |
---|
4127 | if (defaultHandler_) |
---|
4128 | { delete handler_; |
---|
4129 | handler_ = NULL; } |
---|
4130 | defaultHandler_ = rhs.defaultHandler_; |
---|
4131 | if (defaultHandler_) |
---|
4132 | { handler_ = new CoinMessageHandler(); |
---|
4133 | handler_->setLogLevel(2); } |
---|
4134 | else |
---|
4135 | { handler_ = rhs.handler_; } |
---|
4136 | messages_ = rhs.messages_; |
---|
4137 | messageHandler()->setLogLevel(rhs.messageHandler()->logLevel()); |
---|
4138 | if (rhs.solver_) |
---|
4139 | { solver_ = rhs.solver_->clone() ; } |
---|
4140 | else |
---|
4141 | { solver_ = 0 ; } |
---|
4142 | ownership_ = 0x80000000; |
---|
4143 | delete continuousSolver_ ; |
---|
4144 | if (rhs.continuousSolver_) |
---|
4145 | { continuousSolver_ = rhs.continuousSolver_->clone() ; } |
---|
4146 | else |
---|
4147 | { continuousSolver_ = 0 ; } |
---|
4148 | delete referenceSolver_; |
---|
4149 | if (rhs.referenceSolver_) |
---|
4150 | { referenceSolver_ = rhs.referenceSolver_->clone() ; } |
---|
4151 | else |
---|
4152 | { referenceSolver_ = NULL ; } |
---|
4153 | |
---|
4154 | delete emptyWarmStart_ ; |
---|
4155 | if (rhs.emptyWarmStart_) |
---|
4156 | { emptyWarmStart_ = rhs.emptyWarmStart_->clone() ; } |
---|
4157 | else |
---|
4158 | { emptyWarmStart_ = 0 ; } |
---|
4159 | |
---|
4160 | bestObjective_ = rhs.bestObjective_; |
---|
4161 | bestPossibleObjective_=rhs.bestPossibleObjective_; |
---|
4162 | sumChangeObjective1_=rhs.sumChangeObjective1_; |
---|
4163 | sumChangeObjective2_=rhs.sumChangeObjective2_; |
---|
4164 | delete [] bestSolution_; |
---|
4165 | if (rhs.bestSolution_) { |
---|
4166 | int numberColumns = rhs.getNumCols(); |
---|
4167 | bestSolution_ = new double[numberColumns]; |
---|
4168 | memcpy(bestSolution_,rhs.bestSolution_,numberColumns*sizeof(double)); |
---|
4169 | } else { |
---|
4170 | bestSolution_=NULL; |
---|
4171 | } |
---|
4172 | int numberColumns = rhs.getNumCols(); |
---|
4173 | if (numberColumns) { |
---|
4174 | // Space for current solution |
---|
4175 | currentSolution_ = new double[numberColumns]; |
---|
4176 | continuousSolution_ = new double[numberColumns]; |
---|
4177 | usedInSolution_ = new int[numberColumns]; |
---|
4178 | CoinZeroN(usedInSolution_,numberColumns); |
---|
4179 | } else { |
---|
4180 | currentSolution_=NULL; |
---|
4181 | continuousSolution_=NULL; |
---|
4182 | usedInSolution_=NULL; |
---|
4183 | } |
---|
4184 | testSolution_=currentSolution_; |
---|
4185 | minimumDrop_ = rhs.minimumDrop_; |
---|
4186 | numberSolutions_=rhs.numberSolutions_; |
---|
4187 | stateOfSearch_= rhs.stateOfSearch_; |
---|
4188 | numberHeuristicSolutions_=rhs.numberHeuristicSolutions_; |
---|
4189 | numberNodes_ = rhs.numberNodes_; |
---|
4190 | numberNodes2_ = rhs.numberNodes2_; |
---|
4191 | numberIterations_ = rhs.numberIterations_; |
---|
4192 | status_ = rhs.status_; |
---|
4193 | secondaryStatus_ = rhs.secondaryStatus_; |
---|
4194 | specialOptions_ = rhs.specialOptions_; |
---|
4195 | subTreeModel_ = rhs.subTreeModel_; |
---|
4196 | numberStoppedSubTrees_ = rhs.numberStoppedSubTrees_; |
---|
4197 | mutex_ = NULL; |
---|
4198 | presolve_ = rhs.presolve_; |
---|
4199 | numberStrong_ = rhs.numberStrong_; |
---|
4200 | numberBeforeTrust_ = rhs.numberBeforeTrust_; |
---|
4201 | numberPenalties_ = rhs.numberPenalties_; |
---|
4202 | stopNumberIterations_ = rhs.stopNumberIterations_; |
---|
4203 | penaltyScaleFactor_ = rhs.penaltyScaleFactor_; |
---|
4204 | numberAnalyzeIterations_ = rhs.numberAnalyzeIterations_; |
---|
4205 | delete [] analyzeResults_; |
---|
4206 | analyzeResults_ = NULL; |
---|
4207 | numberInfeasibleNodes_ = rhs.numberInfeasibleNodes_; |
---|
4208 | problemType_ = rhs.problemType_; |
---|
4209 | printFrequency_ = rhs.printFrequency_; |
---|
4210 | howOftenGlobalScan_=rhs.howOftenGlobalScan_; |
---|
4211 | numberGlobalViolations_=rhs.numberGlobalViolations_; |
---|
4212 | continuousObjective_=rhs.continuousObjective_; |
---|
4213 | originalContinuousObjective_ = rhs.originalContinuousObjective_; |
---|
4214 | continuousInfeasibilities_ = rhs.continuousInfeasibilities_; |
---|
4215 | maximumCutPassesAtRoot_ = rhs.maximumCutPassesAtRoot_; |
---|
4216 | maximumCutPasses_ = rhs.maximumCutPasses_; |
---|
4217 | preferredWay_ = rhs.preferredWay_; |
---|
4218 | currentPassNumber_ = rhs.currentPassNumber_; |
---|
4219 | memcpy(intParam_,rhs.intParam_,sizeof(intParam_)); |
---|
4220 | memcpy(dblParam_,rhs.dblParam_,sizeof(dblParam_)); |
---|
4221 | globalCuts_ = rhs.globalCuts_; |
---|
4222 | int i; |
---|
4223 | for (i=0;i<numberCutGenerators_;i++) { |
---|
4224 | delete generator_[i]; |
---|
4225 | delete virginGenerator_[i]; |
---|
4226 | } |
---|
4227 | delete [] generator_; |
---|
4228 | delete [] virginGenerator_; |
---|
4229 | delete [] heuristic_; |
---|
4230 | maximumWhich_ = rhs.maximumWhich_; |
---|
4231 | delete [] whichGenerator_; |
---|
4232 | whichGenerator_ = NULL; |
---|
4233 | if (maximumWhich_&&rhs.whichGenerator_) |
---|
4234 | whichGenerator_ = CoinCopyOfArray(rhs.whichGenerator_,maximumWhich_); |
---|
4235 | maximumRows_=0; |
---|
4236 | workingBasis_ = CoinWarmStartBasis(); |
---|
4237 | for (i=0;i<maximumStatistics_;i++) |
---|
4238 | delete statistics_[i]; |
---|
4239 | delete [] statistics_; |
---|
4240 | maximumStatistics_ = 0; |
---|
4241 | statistics_ = NULL; |
---|
4242 | delete probingInfo_; |
---|
4243 | probingInfo_=NULL; |
---|
4244 | numberFixedAtRoot_ = rhs.numberFixedAtRoot_; |
---|
4245 | numberFixedNow_ = rhs.numberFixedNow_; |
---|
4246 | stoppedOnGap_ = rhs.stoppedOnGap_; |
---|
4247 | eventHappened_ = rhs.eventHappened_; |
---|
4248 | numberLongStrong_ = rhs.numberLongStrong_; |
---|
4249 | numberOldActiveCuts_ = rhs.numberOldActiveCuts_; |
---|
4250 | numberNewCuts_ = rhs.numberNewCuts_; |
---|
4251 | resolveAfterTakeOffCuts_=rhs.resolveAfterTakeOffCuts_; |
---|
4252 | #if NEW_UPDATE_OBJECT>1 |
---|
4253 | numberUpdateItems_ = rhs.numberUpdateItems_; |
---|
4254 | maximumNumberUpdateItems_ = rhs.maximumNumberUpdateItems_; |
---|
4255 | delete [] updateItems_; |
---|
4256 | if (maximumNumberUpdateItems_) { |
---|
4257 | updateItems_ = new CbcObjectUpdateData [maximumNumberUpdateItems_]; |
---|
4258 | for (i=0;i<maximumNumberUpdateItems_;i++) |
---|
4259 | updateItems_[i] = rhs.updateItems_[i]; |
---|
4260 | } else { |
---|
4261 | updateItems_ = NULL; |
---|
4262 | } |
---|
4263 | #endif |
---|
4264 | numberThreads_ = rhs.numberThreads_; |
---|
4265 | threadMode_ = rhs.threadMode_; |
---|
4266 | sizeMiniTree_ = rhs.sizeMiniTree_; |
---|
4267 | searchStrategy_ = rhs.searchStrategy_; |
---|
4268 | numberStrongIterations_ = rhs.numberStrongIterations_; |
---|
4269 | strongInfo_[0]=rhs.strongInfo_[0]; |
---|
4270 | strongInfo_[1]=rhs.strongInfo_[1]; |
---|
4271 | strongInfo_[2]=rhs.strongInfo_[2]; |
---|
4272 | solverCharacteristics_ = NULL; |
---|
4273 | lastHeuristic_ = NULL; |
---|
4274 | numberCutGenerators_ = rhs.numberCutGenerators_; |
---|
4275 | if (numberCutGenerators_) { |
---|
4276 | generator_ = new CbcCutGenerator * [numberCutGenerators_]; |
---|
4277 | virginGenerator_ = new CbcCutGenerator * [numberCutGenerators_]; |
---|
4278 | int i; |
---|
4279 | for (i=0;i<numberCutGenerators_;i++) { |
---|
4280 | generator_[i]=new CbcCutGenerator(*rhs.generator_[i]); |
---|
4281 | virginGenerator_[i]=new CbcCutGenerator(*rhs.virginGenerator_[i]); |
---|
4282 | } |
---|
4283 | } else { |
---|
4284 | generator_=NULL; |
---|
4285 | virginGenerator_=NULL; |
---|
4286 | } |
---|
4287 | numberHeuristics_ = rhs.numberHeuristics_; |
---|
4288 | if (numberHeuristics_) { |
---|
4289 | heuristic_ = new CbcHeuristic * [numberHeuristics_]; |
---|
4290 | memcpy(heuristic_,rhs.heuristic_, |
---|
4291 | numberHeuristics_*sizeof(CbcHeuristic *)); |
---|
4292 | } else { |
---|
4293 | heuristic_=NULL; |
---|
4294 | } |
---|
4295 | lastHeuristic_ = NULL; |
---|
4296 | if (eventHandler_) |
---|
4297 | delete eventHandler_ ; |
---|
4298 | if (rhs.eventHandler_) |
---|
4299 | { eventHandler_ = rhs.eventHandler_->clone() ; } |
---|
4300 | else |
---|
4301 | { eventHandler_ = NULL ; } |
---|
4302 | if (ownObjects_) { |
---|
4303 | for (i=0;i<numberObjects_;i++) |
---|
4304 | delete object_[i]; |
---|
4305 | delete [] object_; |
---|
4306 | numberObjects_=rhs.numberObjects_; |
---|
4307 | if (numberObjects_) { |
---|
4308 | object_ = new OsiObject * [numberObjects_]; |
---|
4309 | int i; |
---|
4310 | for (i=0;i<numberObjects_;i++) |
---|
4311 | object_[i]=(rhs.object_[i])->clone(); |
---|
4312 | } else { |
---|
4313 | object_=NULL; |
---|
4314 | } |
---|
4315 | } else { |
---|
4316 | // assume will be redone |
---|
4317 | numberObjects_=0; |
---|
4318 | object_=NULL; |
---|
4319 | } |
---|
4320 | delete [] originalColumns_; |
---|
4321 | if (rhs.originalColumns_) { |
---|
4322 | int numberColumns = rhs.getNumCols(); |
---|
4323 | originalColumns_= new int [numberColumns]; |
---|
4324 | memcpy(originalColumns_,rhs.originalColumns_,numberColumns*sizeof(int)); |
---|
4325 | } else { |
---|
4326 | originalColumns_=NULL; |
---|
4327 | } |
---|
4328 | nodeCompare_=rhs.nodeCompare_->clone(); |
---|
4329 | problemFeasibility_=rhs.problemFeasibility_->clone(); |
---|
4330 | delete tree_; |
---|
