False! Take \(b=c=2\) and \(a=4.\)

Then clearly a does not divide b nor c, but a divides bc.

Question

asked 2020-11-03

Let \(A={x \in R|-1<x\ \text{underset}(-)(<)0}\ and\ B={x \in R|0\ \text{underset}(-)(<)X<1}\)

a:find \(A \cup B\)

b:Find \(A \cap B\)

c:Find \(A^c\)

asked 2021-01-19

Prove that

\(\displaystyle{F}_{{n}}=\frac{1}{{4}}{\left({F}_{{{n}-{2}}}+{F}_{{n}}+{F}_{{{n}+{2}}}\right)}\)

asked 2021-02-09

asked 2021-07-14

B) Let \(A=\begin{bmatrix}1 & 0&1 \\0 & 1&0 \end{bmatrix} , B=\begin{bmatrix}1 & 0&0 \\0 & 0&1 \end{bmatrix} \text{ and } C=\begin{bmatrix}1 & 0 \\0 & 1\\0&1 \end{bmatrix}\)

Find \(\displaystyle{\left({B}\cdot{C}\right)}\cdot{A}\)