1 | //Edwin 11/25/09 carved out of CbcCompareActual |
---|
2 | #if defined(_MSC_VER) |
---|
3 | // Turn off compiler warning about long names |
---|
4 | # pragma warning(disable:4786) |
---|
5 | #endif |
---|
6 | #include <cassert> |
---|
7 | #include <cstdlib> |
---|
8 | #include <cmath> |
---|
9 | #include <cfloat> |
---|
10 | //#define CBC_DEBUG |
---|
11 | |
---|
12 | #include "CbcMessage.hpp" |
---|
13 | #include "CbcModel.hpp" |
---|
14 | #include "CbcTree.hpp" |
---|
15 | #include "CbcCompareActual.hpp" |
---|
16 | #include "CoinError.hpp" |
---|
17 | #include "CbcCompareDefault.hpp" |
---|
18 | /** Default Constructor |
---|
19 | |
---|
20 | */ |
---|
21 | CbcCompareDefault::CbcCompareDefault () |
---|
22 | : CbcCompareBase(), |
---|
23 | weight_(-1.0), |
---|
24 | saveWeight_(0.0), |
---|
25 | cutoff_(COIN_DBL_MAX), |
---|
26 | bestPossible_(-COIN_DBL_MAX), |
---|
27 | numberSolutions_(0), |
---|
28 | treeSize_(0), |
---|
29 | breadthDepth_(5) |
---|
30 | { |
---|
31 | test_ = this; |
---|
32 | } |
---|
33 | |
---|
34 | // Constructor with weight |
---|
35 | CbcCompareDefault::CbcCompareDefault (double weight) |
---|
36 | : CbcCompareBase(), |
---|
37 | weight_(weight) , |
---|
38 | saveWeight_(0.0), |
---|
39 | cutoff_(COIN_DBL_MAX), |
---|
40 | bestPossible_(-COIN_DBL_MAX), |
---|
41 | numberSolutions_(0), |
---|
42 | treeSize_(0), |
---|
43 | breadthDepth_(5) |
---|
44 | { |
---|
45 | test_ = this; |
---|
46 | } |
---|
47 | |
---|
48 | |
---|
49 | // Copy constructor |
---|
50 | CbcCompareDefault::CbcCompareDefault ( const CbcCompareDefault & rhs) |
---|
51 | : CbcCompareBase(rhs) |
---|
52 | |
---|
53 | { |
---|
54 | weight_ = rhs.weight_; |
---|
55 | saveWeight_ = rhs.saveWeight_; |
---|
56 | cutoff_ = rhs.cutoff_; |
---|
57 | bestPossible_ = rhs.bestPossible_; |
---|
58 | numberSolutions_ = rhs.numberSolutions_; |
---|
59 | treeSize_ = rhs.treeSize_; |
---|
60 | breadthDepth_ = rhs.breadthDepth_; |
---|
61 | } |
---|
62 | |
---|
63 | // Clone |
---|
64 | CbcCompareBase * |
---|
65 | CbcCompareDefault::clone() const |
---|
66 | { |
---|
67 | return new CbcCompareDefault(*this); |
---|
68 | } |
---|
69 | |
---|
70 | // Assignment operator |
---|
71 | CbcCompareDefault & |
---|
72 | CbcCompareDefault::operator=( const CbcCompareDefault & rhs) |
---|
73 | { |
---|
74 | if (this != &rhs) { |
---|
75 | CbcCompareBase::operator=(rhs); |
---|
76 | weight_ = rhs.weight_; |
---|
77 | saveWeight_ = rhs.saveWeight_; |
---|
78 | cutoff_ = rhs.cutoff_; |
---|
79 | bestPossible_ = rhs.bestPossible_; |
---|
80 | numberSolutions_ = rhs.numberSolutions_; |
---|
81 | treeSize_ = rhs.treeSize_; |
---|
82 | breadthDepth_ = rhs.breadthDepth_; |
---|
83 | } |
---|
84 | return *this; |
---|
85 | } |
---|
86 | |
---|
87 | // Destructor |
---|
88 | CbcCompareDefault::~CbcCompareDefault () |
---|
89 | { |
---|
90 | } |
---|
91 | |
---|
92 | // Returns true if y better than x |
---|
93 | bool |
---|
94 | CbcCompareDefault::test (CbcNode * x, CbcNode * y) |
---|
95 | { |
---|
96 | #if 0 |
---|
97 | // always choose *smallest* depth if one or both <= breadthDepth_ |
---|
98 | int depthX = x->depth(); |
---|
99 | int depthY = y->depth(); |
---|
100 | if (depthX <= breadthDepth_ || depthY <= breadthDepth_) { |
---|
101 | if (depthX != depthY) |
---|
102 | return depthX > depthY; |
---|
103 | else |
---|
104 | return equalityTest(x, y); // so ties will be broken in consistent manner |
---|
105 | } |
---|
106 | if (weight_ == -1.0 || weight_ == -3.0) { |
---|
107 | int adjust = (weight_ == -3.0) ? 10000 : 0; |
---|
108 | // before solution |
---|
109 | /*printf("x %d %d %g, y %d %d %g\n", |
---|
110 | x->numberUnsatisfied(),x->depth(),x->objectiveValue(), |
---|
111 | y->numberUnsatisfied(),y->depth(),y->objectiveValue()); */ |
---|
112 | if (x->numberUnsatisfied() > y->numberUnsatisfied() + adjust) { |