4331 | tree_= rhs.tree_->clone(); |
---|
4332 | if (rhs.branchingMethod_) |
---|
4333 | branchingMethod_=rhs.branchingMethod_->clone(); |
---|
4334 | else |
---|
4335 | branchingMethod_=NULL; |
---|
4336 | if (rhs.cutModifier_) |
---|
4337 | cutModifier_=rhs.cutModifier_->clone(); |
---|
4338 | else |
---|
4339 | cutModifier_=NULL; |
---|
4340 | delete strategy_; |
---|
4341 | if (rhs.strategy_) |
---|
4342 | strategy_=rhs.strategy_->clone(); |
---|
4343 | else |
---|
4344 | strategy_=NULL; |
---|
4345 | parentModel_=rhs.parentModel_; |
---|
4346 | appData_=rhs.appData_; |
---|
4347 | |
---|
4348 | delete [] integerVariable_; |
---|
4349 | numberIntegers_=rhs.numberIntegers_; |
---|
4350 | if (numberIntegers_) { |
---|
4351 | integerVariable_ = new int [numberIntegers_]; |
---|
4352 | memcpy(integerVariable_,rhs.integerVariable_, |
---|
4353 | numberIntegers_*sizeof(int)); |
---|
4354 | integerInfo_ = CoinCopyOfArray(rhs.integerInfo_,rhs.getNumCols()); |
---|
4355 | } else { |
---|
4356 | integerVariable_ = NULL; |
---|
4357 | integerInfo_=NULL; |
---|
4358 | } |
---|
4359 | if (rhs.hotstartSolution_) { |
---|
4360 | int numberColumns = solver_->getNumCols(); |
---|
4361 | hotstartSolution_ = CoinCopyOfArray(rhs.hotstartSolution_,numberColumns); |
---|
4362 | hotstartPriorities_ = CoinCopyOfArray(rhs.hotstartPriorities_,numberColumns); |
---|
4363 | } else { |
---|
4364 | hotstartSolution_ = NULL; |
---|
4365 | hotstartPriorities_ =NULL; |
---|
4366 | } |
---|
4367 | numberRowsAtContinuous_ = rhs.numberRowsAtContinuous_; |
---|
4368 | maximumNumberCuts_=rhs.maximumNumberCuts_; |
---|
4369 | phase_ = rhs.phase_; |
---|
4370 | currentNumberCuts_=rhs.currentNumberCuts_; |
---|
4371 | maximumDepth_= rhs.maximumDepth_; |
---|
4372 | delete [] addedCuts_; |
---|
4373 | delete [] walkback_; |
---|
4374 | // These are only used as temporary arrays so need not be filled |
---|
4375 | if (maximumNumberCuts_) { |
---|
4376 | addedCuts_ = new CbcCountRowCut * [maximumNumberCuts_]; |
---|
4377 | } else { |
---|
4378 | addedCuts_ = NULL; |
---|
4379 | } |
---|
4380 | bestSolutionBasis_ = rhs.bestSolutionBasis_; |
---|
4381 | nextRowCut_ = NULL; |
---|
4382 | currentNode_ = NULL; |
---|
4383 | if (maximumDepth_) |
---|
4384 | walkback_ = new CbcNodeInfo * [maximumDepth_]; |
---|
4385 | else |
---|
4386 | walkback_ = NULL; |
---|
4387 | synchronizeModel(); |
---|
4388 | cbcColLower_ = NULL; |
---|
4389 | cbcColUpper_ = NULL; |
---|
4390 | cbcRowLower_ = NULL; |
---|
4391 | cbcRowUpper_ = NULL; |
---|
4392 | cbcColSolution_ = NULL; |
---|
4393 | cbcRowPrice_ = NULL; |
---|
4394 | cbcReducedCost_ = NULL; |
---|
4395 | cbcRowActivity_ = NULL; |
---|
4396 | } |
---|
4397 | return *this; |
---|
4398 | } |
---|
4399 | // Destructor |
---|
4400 | CbcModel::~CbcModel () |
---|
4401 | { |
---|
4402 | if (defaultHandler_) { |
---|
4403 | delete handler_; |
---|
4404 | handler_ = NULL; |
---|
4405 | } |
---|
4406 | delete tree_; |
---|
4407 | tree_=NULL; |
---|
4408 | if (modelOwnsSolver()) { |
---|
4409 | delete solver_; |
---|
4410 | solver_ = NULL; |
---|
4411 | } |
---|
4412 | gutsOfDestructor(); |
---|
4413 | delete eventHandler_ ; |
---|
4414 | eventHandler_ = NULL ; |
---|
4415 | } |
---|
4416 | // Clears out as much as possible (except solver) |
---|
4417 | void |
---|
4418 | CbcModel::gutsOfDestructor() |
---|
4419 | { |
---|
4420 | delete referenceSolver_; |
---|
4421 | referenceSolver_=NULL; |
---|
4422 | int i; |
---|
4423 | for (i=0;i<numberCutGenerators_;i++) { |
---|
4424 | delete generator_[i]; |
---|
4425 | delete virginGenerator_[i]; |
---|
4426 | } |
---|
4427 | delete [] generator_; |
---|
4428 | delete [] virginGenerator_; |
---|
4429 | generator_=NULL; |
---|
4430 | virginGenerator_=NULL; |
---|
4431 | for (i=0;i<numberHeuristics_;i++) |
---|
4432 | delete heuristic_[i]; |
---|
4433 | delete [] heuristic_; |
---|
4434 | heuristic_=NULL; |
---|
4435 | delete nodeCompare_; |
---|
4436 | nodeCompare_=NULL; |
---|
4437 | delete problemFeasibility_; |
---|
4438 | problemFeasibility_=NULL; |
---|
4439 | delete [] originalColumns_; |
---|
4440 | originalColumns_=NULL; |
---|
4441 | delete strategy_; |
---|
4442 | #if NEW_UPDATE_OBJECT>1 |
---|
4443 | delete [] updateItems_; |
---|
4444 | updateItems_=NULL; |
---|
4445 | numberUpdateItems_=0; |
---|
4446 | maximumNumberUpdateItems_=0; |
---|
4447 | #endif |
---|
4448 | gutsOfDestructor2(); |
---|
4449 | } |
---|
4450 | // Clears out enough to reset CbcModel |
---|
4451 | void |
---|
4452 | CbcModel::gutsOfDestructor2() |
---|
4453 | { |
---|
4454 | delete [] integerInfo_; |
---|
4455 | integerInfo_=NULL; |
---|
4456 | delete [] integerVariable_; |
---|
4457 | integerVariable_=NULL; |
---|
4458 | int i; |
---|
4459 | if (ownObjects_) { |
---|
4460 | for (i=0;i<numberObjects_;i++) |
---|
4461 | delete object_[i]; |
---|
4462 | delete [] object_; |
---|
4463 | } |
---|
4464 | ownObjects_=true; |
---|
4465 | object_=NULL; |
---|
4466 | numberIntegers_=0; |
---|
4467 | numberObjects_=0; |
---|
4468 | // Below here is whatever consensus is |
---|
4469 | ownership_ = 0x80000000; |
---|
4470 | delete branchingMethod_; |
---|
4471 | branchingMethod_=NULL; |
---|
4472 | delete cutModifier_; |
---|
4473 | cutModifier_=NULL; |
---|
4474 | resetModel(); |
---|
4475 | } |
---|
4476 | // Clears out enough to reset CbcModel |
---|
4477 | void |
---|
4478 | CbcModel::resetModel() |
---|
4479 | { |
---|
4480 | delete emptyWarmStart_ ; |
---|
4481 | emptyWarmStart_ =NULL; |
---|
4482 | delete continuousSolver_; |
---|
4483 | continuousSolver_=NULL; |
---|
4484 | delete [] bestSolution_; |
---|
4485 | bestSolution_=NULL; |
---|
4486 | delete [] currentSolution_; |
---|
4487 | currentSolution_=NULL; |
---|
4488 | delete [] continuousSolution_; |
---|
4489 | continuousSolution_=NULL; |
---|
4490 | solverCharacteristics_=NULL; |
---|
4491 | delete [] usedInSolution_; |
---|
4492 | usedInSolution_ = NULL; |
---|
4493 | testSolution_=NULL; |
---|
4494 | lastHeuristic_ = NULL; |
---|
4495 | delete [] addedCuts_; |
---|
4496 | addedCuts_=NULL; |
---|
4497 | nextRowCut_ = NULL; |
---|
4498 | currentNode_ = NULL; |
---|
4499 | delete [] walkback_; |
---|
4500 | walkback_=NULL; |
---|
4501 | delete [] whichGenerator_; |
---|
4502 | whichGenerator_ = NULL; |
---|
4503 | for (int i=0;i<maximumStatistics_;i++) |
---|
4504 | delete statistics_[i]; |
---|
4505 | delete [] statistics_; |
---|
4506 | statistics_=NULL; |
---|
4507 | maximumDepthActual_ = 0; |
---|
4508 | numberDJFixed_ =0.0; |
---|
4509 | delete probingInfo_; |
---|
4510 | probingInfo_ = NULL; |
---|
4511 | maximumStatistics_=0; |
---|
4512 | delete [] analyzeResults_; |
---|
4513 | analyzeResults_=NULL; |
---|
4514 | bestObjective_=COIN_DBL_MAX; |
---|
4515 | bestPossibleObjective_=COIN_DBL_MAX; |
---|
4516 | sumChangeObjective1_=0.0; |
---|
4517 | sumChangeObjective2_=0.0; |
---|
4518 | numberSolutions_=0; |
---|
4519 | stateOfSearch_=0; |
---|
4520 | delete [] hotstartSolution_; |
---|
4521 | hotstartSolution_=NULL; |
---|
4522 | delete [] hotstartPriorities_; |
---|
4523 | hotstartPriorities_=NULL; |
---|
4524 | numberHeuristicSolutions_=0; |
---|
4525 | numberNodes_=0; |
---|
4526 | numberNodes2_=0; |
---|
4527 | numberIterations_=0; |
---|
4528 | status_=-1; |
---|
4529 | secondaryStatus_=-1; |
---|
4530 | maximumNumberCuts_=0; |
---|
4531 | phase_=0; |
---|
4532 | currentNumberCuts_=0; |
---|
4533 | maximumDepth_=0; |
---|
4534 | nextRowCut_=NULL; |
---|
4535 | currentNode_=NULL; |
---|
4536 | // clear out tree |
---|
4537 | if (tree_&&tree_->size()) |
---|
4538 | tree_->cleanTree(this, -1.0e100,bestPossibleObjective_) ; |
---|
4539 | subTreeModel_=NULL; |
---|
4540 | numberStoppedSubTrees_=0; |
---|
4541 | numberInfeasibleNodes_=0; |
---|
4542 | numberGlobalViolations_=0; |
---|
4543 | continuousObjective_=0.0; |
---|
4544 | originalContinuousObjective_=0.0; |
---|
4545 | continuousInfeasibilities_=0; |
---|
4546 | numberFixedAtRoot_=0; |
---|
4547 | numberFixedNow_=0; |
---|
4548 | stoppedOnGap_=false; |
---|
4549 | eventHappened_=false; |
---|
4550 | numberLongStrong_=0; |
---|
4551 | numberOldActiveCuts_=0; |
---|
4552 | numberNewCuts_=0; |
---|
4553 | searchStrategy_=-1; |
---|
4554 | numberStrongIterations_=0; |
---|
4555 | // Parameters which need to be reset |
---|
4556 | setCutoff(COIN_DBL_MAX); |
---|
4557 | dblParam_[CbcCutoffIncrement] = 1e-5; |
---|
4558 | dblParam_[CbcCurrentCutoff] = 1.0e100; |
---|
4559 | dblParam_[CbcCurrentObjectiveValue] = 1.0e100; |
---|
4560 | dblParam_[CbcCurrentMinimizationObjectiveValue] = 1.0e100; |
---|
4561 | } |
---|
4562 | // Move status, nodes etc etc across |
---|
4563 | void |
---|
4564 | CbcModel::moveInfo(const CbcModel & rhs) |
---|
4565 | { |
---|
4566 | bestObjective_ = rhs.bestObjective_; |
---|
4567 | bestPossibleObjective_=rhs.bestPossibleObjective_; |
---|
4568 | numberSolutions_=rhs.numberSolutions_; |
---|
4569 | numberHeuristicSolutions_=rhs.numberHeuristicSolutions_; |
---|
4570 | numberNodes_ = rhs.numberNodes_; |
---|
4571 | // In case of interrupt |
---|
4572 | intParam_[0] = rhs.intParam_[0]; |
---|
4573 | numberNodes2_ = rhs.numberNodes2_; |
---|
4574 | numberIterations_ = rhs.numberIterations_; |
---|
4575 | status_ = rhs.status_; |
---|
4576 | secondaryStatus_ = rhs.secondaryStatus_; |
---|
4577 | numberStoppedSubTrees_ = rhs.numberStoppedSubTrees_; |
---|
4578 | numberInfeasibleNodes_ = rhs.numberInfeasibleNodes_; |
---|
4579 | continuousObjective_=rhs.continuousObjective_; |
---|
4580 | originalContinuousObjective_ = rhs.originalContinuousObjective_; |
---|
4581 | continuousInfeasibilities_ = rhs.continuousInfeasibilities_; |
---|
4582 | numberFixedAtRoot_ = rhs.numberFixedAtRoot_; |
---|
4583 | numberFixedNow_ = rhs.numberFixedNow_; |
---|
4584 | stoppedOnGap_ = rhs.stoppedOnGap_; |
---|
4585 | eventHappened_ = rhs.eventHappened_; |
---|
4586 | numberLongStrong_ = rhs.numberLongStrong_; |
---|
4587 | numberStrongIterations_ = rhs.numberStrongIterations_; |
---|
4588 | strongInfo_[0]=rhs.strongInfo_[0]; |
---|
4589 | strongInfo_[1]=rhs.strongInfo_[1]; |
---|
4590 | strongInfo_[2]=rhs.strongInfo_[2]; |
---|
4591 | numberRowsAtContinuous_ = rhs.numberRowsAtContinuous_; |
---|
4592 | maximumDepth_= rhs.maximumDepth_; |
---|
4593 | } |
---|
4594 | // Save a copy of the current solver so can be reset to |
---|
4595 | void |
---|
4596 | CbcModel::saveReferenceSolver() |
---|
4597 | { |
---|
4598 | delete referenceSolver_; |
---|
4599 | referenceSolver_= solver_->clone(); |
---|
4600 | } |
---|
4601 | |
---|
4602 | // Uses a copy of reference solver to be current solver |
---|
4603 | void |
---|
4604 | CbcModel::resetToReferenceSolver() |
---|
4605 | { |
---|
4606 | delete solver_; |
---|
4607 | solver_ = referenceSolver_->clone(); |
---|
4608 | // clear many things |
---|
4609 | gutsOfDestructor2(); |
---|
4610 | // Reset cutoff |
---|
4611 | // Solvers know about direction |
---|
4612 | double direction = solver_->getObjSense(); |
---|
4613 | double value; |
---|
4614 | solver_->getDblParam(OsiDualObjectiveLimit,value); |
---|
4615 | setCutoff(value*direction); |
---|
4616 | } |
---|
4617 | |
---|
4618 | // Are there a numerical difficulties? |
---|
4619 | bool |
---|
4620 | CbcModel::isAbandoned() const |
---|
4621 | { |
---|
4622 | return status_ == 2; |
---|
4623 | } |
---|
4624 | // Is optimality proven? |
---|
4625 | bool |
---|
4626 | CbcModel::isProvenOptimal() const |
---|
4627 | { |
---|
4628 | if (!status_ && bestObjective_<1.0e30) |
---|
4629 | return true; |
---|
4630 | else |
---|
4631 | return false; |
---|
4632 | } |
---|
4633 | // Is infeasiblity proven (or none better than cutoff)? |
---|
4634 | bool |
---|
4635 | CbcModel::isProvenInfeasible() const |
---|
4636 | { |
---|
4637 | if (!status_ && bestObjective_>=1.0e30) |
---|
4638 | return true; |
---|
4639 | else |
---|
4640 | return false; |
---|
4641 | } |
---|
4642 | // Was continuous solution unbounded |
---|
4643 | bool |
---|
4644 | CbcModel::isContinuousUnbounded() const |
---|
4645 | { |
---|
4646 | if (!status_ && secondaryStatus_==7) |
---|
4647 | return true; |
---|
4648 | else |
---|
4649 | return false; |
---|
4650 | } |
---|
4651 | // Was continuous solution unbounded |
---|
4652 | bool |
---|
4653 | CbcModel::isProvenDualInfeasible() const |
---|
4654 | { |
---|
4655 | if (!status_ && secondaryStatus_==7) |
---|
4656 | return true; |
---|
4657 | else |
---|
4658 | return false; |
---|
4659 | } |
---|
4660 | // Node limit reached? |
---|
4661 | bool |
---|
4662 | CbcModel::isNodeLimitReached() const |
---|
4663 | { |
---|
4664 | return numberNodes_ >= intParam_[CbcMaxNumNode]; |
---|
4665 | } |
---|
4666 | // Time limit reached? |
---|
4667 | bool |
---|
4668 | CbcModel::isSecondsLimitReached() const |
---|
4669 | { |
---|
4670 | if (status_==1&&secondaryStatus_==4) |
---|
4671 | return true; |
---|
4672 | else |
---|
4673 | return false; |
---|
4674 | } |
---|
4675 | // Solution limit reached? |
---|
4676 | bool |
---|
4677 | CbcModel::isSolutionLimitReached() const |
---|
4678 | { |
---|
4679 | return numberSolutions_ >= intParam_[CbcMaxNumSol]; |
---|
4680 | } |
---|
4681 | // Set language |
---|
4682 | void |
---|
4683 | CbcModel::newLanguage(CoinMessages::Language language) |
---|
4684 | { |
---|
4685 | messages_ = CbcMessage(language); |
---|
4686 | } |
---|
4687 | void |
---|
4688 | CbcModel::setNumberStrong(int number) |
---|
4689 | { |
---|
4690 | if (number<0) |
---|
4691 | numberStrong_=0; |
---|
4692 | else |
---|
4693 | numberStrong_=number; |
---|
4694 | } |
---|
4695 | void |
---|
4696 | CbcModel::setNumberBeforeTrust(int number) |
---|
4697 | { |
---|
4698 | if (number<-3) { |
---|
4699 | numberBeforeTrust_=0; |
---|
4700 | } else { |
---|
4701 | numberBeforeTrust_=number; |
---|
4702 | //numberStrong_ = CoinMax(numberStrong_,1); |
---|
4703 | } |
---|
4704 | } |
---|
4705 | void |
---|
4706 | CbcModel::setNumberPenalties(int number) |
---|
4707 | { |
---|
4708 | if (number<=0) { |
---|
4709 | numberPenalties_=0; |
---|
4710 | } else { |
---|
4711 | numberPenalties_=number; |
---|
4712 | } |
---|
4713 | } |
---|
4714 | void |
---|
4715 | CbcModel::setPenaltyScaleFactor(double value) |
---|
4716 | { |
---|
4717 | if (value<=0) { |
---|
4718 | penaltyScaleFactor_=3.0; |
---|
4719 | } else { |
---|
4720 | penaltyScaleFactor_=value; |
---|
4721 | } |
---|
4722 | } |
---|
4723 | void |
---|
4724 | CbcModel::setHowOftenGlobalScan(int number) |
---|
4725 | { |
---|
4726 | if (number<-1) |
---|
4727 | howOftenGlobalScan_=0; |
---|
4728 | else |
---|
4729 | howOftenGlobalScan_=number; |
---|
4730 | } |
---|
4731 | |
---|
4732 | // Add one generator |
---|
4733 | void |
---|
4734 | CbcModel::addCutGenerator(CglCutGenerator * generator, |
---|
4735 | int howOften, const char * name, |
---|
4736 | bool normal, bool atSolution, |
---|
4737 | bool whenInfeasible,int howOftenInSub, |
---|
4738 | int whatDepth, int whatDepthInSub) |
---|
4739 | { |
---|
4740 | CbcCutGenerator ** temp = generator_; |
---|
4741 | generator_ = new CbcCutGenerator * [numberCutGenerators_+1]; |
---|
4742 | memcpy(generator_,temp,numberCutGenerators_*sizeof(CbcCutGenerator *)); |
---|
4743 | delete[] temp ; |
---|
4744 | generator_[numberCutGenerators_]= |
---|
4745 | new CbcCutGenerator(this,generator, howOften, name, |
---|
4746 | normal,atSolution,whenInfeasible,howOftenInSub, |
---|
4747 | whatDepth, whatDepthInSub); |
---|
4748 | // and before any cahnges |
---|
4749 | temp = virginGenerator_; |
---|
4750 | virginGenerator_ = new CbcCutGenerator * [numberCutGenerators_+1]; |
---|
4751 | memcpy(virginGenerator_,temp,numberCutGenerators_*sizeof(CbcCutGenerator *)); |
---|
4752 | delete[] temp ; |
---|
4753 | virginGenerator_[numberCutGenerators_++]= |
---|
4754 | new CbcCutGenerator(this,generator, howOften, name, |
---|
4755 | normal,atSolution,whenInfeasible,howOftenInSub, |
---|
4756 | whatDepth, whatDepthInSub); |
---|
4757 | |
---|
4758 | } |
---|
4759 | // Add one heuristic |
---|
4760 | void |
---|
4761 | CbcModel::addHeuristic(CbcHeuristic * generator, const char *name) |
---|
4762 | { |
---|
4763 | CbcHeuristic ** temp = heuristic_; |
---|
4764 | heuristic_ = new CbcHeuristic * [numberHeuristics_+1]; |
---|
4765 | memcpy(heuristic_,temp,numberHeuristics_*sizeof(CbcHeuristic *)); |
---|
4766 | delete [] temp; |
---|
4767 | heuristic_[numberHeuristics_]=generator->clone(); |
---|
4768 | if (name) |
---|
4769 | { heuristic_[numberHeuristics_]->setHeuristicName(name) ; } |
---|
4770 | heuristic_[numberHeuristics_]->setSeed(987654321+numberHeuristics_); |
---|
4771 | numberHeuristics_++ ; |
---|
4772 | } |
---|
4773 | |
---|
4774 | /* |
---|
4775 | The last subproblem handled by the solver is not necessarily related to the |
---|
4776 | one being recreated, so the first action is to remove all cuts from the |
---|
4777 | constraint system. Next, traverse the tree from node to the root to |
---|
4778 | determine the basis size required for this subproblem and create an empty |
---|
4779 | basis with the right capacity. Finally, traverse the tree from root to |
---|
4780 | node, adjusting bounds in the constraint system, adjusting the basis, and |
---|
4781 | collecting the cuts that must be added to the constraint system. |
---|
4782 | applyToModel does the heavy lifting. |
---|
4783 | |
---|
4784 | addCuts1 is used in contexts where all that's desired is the list of cuts: |
---|
4785 | the node is already fathomed, and we're collecting cuts so that we can |
---|
4786 | adjust reference counts as we prune nodes. Arguably the two functions |
---|
4787 | should be separated. The culprit is applyToModel, which performs cut |
---|
4788 | collection and model adjustment. |
---|
4789 | |
---|
4790 | Certainly in the contexts where all we need is a list of cuts, there's no |
---|
4791 | point in passing in a valid basis --- an empty basis will do just fine. |
---|
4792 | */ |
---|
4793 | void CbcModel::addCuts1 (CbcNode * node, CoinWarmStartBasis *&lastws) |
---|
4794 | { int i; |
---|
4795 | int nNode=0; |
---|
4796 | int numberColumns = getNumCols(); |
---|
4797 | CbcNodeInfo * nodeInfo = node->nodeInfo(); |
---|
4798 | |
---|
4799 | /* |
---|
4800 | Remove all cuts from the constraint system. |
---|
4801 | (original comment includes ``see note below for later efficiency'', but |
---|
4802 | the reference isn't clear to me). |
---|
4803 | */ |
---|
4804 | solver_->restoreBaseModel(numberRowsAtContinuous_); |