---|
113 | return true; |
---|
114 | } else if (x->numberUnsatisfied() < y->numberUnsatisfied() - adjust) { |
---|
115 | return false; |
---|
116 | } else { |
---|
117 | int depthX = x->depth(); |
---|
118 | int depthY = y->depth(); |
---|
119 | if (depthX != depthY) |
---|
120 | return depthX < depthY; |
---|
121 | else |
---|
122 | return equalityTest(x, y); // so ties will be broken in consistent manner |
---|
123 | } |
---|
124 | } else { |
---|
125 | // after solution |
---|
126 | double weight = CoinMax(weight_, 0.0); |
---|
127 | double testX = x->objectiveValue() + weight * x->numberUnsatisfied(); |
---|
128 | double testY = y->objectiveValue() + weight * y->numberUnsatisfied(); |
---|
129 | if (testX != testY) |
---|
130 | return testX > testY; |
---|
131 | else |
---|
132 | return equalityTest(x, y); // so ties will be broken in consistent manner |
---|
133 | } |
---|
134 | #else |
---|
135 | //weight_=0.0; |
---|
136 | if ((weight_ == -1.0 && (y->depth() > breadthDepth_ && x->depth() > breadthDepth_)) || weight_ == -3.0 || weight_ == -2.0) { |
---|
137 | int adjust = (weight_ == -3.0) ? 10000 : 0; |
---|
138 | // before solution |
---|
139 | /*printf("x %d %d %g, y %d %d %g\n", |
---|
140 | x->numberUnsatisfied(),x->depth(),x->objectiveValue(), |
---|
141 | y->numberUnsatisfied(),y->depth(),y->objectiveValue()); */ |
---|
142 | if (x->numberUnsatisfied() > y->numberUnsatisfied() + adjust) { |
---|
143 | return true; |
---|
144 | } else if (x->numberUnsatisfied() < y->numberUnsatisfied() - adjust) { |
---|
145 | return false; |
---|
146 | } else { |
---|
147 | int depthX = x->depth(); |
---|
148 | int depthY = y->depth(); |
---|
149 | if (depthX != depthY) |
---|
150 | return depthX < depthY; |
---|
151 | else |
---|
152 | return equalityTest(x, y); // so ties will be broken in consistent manner |
---|
153 | } |
---|
154 | } else { |
---|
155 | // always choose *greatest* depth if both <= breadthDepth_ otherwise <= breadthDepth_ if just one |
---|
156 | int depthX = x->depth(); |
---|
157 | int depthY = y->depth(); |
---|
158 | /*if ((depthX==4&&depthY==5)||(depthX==5&&depthY==4)) |
---|
159 | printf("X %x depth %d, Y %x depth %d, breadth %d\n", |
---|
160 | x,depthX,y,depthY,breadthDepth_);*/ |
---|
161 | if (depthX <= breadthDepth_ || depthY <= breadthDepth_) { |
---|
162 | if (depthX <= breadthDepth_ && depthY <= breadthDepth_) { |
---|
163 | if (depthX != depthY) { |
---|
164 | return depthX < depthY; |
---|
165 | } |
---|
166 | } else { |
---|
167 | assert (depthX != depthY) ; |
---|
168 | return depthX > depthY; |
---|
169 | } |
---|
170 | } |
---|
171 | // after solution ? |
---|
172 | #define THRESH2 0.999 |
---|
173 | #define TRY_THIS 0 |
---|
174 | #if TRY_THIS==0 |
---|
175 | double weight = CoinMax(weight_, 1.0e-9); |
---|
176 | double testX = x->objectiveValue() + weight * x->numberUnsatisfied(); |
---|
177 | double testY = y->objectiveValue() + weight * y->numberUnsatisfied(); |
---|
178 | #elif TRY_THIS==1 |
---|
179 | /* compute what weight would have to be to hit target |
---|
180 | then reverse sign as large weight good */ |
---|
181 | double target = (1.0 - THRESH2) * bestPossible_ + THRESH2 * cutoff_; |
---|
182 | double weight; |
---|
183 | weight = (target - x->objectiveValue()) / |
---|
184 | static_cast<double>(x->numberUnsatisfied()); |
---|
185 | double testX = - weight; |
---|
186 | weight = (target - y->objectiveValue()) / |
---|
187 | static_cast<double>(y->numberUnsatisfied()); |
---|
188 | double testY = - weight; |
---|
189 | #elif TRY_THIS==2 |
---|
190 | // Use estimates |
---|
191 | double testX = x->guessedObjectiveValue(); |
---|
192 | double testY = y->guessedObjectiveValue(); |
---|
193 | #elif TRY_THIS==3 |
---|
194 | #define THRESH 0.95 |
---|
195 | // Use estimates |
---|