---|
4805 | #if 0 |
---|
4806 | int currentNumberCuts = solver_->getNumRows()-numberRowsAtContinuous_; |
---|
4807 | int *which = new int[currentNumberCuts]; |
---|
4808 | for (i = 0 ; i < currentNumberCuts ; i++) |
---|
4809 | which[i] = i+numberRowsAtContinuous_; |
---|
4810 | solver_->deleteRows(currentNumberCuts,which); |
---|
4811 | delete [] which; |
---|
4812 | #endif |
---|
4813 | /* |
---|
4814 | Accumulate the path from node to the root in walkback_, and accumulate a |
---|
4815 | cut count in currentNumberCuts. |
---|
4816 | |
---|
4817 | original comment: when working then just unwind until where new node joins |
---|
4818 | old node (for cuts?) |
---|
4819 | */ |
---|
4820 | int currentNumberCuts = 0; |
---|
4821 | while (nodeInfo) { |
---|
4822 | //printf("nNode = %d, nodeInfo = %x\n",nNode,nodeInfo); |
---|
4823 | walkback_[nNode++]=nodeInfo; |
---|
4824 | currentNumberCuts += nodeInfo->numberCuts() ; |
---|
4825 | nodeInfo = nodeInfo->parent() ; |
---|
4826 | if (nNode==maximumDepth_) { |
---|
4827 | maximumDepth_ *= 2; |
---|
4828 | CbcNodeInfo ** temp = new CbcNodeInfo * [maximumDepth_]; |
---|
4829 | for (i=0;i<nNode;i++) |
---|
4830 | temp[i] = walkback_[i]; |
---|
4831 | delete [] walkback_; |
---|
4832 | walkback_ = temp; |
---|
4833 | } |
---|
4834 | } |
---|
4835 | /* |
---|
4836 | Create an empty basis with sufficient capacity for the constraint system |
---|
4837 | we'll construct: original system plus cuts. Make sure we have capacity to |
---|
4838 | record those cuts in addedCuts_. |
---|
4839 | |
---|
4840 | The method of adjusting the basis at a FullNodeInfo object (the root, for |
---|
4841 | example) is to use a copy constructor to duplicate the basis held in the |
---|
4842 | nodeInfo, then resize it and return the new basis object. Guaranteed, |
---|
4843 | lastws will point to a different basis when it returns. We pass in a basis |
---|
4844 | because we need the parameter to return the allocated basis, and it's an |
---|
4845 | easy way to pass in the size. But we take a hit for memory allocation. |
---|
4846 | */ |
---|
4847 | currentNumberCuts_=currentNumberCuts; |
---|
4848 | if (currentNumberCuts > maximumNumberCuts_) { |
---|
4849 | maximumNumberCuts_ = currentNumberCuts; |
---|
4850 | delete [] addedCuts_; |
---|
4851 | addedCuts_ = new CbcCountRowCut * [maximumNumberCuts_]; |
---|
4852 | } |
---|
4853 | lastws->setSize(numberColumns,numberRowsAtContinuous_+currentNumberCuts); |
---|
4854 | /* |
---|
4855 | This last bit of code traverses the path collected in walkback_ from the |
---|
4856 | root back to node. At the end of the loop, |
---|
4857 | * lastws will be an appropriate basis for node; |
---|
4858 | * variable bounds in the constraint system will be set to be correct for |
---|
4859 | node; and |
---|
4860 | * addedCuts_ will be set to a list of cuts that need to be added to the |
---|
4861 | constraint system at node. |
---|
4862 | applyToModel does all the heavy lifting. |
---|
4863 | */ |
---|
4864 | currentNumberCuts=0; |
---|
4865 | //#define CBC_PRINT2 |
---|
4866 | #ifdef CBC_PRINT2 |
---|
4867 | printf("Starting bounds at node %d\n",numberNodes_); |
---|
4868 | #endif |
---|
4869 | while (nNode) { |
---|
4870 | --nNode; |
---|
4871 | walkback_[nNode]->applyToModel(this,lastws,addedCuts_,currentNumberCuts); |
---|
4872 | } |
---|
4873 | if (0) { |
---|
4874 | int numberDebugValues=18; |
---|
4875 | double * debugValues = new double[numberDebugValues]; |
---|
4876 | CoinZeroN(debugValues,numberDebugValues); |
---|
4877 | debugValues[1]=6.0; |
---|
4878 | debugValues[3]=60.0; |
---|
4879 | debugValues[4]=6.0; |
---|
4880 | debugValues[6]=60.0; |
---|
4881 | debugValues[7]=16.0; |
---|
4882 | debugValues[9]=70.0; |
---|
4883 | debugValues[10]=7.0; |
---|
4884 | debugValues[12]=70.0; |
---|
4885 | debugValues[13]=12.0; |
---|
4886 | debugValues[15]=75.0; |
---|
4887 | int nBad=0; |
---|
4888 | for (int j=0;j<numberColumns;j++) { |
---|
4889 | if (integerInfo_[j]) { |
---|
4890 | if(solver_->getColLower()[j]>debugValues[j]|| |
---|
4891 | solver_->getColUpper()[j]<debugValues[j]) { |
---|
4892 | printf("** (%g) ** ",debugValues[j]); |
---|
4893 | nBad++; |
---|
4894 | } |
---|
4895 | printf("%d bounds %g %g\n",j,solver_->getColLower()[j],solver_->getColUpper()[j]); |
---|
4896 | } |
---|
4897 | } |
---|
4898 | if (nBad) |
---|
4899 | printf("%d BAD\n",nBad); |
---|
4900 | else |
---|
4901 | printf("OKAY\n"); |
---|
4902 | delete [] debugValues; |
---|
4903 | } |
---|
4904 | } |
---|
4905 | |
---|
4906 | /* |
---|
4907 | adjustCuts might be a better name: If the node is feasible, we sift through |
---|
4908 | the cuts collected by addCuts1, add the ones that are tight and omit the |
---|
4909 | ones that are loose. If the node is infeasible, we just adjust the |
---|
4910 | reference counts to reflect that we're about to prune this node and its |
---|
4911 | descendants. |
---|
4912 | */ |
---|
4913 | int CbcModel::addCuts (CbcNode *node, CoinWarmStartBasis *&lastws,bool canFix) |
---|
4914 | { |
---|
4915 | /* |
---|
4916 | addCuts1 performs step 1 of restoring the subproblem at this node; see the |
---|
4917 | comments there. |
---|
4918 | */ |
---|
4919 | addCuts1(node,lastws); |
---|
4920 | int i; |
---|
4921 | int numberColumns = getNumCols(); |
---|
4922 | if (solver_->getNumRows()>maximumRows_) { |
---|
4923 | maximumRows_ = solver_->getNumRows(); |
---|
4924 | workingBasis_.resize(maximumRows_,numberColumns); |
---|
4925 | } |
---|
4926 | CbcNodeInfo * nodeInfo = node->nodeInfo(); |
---|
4927 | double cutoff = getCutoff() ; |
---|
4928 | int currentNumberCuts=currentNumberCuts_; |
---|
4929 | if (canFix) { |
---|
4930 | bool feasible=true; |
---|
4931 | const double *lower = solver_->getColLower() ; |
---|
4932 | const double *upper = solver_->getColUpper() ; |
---|
4933 | double * newLower = analyzeResults_; |
---|
4934 | double * objLower = newLower+numberIntegers_; |
---|
4935 | double * newUpper = objLower+numberIntegers_; |
---|
4936 | double * objUpper = newUpper+numberIntegers_; |
---|
4937 | int n=0; |
---|
4938 | for (i=0;i<numberIntegers_;i++) { |
---|
4939 | int iColumn = integerVariable_[i]; |
---|
4940 | bool changed=false; |
---|
4941 | double lo = 0.0; |
---|
4942 | double up = 0.0; |
---|
4943 | if (objLower[i]>cutoff) { |
---|
4944 | lo = lower[iColumn]; |
---|
4945 | up = upper[iColumn]; |
---|
4946 | if (lo<newLower[i]) { |
---|
4947 | lo = newLower[i]; |
---|
4948 | solver_->setColLower(iColumn,lo); |
---|
4949 | changed=true; |
---|
4950 | n++; |
---|
4951 | } |
---|
4952 | if (objUpper[i]>cutoff) { |
---|
4953 | if (up>newUpper[i]) { |
---|
4954 | up = newUpper[i]; |
---|
4955 | solver_->setColUpper(iColumn,up); |
---|
4956 | changed=true; |
---|
4957 | n++; |
---|
4958 | } |
---|
4959 | } |
---|
4960 | } else if (objUpper[i]>cutoff) { |
---|
4961 | lo = lower[iColumn]; |
---|
4962 | up = upper[iColumn]; |
---|
4963 | if (up>newUpper[i]) { |
---|
4964 | up = newUpper[i]; |
---|
4965 | solver_->setColUpper(iColumn,up); |
---|
4966 | changed=true; |
---|
4967 | n++; |
---|
4968 | } |
---|
4969 | } |
---|
4970 | if (changed&&lo>up) { |
---|
4971 | feasible=false; |
---|
4972 | break; |
---|
4973 | } |
---|
4974 | } |
---|
4975 | if (!feasible) { |
---|
4976 | printf("analysis says node infeas\n"); |
---|
4977 | cutoff=-COIN_DBL_MAX; |
---|
4978 | } |
---|
4979 | } |
---|
4980 | /* |
---|
4981 | If the node can't be fathomed by bound, reinstall tight cuts in the |
---|
4982 | constraint system. Even if there are no cuts, we'll want to set the |
---|
4983 | reconstructed basis in the solver. |
---|
4984 | */ |
---|
4985 | if (node->objectiveValue() < cutoff||numberThreads_) |
---|
4986 | { |
---|
4987 | # ifdef CBC_CHECK_BASIS |
---|
4988 | printf("addCuts: expanded basis; rows %d+%d\n", |
---|
4989 | numberRowsAtContinuous_,currentNumberCuts); |
---|
4990 | lastws->print(); |
---|
4991 | # endif |
---|
4992 | /* |
---|
4993 | Adjust the basis and constraint system so that we retain only active cuts. |
---|
4994 | There are three steps: |
---|
4995 | 1) Scan the basis. Sort the cuts into effective cuts to be kept and |
---|
4996 | loose cuts to be dropped. |
---|
4997 | 2) Drop the loose cuts and resize the basis to fit. |
---|
4998 | 3) Install the tight cuts in the constraint system (applyRowCuts) and |
---|
4999 | and install the basis (setWarmStart). |
---|
5000 | Use of compressRows conveys we're compressing the basis and not just |
---|
5001 | tweaking the artificialStatus_ array. |
---|
5002 | */ |
---|
5003 | if (currentNumberCuts > 0) { |
---|
5004 | int numberToAdd = 0; |
---|
5005 | const OsiRowCut **addCuts; |
---|
5006 | int numberToDrop = 0 ; |
---|
5007 | int *cutsToDrop ; |
---|
5008 | addCuts = new const OsiRowCut* [currentNumberCuts]; |
---|
5009 | cutsToDrop = new int[currentNumberCuts] ; |
---|
5010 | assert (currentNumberCuts+numberRowsAtContinuous_<=lastws->getNumArtificial()); |
---|
5011 | for (i=0;i<currentNumberCuts;i++) { |
---|
5012 | CoinWarmStartBasis::Status status = |
---|
5013 | lastws->getArtifStatus(i+numberRowsAtContinuous_); |
---|
5014 | if (addedCuts_[i] && |
---|
5015 | (status != CoinWarmStartBasis::basic || |
---|
5016 | addedCuts_[i]->effectiveness()==COIN_DBL_MAX)) { |
---|
5017 | # ifdef CHECK_CUT_COUNTS |
---|
5018 | printf("Using cut %d %x as row %d\n",i,addedCuts_[i], |
---|
5019 | numberRowsAtContinuous_+numberToAdd); |
---|
5020 | # endif |
---|
5021 | addCuts[numberToAdd++] = addedCuts_[i]; |
---|
5022 | } else { |
---|
5023 | # ifdef CHECK_CUT_COUNTS |
---|
5024 | printf("Dropping cut %d %x\n",i,addedCuts_[i]); |
---|
5025 | # endif |
---|
5026 | addedCuts_[i]=NULL; |
---|
5027 | cutsToDrop[numberToDrop++] = numberRowsAtContinuous_+i ; |
---|
5028 | } |
---|
5029 | } |
---|
5030 | int numberRowsNow=numberRowsAtContinuous_+numberToAdd; |
---|
5031 | lastws->compressRows(numberToDrop,cutsToDrop) ; |
---|
5032 | lastws->resize(numberRowsNow,numberColumns); |
---|
5033 | solver_->applyRowCuts(numberToAdd,addCuts); |
---|
5034 | # ifdef CBC_CHECK_BASIS |
---|
5035 | printf("addCuts: stripped basis; rows %d + %d\n", |
---|
5036 | numberRowsAtContinuous_,numberToAdd); |
---|
5037 | lastws->print(); |
---|
5038 | # endif |
---|
5039 | //for (i=0;i<numberToAdd;i++) |
---|
5040 | //delete addCuts[i]; |
---|
5041 | delete [] addCuts; |
---|
5042 | delete [] cutsToDrop ; |
---|
5043 | } |
---|
5044 | /* |
---|
5045 | Set the basis in the solver. |
---|
5046 | */ |
---|
5047 | solver_->setWarmStart(lastws); |
---|
5048 | #if 0 |
---|
5049 | if ((numberNodes_%printFrequency_)==0) { |
---|
5050 | printf("Objective %g, depth %d, unsatisfied %d\n", |
---|
5051 | node->objectiveValue(), |
---|
5052 | node->depth(),node->numberUnsatisfied()); |
---|
5053 | } |
---|
5054 | #endif |
---|
5055 | /* |
---|
5056 | Clean up and we're out of here. |
---|
5057 | */ |
---|
5058 | numberNodes_++; |
---|
5059 | return 0; |
---|
5060 | } |
---|
5061 | /* |
---|
5062 | This node has been fathomed by bound as we try to revive it out of the live |
---|
5063 | set. Adjust the cut reference counts to reflect that we no longer need to |
---|
5064 | explore the remaining branch arms, hence they will no longer reference any |
---|
5065 | cuts. Cuts whose reference count falls to zero are deleted. |
---|
5066 | */ |
---|
5067 | else |
---|
5068 | { int i; |
---|
5069 | if (currentNumberCuts) { |
---|
5070 | #ifndef CBC_DETERMINISTIC_THREAD |
---|
5071 | lockThread(); |
---|
5072 | #endif |
---|
5073 | int numberLeft = nodeInfo->numberBranchesLeft(); |
---|
5074 | for (i = 0 ; i < currentNumberCuts ; i++) |
---|
5075 | { if (addedCuts_[i]) |
---|
5076 | { if (!addedCuts_[i]->decrement(numberLeft)) |
---|
5077 | { delete addedCuts_[i]; |
---|
5078 | addedCuts_[i] = NULL; } } } |
---|
5079 | #ifndef CBC_DETERMINISTIC_THREAD |
---|
5080 | unlockThread(); |
---|
5081 | #endif |
---|
5082 | } |
---|
5083 | return 1 ; } |
---|
5084 | } |
---|
5085 | |
---|
5086 | |
---|
5087 | /* |
---|
5088 | Perform reduced cost fixing on integer variables. |
---|
5089 | |
---|
5090 | The variables in question are already nonbasic at bound. We're just nailing |
---|
5091 | down the current situation. |
---|
5092 | */ |
---|
5093 | |
---|
5094 | int CbcModel::reducedCostFix () |
---|
5095 | |
---|
5096 | { |
---|
5097 | if(!solverCharacteristics_->reducedCostsAccurate()) |
---|
5098 | return 0; //NLP |
---|
5099 | double cutoff = getCutoff() ; |
---|
5100 | double direction = solver_->getObjSense() ; |
---|
5101 | double gap = cutoff - solver_->getObjValue()*direction ; |
---|
5102 | double tolerance; |
---|
5103 | solver_->getDblParam(OsiDualTolerance,tolerance) ; |
---|
5104 | if (gap<=0.0) |
---|
5105 | return 0; |
---|
5106 | gap += 100.0*tolerance; |
---|
5107 | double integerTolerance = getDblParam(CbcIntegerTolerance) ; |
---|
5108 | |
---|
5109 | const double *lower = solver_->getColLower() ; |
---|
5110 | const double *upper = solver_->getColUpper() ; |
---|
5111 | const double *solution = solver_->getColSolution() ; |
---|
5112 | const double *reducedCost = solver_->getReducedCost() ; |
---|
5113 | |
---|
5114 | int numberFixed = 0 ; |
---|
5115 | |
---|
5116 | # ifdef COIN_HAS_CLP |
---|
5117 | OsiClpSolverInterface * clpSolver |
---|
5118 | = dynamic_cast<OsiClpSolverInterface *> (solver_); |
---|
5119 | ClpSimplex * clpSimplex=NULL; |
---|
5120 | if (clpSolver) |
---|
5121 | clpSimplex = clpSolver->getModelPtr(); |
---|
5122 | # endif |
---|
5123 | for (int i = 0 ; i < numberIntegers_ ; i++) |
---|
5124 | { int iColumn = integerVariable_[i] ; |
---|
5125 | double djValue = direction*reducedCost[iColumn] ; |
---|
5126 | if (upper[iColumn]-lower[iColumn] > integerTolerance) |
---|
5127 | { if (solution[iColumn] < lower[iColumn]+integerTolerance && djValue > gap) |
---|
5128 | { solver_->setColUpper(iColumn,lower[iColumn]) ; |
---|
5129 | #ifdef COIN_HAS_CLP |
---|
5130 | // may just have been fixed before |
---|
5131 | if (clpSimplex) |
---|
5132 | assert(clpSimplex->getColumnStatus(iColumn)==ClpSimplex::atLowerBound|| |
---|
5133 | clpSimplex->getColumnStatus(iColumn)==ClpSimplex::isFixed); |
---|
5134 | #endif |
---|
5135 | numberFixed++ ; } |
---|
5136 | else |
---|
5137 | if (solution[iColumn] > upper[iColumn]-integerTolerance && -djValue > gap) |
---|
5138 | { solver_->setColLower(iColumn,upper[iColumn]) ; |
---|
5139 | #ifdef COIN_HAS_CLP |
---|
5140 | // may just have been fixed before |
---|
5141 | if (clpSimplex) |
---|
5142 | assert(clpSimplex->getColumnStatus(iColumn)==ClpSimplex::atUpperBound|| |
---|
5143 | clpSimplex->getColumnStatus(iColumn)==ClpSimplex::isFixed); |
---|
5144 | #endif |
---|
5145 | numberFixed++ ; } } } |
---|
5146 | numberDJFixed_ += numberFixed; |
---|
5147 | return numberFixed; } |
---|
5148 | |
---|
5149 | // Collect coding to replace whichGenerator |
---|
5150 | void |
---|
5151 | CbcModel::resizeWhichGenerator(int numberNow, int numberAfter) |
---|
5152 | { |
---|
5153 | if (numberAfter > maximumWhich_) { |
---|
5154 | maximumWhich_ = CoinMax(maximumWhich_*2+100,numberAfter) ; |
---|
5155 | int * temp = new int[2*maximumWhich_] ; |
---|
5156 | memcpy(temp,whichGenerator_,numberNow*sizeof(int)) ; |
---|
5157 | delete [] whichGenerator_ ; |
---|
5158 | whichGenerator_ = temp ; |
---|
5159 | memset(whichGenerator_+numberNow,0,(maximumWhich_-numberNow)*sizeof(int)); |
---|
5160 | } |
---|
5161 | } |
---|
5162 | |
---|
5163 | /** Solve the model using cuts |
---|
5164 | |
---|
5165 | This version takes off redundant cuts from node. |
---|
5166 | Returns true if feasible. |
---|
5167 | |
---|
5168 | \todo |
---|
5169 | Why do I need to resolve the problem? What has been done between the last |
---|
5170 | relaxation and calling solveWithCuts? |
---|
5171 | |
---|
5172 | If numberTries == 0 then user did not want any cuts. |
---|
5173 | */ |
---|
5174 | |
---|
5175 | bool |
---|
5176 | CbcModel::solveWithCuts (OsiCuts &cuts, int numberTries, CbcNode *node) |
---|
5177 | /* |
---|
5178 | Parameters: |
---|
5179 | numberTries: (i) the maximum number of iterations for this round of cut |
---|
5180 | generation; if negative then we don't mind if drop is tiny. |
---|
5181 | |
---|
5182 | cuts: (o) all cuts generated in this round of cut generation |
---|
5183 | |
---|
5184 | node: (i) So we can update dynamic pseudo costs |
---|
5185 | */ |
---|
5186 | |
---|
5187 | |
---|
5188 | { |
---|
5189 | # ifdef COIN_HAS_CLP |
---|
5190 | OsiClpSolverInterface * clpSolver |
---|
5191 | = dynamic_cast<OsiClpSolverInterface *> (solver_); |
---|
5192 | int saveClpOptions=0; |
---|
5193 | if (clpSolver) |
---|
5194 | saveClpOptions = clpSolver->specialOptions(); |
---|
5195 | # endif |
---|
5196 | //solver_->writeMps("saved"); |
---|
5197 | #ifdef CBC_THREAD |
---|
5198 | CbcModel ** threadModel = NULL; |
---|
5199 | Coin_pthread_t * threadId = NULL; |
---|
5200 | pthread_cond_t condition_main; |
---|
5201 | pthread_mutex_t condition_mutex; |
---|
5202 | pthread_mutex_t * mutex2 = NULL; |
---|
5203 | pthread_cond_t * condition2 = NULL; |
---|
5204 | threadStruct * threadInfo = NULL; |
---|
5205 | void * saveMutex = NULL; |
---|
5206 | if (numberThreads_&&(threadMode_&2)!=0&&!numberNodes_) { |
---|
5207 | threadId = new Coin_pthread_t [numberThreads_]; |
---|
5208 | pthread_cond_init(&condition_main,NULL); |
---|
5209 | pthread_mutex_init(&condition_mutex,NULL); |
---|
5210 | threadModel = new CbcModel * [numberThreads_]; |
---|
5211 | threadInfo = new threadStruct [numberThreads_+1]; |
---|
5212 | mutex2 = new pthread_mutex_t [numberThreads_]; |
---|
5213 | condition2 = new pthread_cond_t [numberThreads_]; |
---|
5214 | saveMutex = mutex_; |
---|
5215 | for (int i=0;i<numberThreads_;i++) { |
---|
5216 | pthread_mutex_init(mutex2+i,NULL); |
---|
5217 | pthread_cond_init(condition2+i,NULL); |
---|
5218 | threadId[i].status =0; |
---|
5219 | threadModel[i]=new CbcModel; |
---|
5220 | threadModel[i]->generator_ = new CbcCutGenerator * [1]; |
---|
5221 | delete threadModel[i]->solver_; |
---|
5222 | threadModel[i]->solver_=NULL; |
---|
5223 | threadModel[i]->numberThreads_=numberThreads_; |
---|
5224 | mutex_ = (void *) (threadInfo+i); |
---|
5225 | threadInfo[i].thisModel=(CbcModel *) threadModel[i]; |
---|
5226 | threadInfo[i].baseModel=this; |
---|
5227 | threadInfo[i].threadIdOfBase.thr=pthread_self(); |
---|
5228 | threadInfo[i].mutex2=mutex2+i; |
---|