196 | double testX = x->guessedObjectiveValue(); |
---|
197 | double testY = y->guessedObjectiveValue(); |
---|
198 | if (x->objectiveValue() - bestPossible_ > THRESH*(cutoff_ - bestPossible_)) |
---|
199 | testX *= 2.0; // make worse |
---|
200 | if (y->objectiveValue() - bestPossible_ > THRESH*(cutoff_ - bestPossible_)) |
---|
201 | testY *= 2.0; // make worse |
---|
202 | #endif |
---|
203 | if (testX != testY) |
---|
204 | return testX > testY; |
---|
205 | else |
---|
206 | return equalityTest(x, y); // so ties will be broken in consistent manner |
---|
207 | } |
---|
208 | #endif |
---|
209 | } |
---|
210 | // This allows method to change behavior as it is called |
---|
211 | // after each solution |
---|
212 | void |
---|
213 | CbcCompareDefault::newSolution(CbcModel * model, |
---|
214 | double objectiveAtContinuous, |
---|
215 | int numberInfeasibilitiesAtContinuous) |
---|
216 | { |
---|
217 | cutoff_ = model->getCutoff(); |
---|
218 | if (model->getSolutionCount() == model->getNumberHeuristicSolutions() && |
---|
219 | model->getSolutionCount() < 5 && model->getNodeCount() < 500) |
---|
220 | return; // solution was got by rounding |
---|
221 | // set to get close to this solution |
---|
222 | double costPerInteger = |
---|
223 | (model->getObjValue() - objectiveAtContinuous) / |
---|
224 | static_cast<double> (numberInfeasibilitiesAtContinuous); |
---|
225 | weight_ = 0.95 * costPerInteger; |
---|
226 | saveWeight_ = 0.95 * weight_; |
---|
227 | numberSolutions_++; |
---|
228 | //if (numberSolutions_>5) |
---|
229 | //weight_ =0.0; // this searches on objective |
---|
230 | } |
---|
231 | // This allows method to change behavior |
---|
232 | bool |
---|
233 | CbcCompareDefault::every1000Nodes(CbcModel * model, int numberNodes) |
---|
234 | { |
---|
235 | #if 0 |
---|
236 | // was |
---|
237 | if (numberNodes > 10000) |
---|
238 | weight_ = 0.0; // this searches on objective |
---|
239 | // get size of tree |
---|
240 | treeSize_ = model->tree()->size(); |
---|
241 | #else |
---|
242 | double saveWeight = weight_; |
---|
243 | int numberNodes1000 = numberNodes / 1000; |
---|
244 | if (numberNodes > 10000) { |
---|
245 | weight_ = 0.0; // this searches on objective |
---|
246 | // but try a bit of other stuff |
---|
247 | if ((numberNodes1000 % 4) == 1) |
---|
248 | weight_ = saveWeight_; |
---|
249 | } else if (numberNodes == 1000 && weight_ == -2.0) { |
---|
250 | weight_ = -1.0; // Go to depth first |
---|
251 | } |
---|
252 | // get size of tree |
---|
253 | treeSize_ = model->tree()->size(); |
---|
254 | if (treeSize_ > 10000) { |
---|
255 | int n1 = model->solver()->getNumRows() + model->solver()->getNumCols(); |
---|
256 | int n2 = model->numberObjects(); |
---|
257 | double size = n1 * 0.1 + n2 * 2.0; |
---|
258 | // set weight to reduce size most of time |
---|
259 | if (treeSize_*(size + 100.0) > 5.0e7) |
---|
260 | weight_ = -3.0; |
---|
261 | else if ((numberNodes1000 % 4) == 0 && treeSize_*size > 1.0e6) |
---|
262 | weight_ = -1.0; |
---|
263 | else if ((numberNodes1000 % 4) == 1) |
---|
264 | weight_ = 0.0; |
---|
265 | else |
---|
266 | weight_ = saveWeight_; |
---|
267 | } |
---|
268 | #endif |
---|
269 | //return numberNodes==11000; // resort if first time |
---|
270 | return (weight_ != saveWeight); |
---|
271 | } |
---|
272 | |
---|
273 | // Create C++ lines to get to current state |
---|
274 | void |
---|
275 | CbcCompareDefault::generateCpp( FILE * fp) |
---|
276 | { |
---|
277 | CbcCompareDefault other; |
---|
278 | fprintf(fp, "0#include \"CbcCompareActual.hpp\"\n"); |
---|
279 | fprintf(fp, "3 CbcCompareDefault compare;\n"); |
---|
280 | if (weight_ != other.weight_) |
---|
281 | fprintf(fp, "3 compare.setWeight(%g);\n", weight_); |
---|
282 | fprintf(fp, "3 cbcModel->setNodeComparison(compare);\n"); |
---|
283 | } |
---|
284 | |
---|