5229 | threadInfo[i].condition2=condition2+i; |
---|
5230 | threadInfo[i].returnCode=-1; |
---|
5231 | pthread_create(&threadId[i].thr,NULL,doCutsThread,threadInfo+i); |
---|
5232 | threadId[i].status = 1; |
---|
5233 | |
---|
5234 | } |
---|
5235 | // Do a partial one for base model |
---|
5236 | threadInfo[numberThreads_].baseModel=this; |
---|
5237 | mutex_ = (void *) (threadInfo+numberThreads_); |
---|
5238 | threadInfo[numberThreads_].condition2=&condition_main; |
---|
5239 | threadInfo[numberThreads_].mutex2=&condition_mutex; |
---|
5240 | } |
---|
5241 | #endif |
---|
5242 | bool feasible = true ; |
---|
5243 | int lastNumberCuts = 0 ; |
---|
5244 | double lastObjective = -1.0e100 ; |
---|
5245 | int violated = 0 ; |
---|
5246 | int numberRowsAtStart = solver_->getNumRows() ; |
---|
5247 | //printf("solver had %d rows\n",numberRowsAtStart); |
---|
5248 | int numberColumns = solver_->getNumCols() ; |
---|
5249 | CoinBigIndex numberElementsAtStart = solver_->getNumElements(); |
---|
5250 | |
---|
5251 | numberOldActiveCuts_ = numberRowsAtStart-numberRowsAtContinuous_ ; |
---|
5252 | numberNewCuts_ = 0 ; |
---|
5253 | |
---|
5254 | bool onOptimalPath = false ; |
---|
5255 | const OsiRowCutDebugger *debugger = NULL; |
---|
5256 | if ((specialOptions_&1)!=0) { |
---|
5257 | /* |
---|
5258 | See OsiRowCutDebugger for details. In a nutshell, make sure that current |
---|
5259 | variable values do not conflict with a known optimal solution. (Obviously |
---|
5260 | this can be fooled when there are multiple solutions.) |
---|
5261 | */ |
---|
5262 | debugger = solver_->getRowCutDebugger() ; |
---|
5263 | if (debugger) |
---|
5264 | onOptimalPath = (debugger->onOptimalPath(*solver_)) ; |
---|
5265 | } |
---|
5266 | OsiCuts slackCuts; |
---|
5267 | /* |
---|
5268 | Resolve the problem. If we've lost feasibility, might as well bail out right |
---|
5269 | after the debug stuff. The resolve will also refresh cached copies of the |
---|
5270 | solver solution (cbcColLower_, ...) held by CbcModel. |
---|
5271 | */ |
---|
5272 | double objectiveValue = solver_->getObjValue()*solver_->getObjSense(); |
---|
5273 | if (node) |
---|
5274 | objectiveValue= node->objectiveValue(); |
---|
5275 | int returnCode = resolve(node ? node->nodeInfo() : NULL,1); |
---|
5276 | #ifdef COIN_DEVELOP |
---|
5277 | //if (!solver_->getIterationCount()&&solver_->isProvenOptimal()) |
---|
5278 | //printf("zero iterations on first solve of branch\n"); |
---|
5279 | #endif |
---|
5280 | if (node&&node->nodeInfo()&&!node->nodeInfo()->numberBranchesLeft()) |
---|
5281 | node->nodeInfo()->allBranchesGone(); // can clean up |
---|
5282 | feasible = returnCode != 0 ; |
---|
5283 | if (returnCode<0) |
---|
5284 | numberTries=0; |
---|
5285 | if (problemFeasibility_->feasible(this,0)<0) { |
---|
5286 | feasible=false; // pretend infeasible |
---|
5287 | } |
---|
5288 | |
---|
5289 | #if NEW_UPDATE_OBJECT==0 |
---|
5290 | // Update branching information if wanted |
---|
5291 | if(node &&branchingMethod_) |
---|
5292 | branchingMethod_->updateInformation(solver_,node); |
---|
5293 | #elif NEW_UPDATE_OBJECT<2 |
---|
5294 | // Update branching information if wanted |
---|
5295 | if(node &&branchingMethod_) { |
---|
5296 | OsiBranchingObject * bobj = node->modifiableBranchingObject(); |
---|
5297 | CbcBranchingObject * cbcobj = dynamic_cast<CbcBranchingObject *> (bobj); |
---|
5298 | if (cbcobj) { |
---|
5299 | CbcObject * object = cbcobj->object(); |
---|
5300 | CbcObjectUpdateData update = object->createUpdateInformation(solver_,node,cbcobj); |
---|
5301 | object->updateInformation(update); |
---|
5302 | } else { |
---|
5303 | branchingMethod_->updateInformation(solver_,node); |
---|
5304 | } |
---|
5305 | } |
---|
5306 | #else |
---|
5307 | // Update branching information if wanted |
---|
5308 | if(node &&branchingMethod_) { |
---|
5309 | OsiBranchingObject * bobj = node->modifiableBranchingObject(); |
---|
5310 | CbcBranchingObject * cbcobj = dynamic_cast<CbcBranchingObject *> (bobj); |
---|
5311 | if (cbcobj&&cbcobj->object()) { |
---|
5312 | CbcObject * object = cbcobj->object(); |
---|
5313 | CbcObjectUpdateData update = object->createUpdateInformation(solver_,node,cbcobj); |
---|
5314 | // have to compute object number as not saved |
---|
5315 | CbcSimpleInteger * simpleObject = |
---|
5316 | dynamic_cast <CbcSimpleInteger *>(object) ; |
---|
5317 | int iObject; |
---|
5318 | int iColumn = simpleObject->columnNumber(); |
---|
5319 | for (iObject = 0 ; iObject < numberObjects_ ; iObject++) { |
---|
5320 | simpleObject = |
---|
5321 | dynamic_cast <CbcSimpleInteger *>(object_[iObject]) ; |
---|
5322 | if (simpleObject->columnNumber()==iColumn) |
---|
5323 | break; |
---|
5324 | } |
---|
5325 | assert (iObject<numberObjects_); |
---|
5326 | update.objectNumber_ = iObject; |
---|
5327 | addUpdateInformation(update); |
---|
5328 | } else { |
---|
5329 | OsiIntegerBranchingObject * obj = dynamic_cast<OsiIntegerBranchingObject *> (bobj); |
---|
5330 | if (obj) { |
---|
5331 | const OsiObject * object = obj->originalObject(); |
---|
5332 | // have to compute object number as not saved |
---|
5333 | int iObject; |
---|
5334 | int iColumn = object->columnNumber(); |
---|
5335 | for (iObject = 0 ; iObject < numberObjects_ ; iObject++) { |
---|
5336 | if (object_[iObject]->columnNumber()==iColumn) |
---|
5337 | break; |
---|
5338 | } |
---|
5339 | assert (iObject<numberObjects_); |
---|
5340 | int branch = obj->firstBranch(); |
---|
5341 | if (obj->branchIndex()==2) |
---|
5342 | branch = 1-branch; |
---|
5343 | assert (branch==0||branch==1); |
---|
5344 | double originalValue=node->objectiveValue(); |
---|
5345 | double objectiveValue = solver_->getObjValue()*solver_->getObjSense(); |
---|
5346 | double changeInObjective = CoinMax(0.0,objectiveValue-originalValue); |
---|
5347 | int iStatus = (feasible) ? 0 : 0; |
---|
5348 | double value = obj->value(); |
---|
5349 | double movement; |
---|
5350 | if (branch) |
---|
5351 | movement = ceil(value)-value; |
---|
5352 | else |
---|
5353 | movement = value -floor(value); |
---|
5354 | #if 0 |
---|
5355 | // OUT as much too complicated - we are not at a natural hotstart place |
---|
5356 | OsiBranchingInformation usefulInfo=usefulInformation(); |
---|
5357 | // hotInfo is meant for BEFORE a branch so we need to fool |
---|
5358 | // was much simpler with alternate method |
---|
5359 | double save[3]; |
---|
5360 | save[0]=usefulInfo.lower_[iColumn]; |
---|
5361 | save[1]=usefulInfo.solution_[iColumn]; |
---|
5362 | save[2]=usefulInfo.upper_[iColumn]; |
---|
5363 | usefulInfo.lower_[iColumn]=floor(value); |
---|
5364 | usefulInfo.solution_[iColumn]=value; |
---|
5365 | usefulInfo.upper_[iColumn]=ceil(value); |
---|
5366 | OsiHotInfo hotInfo(solver_,&usefulInfo,&object,0); |
---|
5367 | usefulInfo.lower_[iColumn]=save[0]; |
---|
5368 | usefulInfo.solution_[iColumn]=save[1]; |
---|
5369 | usefulInfo.upper_[iColumn]=save[2]; |
---|
5370 | if (branch) { |
---|
5371 | hotInfo.setUpStatus(iStatus); |
---|
5372 | hotInfo.setUpChange(changeInObjective); |
---|
5373 | //object->setUpEstimate(movement); |
---|
5374 | } else { |
---|
5375 | hotInfo.setDownStatus(iStatus); |
---|
5376 | hotInfo.setDownChange(changeInObjective); |
---|
5377 | //object->setDownEstimate(movement); |
---|
5378 | } |
---|
5379 | branchingMethod_->chooseMethod()->updateInformation(&usefulInfo,branch,&hotInfo); |
---|
5380 | #else |
---|
5381 | branchingMethod_->chooseMethod()->updateInformation(iObject,branch,changeInObjective, |
---|
5382 | movement,iStatus); |
---|
5383 | #endif |
---|
5384 | } |
---|
5385 | } |
---|
5386 | } |
---|
5387 | #endif |
---|
5388 | |
---|
5389 | #ifdef CBC_DEBUG |
---|
5390 | if (feasible) |
---|
5391 | { printf("Obj value %g (%s) %d rows\n",solver_->getObjValue(), |
---|
5392 | (solver_->isProvenOptimal())?"proven":"unproven", |
---|
5393 | solver_->getNumRows()) ; } |
---|
5394 | |
---|
5395 | else |
---|
5396 | { printf("Infeasible %d rows\n",solver_->getNumRows()) ; } |
---|
5397 | #endif |
---|
5398 | if ((specialOptions_&1)!=0) { |
---|
5399 | /* |
---|
5400 | If the RowCutDebugger said we were compatible with the optimal solution, |
---|
5401 | and now we're suddenly infeasible, we might be confused. Then again, we |
---|
5402 | may have fathomed by bound, heading for a rediscovery of an optimal solution. |
---|
5403 | */ |
---|
5404 | if (onOptimalPath && !solver_->isDualObjectiveLimitReached()) { |
---|
5405 | if (!feasible) { |
---|
5406 | solver_->writeMps("infeas"); |
---|
5407 | CoinWarmStartBasis *slack = |
---|
5408 | dynamic_cast<CoinWarmStartBasis *>(solver_->getEmptyWarmStart()) ; |
---|
5409 | solver_->setWarmStart(slack); |
---|
5410 | delete slack ; |
---|
5411 | solver_->setHintParam(OsiDoReducePrint,false,OsiHintDo,0) ; |
---|
5412 | solver_->initialSolve(); |
---|
5413 | } |
---|
5414 | assert(feasible) ; |
---|
5415 | } |
---|
5416 | } |
---|
5417 | |
---|
5418 | if (!feasible) { |
---|
5419 | numberInfeasibleNodes_++; |
---|
5420 | # ifdef COIN_HAS_CLP |
---|
5421 | if (clpSolver) |
---|
5422 | clpSolver->setSpecialOptions(saveClpOptions); |
---|
5423 | # endif |
---|
5424 | return (false) ; |
---|
5425 | } |
---|
5426 | sumChangeObjective1_ += solver_->getObjValue()*solver_->getObjSense() |
---|
5427 | - objectiveValue ; |
---|
5428 | if ( getCurrentSeconds() > dblParam_[CbcMaximumSeconds] ) |
---|
5429 | numberTries=0; // exit |
---|
5430 | //if ((numberNodes_%100)==0) |
---|
5431 | //printf("XXa sum obj changed by %g\n",sumChangeObjective1_); |
---|
5432 | objectiveValue = solver_->getObjValue()*solver_->getObjSense(); |
---|
5433 | // Return at once if numberTries zero |
---|
5434 | if (!numberTries) { |
---|
5435 | cuts=OsiCuts(); |
---|
5436 | numberNewCuts_=0; |
---|
5437 | # ifdef COIN_HAS_CLP |
---|
5438 | if (clpSolver) |
---|
5439 | clpSolver->setSpecialOptions(saveClpOptions); |
---|
5440 | # endif |
---|
5441 | return true; |
---|
5442 | } |
---|
5443 | /* |
---|
5444 | Do reduced cost fixing. |
---|
5445 | */ |
---|
5446 | reducedCostFix() ; |
---|
5447 | /* |
---|
5448 | Set up for at most numberTries rounds of cut generation. If numberTries is |
---|
5449 | negative, we'll ignore the minimumDrop_ cutoff and keep generating cuts for |
---|
5450 | the specified number of rounds. |
---|
5451 | */ |
---|
5452 | double minimumDrop = minimumDrop_ ; |
---|
5453 | if (numberTries<0) |
---|
5454 | { numberTries = -numberTries ; |
---|
5455 | minimumDrop = -1.0 ; } |
---|
5456 | /* |
---|
5457 | Is it time to scan the cuts in order to remove redundant cuts? If so, set |
---|
5458 | up to do it. |
---|
5459 | */ |
---|
5460 | # define SCANCUTS 100 |
---|
5461 | int *countColumnCuts = NULL ; |
---|
5462 | // Always accumulate row cut counts |
---|
5463 | int * countRowCuts =new int[numberCutGenerators_+numberHeuristics_] ; |
---|
5464 | memset(countRowCuts,0, |
---|
5465 | (numberCutGenerators_+numberHeuristics_)*sizeof(int)) ; |
---|
5466 | bool fullScan = false ; |
---|
5467 | if ((numberNodes_%SCANCUTS) == 0) |
---|
5468 | { fullScan = true ; |
---|
5469 | countColumnCuts = new int[numberCutGenerators_+numberHeuristics_] ; |
---|
5470 | memset(countColumnCuts,0, |
---|
5471 | (numberCutGenerators_+numberHeuristics_)*sizeof(int)) ; } |
---|
5472 | |
---|
5473 | double direction = solver_->getObjSense() ; |
---|
5474 | double startObjective = solver_->getObjValue()*direction ; |
---|
5475 | |
---|
5476 | currentPassNumber_ = 0 ; |
---|
5477 | double primalTolerance = 1.0e-7 ; |
---|
5478 | // We may need to keep going on |
---|
5479 | bool keepGoing=false; |
---|
5480 | /* |
---|
5481 | Begin cut generation loop. Cuts generated during each iteration are |
---|
5482 | collected in theseCuts. The loop can be divided into four phases: |
---|
5483 | 1) Prep: Fix variables using reduced cost. In the first iteration only, |
---|
5484 | consider scanning globalCuts_ and activating any applicable cuts. |
---|
5485 | 2) Cut Generation: Call each generator and heuristic registered in the |
---|
5486 | generator_ and heuristic_ arrays. Newly generated global cuts are |
---|
5487 | copied to globalCuts_ at this time. |
---|
5488 | 3) Cut Installation and Reoptimisation: Install column and row cuts in |
---|
5489 | the solver. Copy row cuts to cuts (parameter). Reoptimise. |
---|
5490 | 4) Cut Purging: takeOffCuts() removes inactive cuts from the solver, and |
---|
5491 | does the necessary bookkeeping in the model. |
---|
5492 | */ |
---|
5493 | do |
---|
5494 | { currentPassNumber_++ ; |
---|
5495 | numberTries-- ; |
---|
5496 | if (numberTries<0&&keepGoing) { |
---|
5497 | // switch off all normal ones |
---|
5498 | for (int i = 0;i<numberCutGenerators_;i++) { |
---|
5499 | if (!generator_[i]->mustCallAgain()) |
---|
5500 | generator_[i]->setSwitchedOff(true); |
---|
5501 | } |
---|
5502 | } |
---|
5503 | keepGoing=false; |
---|
5504 | OsiCuts theseCuts ; |
---|
5505 | /* |
---|
5506 | Scan previously generated global column and row cuts to see if any are |
---|
5507 | useful. |
---|
5508 | */ |
---|
5509 | int numberViolated=0; |
---|
5510 | if (currentPassNumber_ == 1 && howOftenGlobalScan_ > 0 && |
---|
5511 | (numberNodes_%howOftenGlobalScan_) == 0) |
---|
5512 | { int numberCuts = globalCuts_.sizeColCuts() ; |
---|
5513 | int i; |
---|
5514 | // possibly extend whichGenerator |
---|
5515 | resizeWhichGenerator(numberViolated, numberViolated+numberCuts); |
---|
5516 | for ( i = 0 ; i < numberCuts ; i++) |
---|
5517 | { OsiColCut *thisCut = globalCuts_.colCutPtr(i) ; |
---|
5518 | if (thisCut->violated(cbcColSolution_)>primalTolerance) { |
---|
5519 | printf("Global cut added - violation %g\n", |
---|
5520 | thisCut->violated(cbcColSolution_)) ; |
---|
5521 | whichGenerator_[numberViolated++]=-1; |
---|
5522 | #ifndef GLOBAL_CUTS_JUST_POINTERS |
---|
5523 | theseCuts.insert(*thisCut) ; |
---|
5524 | #else |
---|
5525 | theseCuts.insert(thisCut) ; |
---|
5526 | #endif |
---|
5527 | } |
---|
5528 | } |
---|
5529 | numberCuts = globalCuts_.sizeRowCuts() ; |
---|
5530 | // possibly extend whichGenerator |
---|
5531 | resizeWhichGenerator(numberViolated, numberViolated+numberCuts); |
---|
5532 | for ( i = 0;i<numberCuts;i++) { |
---|
5533 | OsiRowCut * thisCut = globalCuts_.rowCutPtr(i) ; |
---|
5534 | if (thisCut->violated(cbcColSolution_)>primalTolerance) { |
---|
5535 | //printf("Global cut added - violation %g\n", |
---|
5536 | // thisCut->violated(cbcColSolution_)) ; |
---|
5537 | whichGenerator_[numberViolated++]=-1; |
---|
5538 | #ifndef GLOBAL_CUTS_JUST_POINTERS |
---|
5539 | theseCuts.insert(*thisCut) ; |
---|
5540 | #else |
---|
5541 | theseCuts.insert(thisCut) ; |
---|
5542 | #endif |
---|
5543 | } |
---|
5544 | } |
---|
5545 | numberGlobalViolations_+=numberViolated; |
---|
5546 | } |
---|
5547 | /* |
---|
5548 | Generate new cuts (global and/or local) and/or apply heuristics. If |
---|
5549 | CglProbing is used, then it should be first as it can fix continuous |
---|
5550 | variables. |
---|
5551 | |
---|
5552 | At present, CglProbing is the only case where generateCuts will return |
---|
5553 | true. generateCuts actually modifies variable bounds in the solver when |
---|
5554 | CglProbing indicates that it can fix a variable. Reoptimisation is required |
---|
5555 | to take full advantage. |
---|
5556 | |
---|
5557 | The need to resolve here should only happen after a heuristic solution. |
---|
5558 | (Note default OSI implementation of optimalBasisIsAvailable always returns |
---|
5559 | false.) |
---|
5560 | */ |
---|
5561 | if (solverCharacteristics_->warmStart()&& |
---|
5562 | !solver_->optimalBasisIsAvailable()) { |
---|
5563 | //printf("XXXXYY no opt basis\n"); |
---|
5564 | resolve(node ? node->nodeInfo() : NULL,3); |
---|
5565 | } |
---|
5566 | if (nextRowCut_) { |
---|
5567 | // branch was a cut - add it |
---|
5568 | theseCuts.insert(*nextRowCut_); |
---|
5569 | if (handler_->logLevel()>1) |
---|
5570 | nextRowCut_->print(); |
---|
5571 | const OsiRowCut * cut=nextRowCut_; |
---|
5572 | double lb = cut->lb(); |
---|
5573 | double ub = cut->ub(); |
---|
5574 | int n=cut->row().getNumElements(); |
---|
5575 | const int * column = cut->row().getIndices(); |
---|
5576 | const double * element = cut->row().getElements(); |
---|
5577 | double sum=0.0; |
---|
5578 | for (int i=0;i<n;i++) { |
---|
5579 | int iColumn = column[i]; |
---|
5580 | double value = element[i]; |
---|
5581 | //if (cbcColSolution_[iColumn]>1.0e-7) |
---|
5582 | //printf("value of %d is %g\n",iColumn,cbcColSolution_[iColumn]); |
---|
5583 | sum += value * cbcColSolution_[iColumn]; |
---|
5584 | } |
---|
5585 | delete nextRowCut_; |
---|
5586 | nextRowCut_=NULL; |
---|
5587 | if (handler_->logLevel()>1) |
---|
5588 | printf("applying branch cut, sum is %g, bounds %g %g\n",sum,lb,ub); |
---|
5589 | // possibly extend whichGenerator |
---|
5590 | resizeWhichGenerator(numberViolated, numberViolated+1); |
---|
5591 | // set whichgenerator (also serves as marker to say don't delete0 |
---|
5592 | whichGenerator_[numberViolated++]=-2; |
---|
5593 | } |
---|
5594 | |
---|
5595 | // reset probing info |
---|
5596 | //if (probingInfo_) |
---|
5597 | //probingInfo_->initializeFixing(); |
---|
5598 | int i; |
---|
5599 | if ((threadMode_&2)==0||numberNodes_) { |
---|
5600 | for (i = 0;i<numberCutGenerators_;i++) { |
---|
5601 | int numberRowCutsBefore = theseCuts.sizeRowCuts() ; |
---|
5602 | int numberColumnCutsBefore = theseCuts.sizeColCuts() ; |
---|
5603 | int numberRowCutsAfter = numberRowCutsBefore; |
---|
5604 | int numberColumnCutsAfter = numberColumnCutsBefore; |
---|
5605 | bool generate = generator_[i]->normal(); |
---|
5606 | // skip if not optimal and should be (maybe a cut generator has fixed variables) |
---|
5607 | if (generator_[i]->needsOptimalBasis()&&!solver_->basisIsAvailable()) |
---|
5608 | generate=false; |
---|
5609 | if (generator_[i]->switchedOff()) |
---|
5610 | generate=false;; |
---|
5611 | if (generate) { |
---|
5612 | bool mustResolve = |
---|
5613 | generator_[i]->generateCuts(theseCuts,fullScan,solver_,node) ; |
---|
5614 | numberRowCutsAfter = theseCuts.sizeRowCuts() ; |
---|
5615 | if(numberRowCutsBefore < numberRowCutsAfter && |
---|
5616 | generator_[i]->mustCallAgain()) |
---|
5617 | keepGoing=true; // say must go round |
---|
5618 | // Check last cut to see if infeasible |
---|
5619 | if(numberRowCutsBefore < numberRowCutsAfter) { |
---|
5620 | const OsiRowCut * thisCut = theseCuts.rowCutPtr(numberRowCutsAfter-1) ; |
---|
5621 | if (thisCut->lb()>thisCut->ub()) { |
---|
5622 | feasible = false; // sub-problem is infeasible |
---|
5623 | break; |
---|
5624 | } |
---|
5625 | } |
---|
5626 | #ifdef CBC_DEBUG |
---|
5627 | { |
---|
5628 | int k ; |
---|
5629 | for (k = numberRowCutsBefore;k<numberRowCutsAfter;k++) { |
---|
5630 | OsiRowCut thisCut = theseCuts.rowCut(k) ; |
---|
5631 | /* check size of elements. |
---|
5632 | We can allow smaller but this helps debug generators as it |
---|
5633 | is unsafe to have small elements */ |
---|
5634 | int n=thisCut.row().getNumElements(); |
---|
5635 | const int * column = thisCut.row().getIndices(); |
---|
5636 | const double * element = thisCut.row().getElements(); |
---|
5637 | //assert (n); |
---|
5638 | for (int i=0;i<n;i++) { |
---|
5639 | double value = element[i]; |
---|
5640 | assert(fabs(value)>1.0e-12&&fabs(value)<1.0e20); |
---|
5641 | } |
---|
5642 | } |
---|
5643 | } |
---|
5644 | #endif |
---|
5645 | if (mustResolve) { |
---|
5646 | int returncode = resolve(node ? node->nodeInfo() : NULL,2); |
---|
5647 | feasible = returnCode != 0 ; |
---|
5648 | if (returncode<0) |
---|
5649 | numberTries=0; |
---|
5650 | if ((specialOptions_&1)!=0) { |
---|
5651 | debugger = solver_->getRowCutDebugger() ; |
---|
5652 | if (debugger) |
---|
5653 | onOptimalPath = (debugger->onOptimalPath(*solver_)) ; |
---|
5654 | else |
---|
5655 | onOptimalPath=false; |
---|
5656 | if (onOptimalPath && !solver_->isDualObjectiveLimitReached()) |
---|
5657 | assert(feasible) ; |
---|
5658 | } |
---|
5659 | if (!feasible) |
---|
5660 | break ; |
---|
5661 | } |
---|
5662 | } |
---|
5663 | numberRowCutsAfter = theseCuts.sizeRowCuts() ; |
---|
5664 | numberColumnCutsAfter = theseCuts.sizeColCuts() ; |
---|
5665 | |
---|
5666 | if ((specialOptions_&1)!=0) { |
---|
5667 | if (onOptimalPath) { |
---|
5668 | int k ; |
---|
5669 | for (k = numberRowCutsBefore;k<numberRowCutsAfter;k++) { |
---|
5670 | OsiRowCut thisCut = theseCuts.rowCut(k) ; |
---|
5671 | if(debugger->invalidCut(thisCut)) { |
---|
5672 | solver_->writeMps("badCut"); |
---|
5673 | #ifdef NDEBUG |
---|
5674 | printf("Cut generator %d (%s) produced invalid cut (%dth in this go)\n", |
---|
5675 | i,generator_[i]->cutGeneratorName(),k-numberRowCutsBefore); |
---|
5676 | const double *lower = getColLower() ; |
---|
5677 | const double *upper = getColUpper() ; |
---|
5678 | int numberColumns = solver_->getNumCols(); |
---|
5679 | for (int i=0;i<numberColumns;i++) |
---|
5680 | printf("%d bounds %g,%g\n",i,lower[i],upper[i]); |
---|
5681 | abort(); |
---|
5682 | #endif |
---|
5683 | } |
---|
5684 | assert(!debugger->invalidCut(thisCut)) ; |
---|
5685 | } |
---|
5686 | } |
---|
5687 | } |
---|
5688 | /* |
---|
5689 | The cut generator has done its thing, and maybe it generated some |
---|
5690 | cuts. Do a bit of bookkeeping: load |
---|
5691 | whichGenerator[i] with the index of the generator responsible for a cut, |
---|
5692 | and place cuts flagged as global in the global cut pool for the model. |
---|
5693 | |
---|
5694 | lastNumberCuts is the sum of cuts added in previous iterations; it's the |
---|
5695 | offset to the proper starting position in whichGenerator. |
---|
5696 | */ |
---|
5697 | int numberBefore = |
---|
5698 | numberRowCutsBefore+numberColumnCutsBefore+lastNumberCuts ; |
---|
5699 | int numberAfter = |
---|
5700 | numberRowCutsAfter+numberColumnCutsAfter+lastNumberCuts ; |
---|
5701 | // possibly extend whichGenerator |
---|
5702 | resizeWhichGenerator(numberBefore, numberAfter); |
---|
5703 | int j ; |
---|
5704 | if (fullScan) { |
---|
5705 | // counts |
---|
5706 | countColumnCuts[i] += numberColumnCutsAfter-numberColumnCutsBefore ; |
---|
5707 | } |
---|
5708 | countRowCuts[i] += numberRowCutsAfter-numberRowCutsBefore ; |
---|
5709 | |
---|
5710 | bool dodgyCuts=false; |
---|
5711 | for (j = numberRowCutsBefore;j<numberRowCutsAfter;j++) { |
---|
5712 | const OsiRowCut * thisCut = theseCuts.rowCutPtr(j) ; |
---|
5713 | if (thisCut->lb()>1.0e10||thisCut->ub()<-1.0e10) { |
---|
5714 | dodgyCuts=true; |
---|
5715 | break; |
---|
5716 | } |
---|
5717 | whichGenerator_[numberBefore++] = i ; |
---|
5718 | if (thisCut->lb()>thisCut->ub()) |
---|
5719 | violated=-2; // sub-problem is infeasible |
---|
5720 | if (thisCut->globallyValid()) { |
---|
5721 | // add to global list |
---|
5722 | OsiRowCut newCut(*thisCut); |
---|
5723 | newCut.setGloballyValid(true); |
---|
5724 | newCut.mutableRow().setTestForDuplicateIndex(false); |
---|
5725 | globalCuts_.insert(newCut) ; |
---|
5726 | } |
---|
5727 | } |
---|
5728 | if (dodgyCuts) { |
---|
5729 | for (int k=numberRowCutsAfter-1;k>=j;k--) { |
---|
5730 | const OsiRowCut * thisCut = theseCuts.rowCutPtr(k) ; |
---|
5731 | if (thisCut->lb()>thisCut->ub()) |
---|
5732 | violated=-2; // sub-problem is infeasible |
---|
5733 | if (thisCut->lb()>1.0e10||thisCut->ub()<-1.0e10) |
---|
5734 | theseCuts.eraseRowCut(k); |
---|
5735 | } |
---|
5736 | numberRowCutsAfter = theseCuts.sizeRowCuts() ; |
---|
5737 | for (;j<numberRowCutsAfter;j++) { |
---|
5738 | const OsiRowCut * thisCut = theseCuts.rowCutPtr(j) ; |
---|
5739 | whichGenerator_[numberBefore++] = i ; |
---|
5740 | if (thisCut->globallyValid()) { |
---|
5741 | // add to global list |
---|
5742 | OsiRowCut newCut(*thisCut); |
---|
5743 | newCut.setGloballyValid(true); |
---|
5744 | newCut.mutableRow().setTestForDuplicateIndex(false); |
---|
5745 | globalCuts_.insert(newCut) ; |
---|
5746 | } |
---|
5747 | } |
---|
5748 | } |
---|
5749 | for (j = numberColumnCutsBefore;j<numberColumnCutsAfter;j++) { |
---|
5750 | whichGenerator_[numberBefore++] = i ; |
---|
5751 | const OsiColCut * thisCut = theseCuts.colCutPtr(j) ; |
---|
5752 | if (thisCut->globallyValid()) { |
---|
5753 | // add to global list |
---|
5754 | OsiColCut newCut(*thisCut); |
---|
5755 | newCut.setGloballyValid(true); |
---|
5756 | globalCuts_.insert(newCut) ; |
---|
5757 | } |
---|
5758 | } |
---|
5759 | } |
---|
5760 | // Add in any violated saved cuts |
---|
5761 | if (!theseCuts.sizeRowCuts()&&!theseCuts.sizeColCuts()) { |
---|
5762 | int numberOld = theseCuts.sizeRowCuts()+lastNumberCuts; |
---|
5763 | int numberCuts = slackCuts.sizeRowCuts() ; |
---|
5764 | int i; |
---|
5765 | // possibly extend whichGenerator |
---|
5766 | resizeWhichGenerator(numberOld, numberOld+numberCuts); |
---|
5767 | for ( i = 0;i<numberCuts;i++) { |
---|
5768 | const OsiRowCut * thisCut = slackCuts.rowCutPtr(i) ; |
---|
5769 | if (thisCut->violated(cbcColSolution_)>100.0*primalTolerance) { |
---|
5770 | if (messageHandler()->logLevel()>2) |
---|
5771 | printf("Old cut added - violation %g\n", |
---|
5772 | thisCut->violated(cbcColSolution_)) ; |
---|
5773 | whichGenerator_[numberOld++]=-1; |
---|
5774 | theseCuts.insert(*thisCut) ; |
---|
5775 | } |
---|
5776 | } |
---|
5777 | } |
---|
5778 | } else { |
---|
5779 | // do cuts independently |
---|
5780 | OsiCuts * eachCuts = new OsiCuts [numberCutGenerators_];; |
---|
5781 | #ifdef CBC_THREAD |
---|
5782 | if (!threadModel) { |
---|
5783 | #endif |
---|
5784 | // generate cuts |
---|
5785 | for (i = 0;i<numberCutGenerators_;i++) { |
---|
5786 | bool generate = generator_[i]->normal(); |
---|
5787 | // skip if not optimal and should be (maybe a cut generator has fixed variables) |
---|
5788 | if (generator_[i]->needsOptimalBasis()&&!solver_->basisIsAvailable()) |
---|
5789 | generate=false; |
---|
5790 | if (generator_[i]->switchedOff()) |
---|
5791 | generate=false;; |
---|
5792 | if (generate) |
---|
5793 | generator_[i]->generateCuts(eachCuts[i],fullScan,solver_,node) ; |
---|
5794 | } |
---|
5795 | #ifdef CBC_THREAD |
---|
5796 | } else { |
---|
5797 | for (i=0;i<numberThreads_;i++) { |
---|
5798 | // set solver here after cloning |
---|
5799 | threadModel[i]->solver_=solver_->clone(); |
---|
5800 | threadModel[i]->numberNodes_ = (fullScan) ? 1 : 0; |
---|
5801 | } |
---|
5802 | // generate cuts |
---|
5803 | for (i = 0;i<numberCutGenerators_;i++) { |
---|
5804 | bool generate = generator_[i]->normal(); |
---|
5805 | // skip if not optimal and should be (maybe a cut generator has fixed variables) |
---|
5806 | if (generator_[i]->needsOptimalBasis()&&!solver_->basisIsAvailable()) |
---|
5807 | generate=false; |
---|
5808 | if (generator_[i]->switchedOff()) |
---|
5809 | generate=false;; |
---|
5810 | if (generate) { |
---|
5811 | bool finished=false; |
---|
5812 | int iThread=-1; |
---|
5813 | // see if any available |
---|
5814 | for (iThread=0;iThread<numberThreads_;iThread++) { |
---|
5815 | if (threadInfo[iThread].returnCode) { |
---|
5816 | finished=true; |
---|
5817 | break; |
---|
5818 | } else if (threadInfo[iThread].returnCode==0) { |
---|
5819 | pthread_cond_signal(threadInfo[iThread].condition2); // unlock |
---|
5820 | } |
---|
5821 | } |
---|
5822 | while (!finished) { |
---|
5823 | pthread_mutex_lock(&condition_mutex); |
---|
5824 | struct timespec absTime; |
---|
5825 | clock_gettime(CLOCK_REALTIME,&absTime); |
---|
5826 | absTime.tv_nsec += 1000000; // millisecond |
---|
5827 | if (absTime.tv_nsec>=1000000000) { |
---|
5828 | absTime.tv_nsec -= 1000000000; |
---|
5829 | absTime.tv_sec++; |
---|
58 |
---|